EP2094059B1 - Induktionskochfeld mit wenigstens einem Induktionsheizelement und wenigstens einem Temperatursensor - Google Patents

Induktionskochfeld mit wenigstens einem Induktionsheizelement und wenigstens einem Temperatursensor Download PDF

Info

Publication number
EP2094059B1
EP2094059B1 EP09100133.9A EP09100133A EP2094059B1 EP 2094059 B1 EP2094059 B1 EP 2094059B1 EP 09100133 A EP09100133 A EP 09100133A EP 2094059 B1 EP2094059 B1 EP 2094059B1
Authority
EP
European Patent Office
Prior art keywords
cooking utensil
temperature
induction
control unit
cooking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09100133.9A
Other languages
English (en)
French (fr)
Other versions
EP2094059A3 (de
EP2094059A2 (de
Inventor
Jose-Ramon Garcia Jimenez
Oscar Luis Aldana Arjol
Ruben Braulio Martinez
Sergio Llorente Gil
Fernando Monterde Aznar
David Paesa García
Carlos Sagües Blázquiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP2094059A2 publication Critical patent/EP2094059A2/de
Publication of EP2094059A3 publication Critical patent/EP2094059A3/de
Application granted granted Critical
Publication of EP2094059B1 publication Critical patent/EP2094059B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/06Cook-top or cookware capable of communicating with each other

Definitions

  • the invention relates to an induction hob with at least one induction heating element and at least one temperature sensor according to the preamble of claim 1 and to a method for operating such an induction hob according to the preamble of claim 15.
  • an induction hob with an induction heating element and a temperature sensor is known.
  • the induction hob also includes a control unit which uses information signals transmitted to or transmitted from the cookware element via the induction heating element via the induction heating element used as an antenna to identify the cookware element.
  • system cookers having known thermal properties from the sensor temperature detected by a temperature sensor arranged under a cover plate made of glass ceramic of the induction hob and using the parameters describing the thermal properties of the cookware element and as a controlled variable to use for adjusting the cookware temperature.
  • for frying the temperature of the cooking utensil or a content of the cooking utensil element can be controlled to a dependent of
  • the invention is in particular the object of enabling a safe determination of the cookware temperature even for cookware elements with unknown thermal properties without complex sensors.
  • the invention is based in particular on an induction hob with at least one induction heating element and with at least one temperature sensor for determining a Sensor temperature, as well as with a control unit for identifying a cooking utensil element by means of at least one electrical characteristic of the cooking utensil element.
  • the control unit uses a function depending on the sensor temperature and at least one thermal parameter specific to the cookware element to determine a cookware temperature of the cookware element.
  • control unit is designed to execute an at least partially automated calibration program for determining the thermal parameter and for assigning the thermal parameter to the electrical parameter.
  • the calibration program any cookware elements with thermal properties that are initially unknown for the induction hob can be calibrated so that they can be used like known system cookers and in particular also in a temperature-controlled mode.
  • the assignment or linkage between the thermal properties on the one hand and the electrical parameters on the other hand can be used to enable quick and easy identification by means of the electrical properties in later uses of the calibrated cooking utensil element and the thermal parameters from a storage unit of the induction hob or the control unit read.
  • electromagnetic or magnetic characteristics are to be referred to, for example, an induction coefficient of the cooking utensil element and / or an impedance of the cooking utensil element.
  • the control unit may be designed by suitable software or by special hardware for executing the calibration program.
  • thermal parameters are in particular characteristics for thermal properties of the cooking utensil element into consideration, which describe a reaction of the cooking utensil on the induction heating element in the cookware element or in the soil heat generated and / or a coupling between the cookware element and the temperature sensor.
  • control unit is designed to use at least two independent electrical characteristics of the cookware element for identifying the cooking utensil element.
  • This can be a safe and in particular unambiguous identification of the cooking utensil element can be achieved, which can be further improved by the use of three or more electrical characteristics or by detecting frequency dependencies of the electrical characteristics.
  • a detected vector of electrical characteristics can be used like a fingerprint to identify the cooking utensil.
  • control unit executes the semi-automated calibration program at least when the electrical characteristic can not be associated with a cookware element data set stored in a storage unit, unnecessary calibration of already stored cookware elements can be avoided and uncontrolled heating operation with uncalcined cookware elements can not occur.
  • thermal parameters for example, reaction times are considered which describe a delay in the heat transfer between the induction heating element and the cookware element or between the cookware element and the temperature sensor. Further, heat capacities or the like may be used as thermal parameters.
  • the controller is adapted to automatically determine in the calibration program the at least one electrical characteristic of the cookware element and to generate a sequence of predetermined heat output levels until an operator signals the attainment of a cookware temperature setpoint via a user interface
  • the calibration program may be performed without expensive sensor technology become. A sensor for immediately detecting the cookware temperature, which is automatically read by the control unit, can be avoided by the user interaction.
  • the induction hob may be equipped with a temperature sensor element for directly determining cookware temperature in the calibration program.
  • the temperature sensor element can be used, for example, as a thermochromic Element be formed that changes its color when it reaches the setpoint of the cookware temperature.
  • thermochromic stickers which can be brought into direct contact with a surface of the cooking utensil, are available inexpensively and easily applicable.
  • the control unit can determine at least one parameter of the time profile of the sensor temperature, for example an asymptotic value of the sensor temperature and / or a gradient of the sensor temperature.
  • the gradient may provide a measure of a rate of increase in sensor temperature.
  • electrical parameters are an inductance of the cooking utensil, a resistance of the cooking utensil or a composite of the inductance and the resistance power factor of the cookware element into consideration.
  • control unit is designed to operate the induction heating element in a safety mode with a low heat output when the electrical parameter can not be assigned to a data set stored for a cookware element in a storage unit.
  • a further aspect of the invention relates to a method for operating an induction hob with at least one induction heating element and at least one temperature sensor for determining a sensor temperature.
  • a cookware element is identified by means of at least one electrical parameter of the cookware element.
  • a cookware temperature of the cookware element is determined in normal operation depending on at least the sensor temperature and at least one thermal parameter specific to the cookware element.
  • the method for determining the thermal parameter and for assigning the thermal parameter to the electrical parameter comprise an at least partially automated calibration program.
  • Fig. 1 shows an induction hob with an induction heating element 10, which is arranged below a cover plate 32 of the induction cooktop.
  • the cover plate 32 is formed of glass or glass ceramic.
  • Under the cover plate 32 is in the region of the induction heating 10 shows a temperature sensor 12 for indirectly measuring a cookware temperature 20 (FIG. Fig. 4 ) arranged.
  • the temperature sensor 12 immediately measures a sensor temperature 14 (FIG. Fig. 4 ) of the actual temperature sensor 12, which may be different from the cookware temperature 20 due to the lack of direct thermal contact between the temperature sensor 12 and a set on the cover plate 32 of the induction cooktop cooking utensil 18, especially at rapidly varying cookware temperatures 20.
  • the induction heating element 10 and the temperature sensor 12 are connected to a control unit 16 of the induction hob, which operates the induction heating element 10 and can read the measured data of the temperature sensor 12.
  • the control unit 16 can store data in a storage unit 24 of the induction hob, or read data from the storage unit 24.
  • the user can actuate the induction hob via a user interface 28 operated by the control unit 16, which is shown here only schematically and can be designed, for example, as a touch screen or as a conventional arrangement of control knobs.
  • the cookware element 18 When the cookware element 18 is positioned in the region of the induction heating element 10 on the cover plate 32, the cookware element 18 influences the electrical and electromagnetic properties of the overall system composed of the induction heating element 10 and the cookware element 18.
  • an inductance of the cooking utensil element 18 influences an inductance L of the induction heating element 10 formed as an induction coil, and the power dissipated by eddy currents in the bottom of the cooking element 18 increases a loss angle of the induction heating element 10 and an apparent resistance R of the induction heating element 10, respectively.
  • An electrical auto-calibration function of the control unit 16 is used to determine a pair of electrical parameters, in particular for determining the inductance L and the resistance R of the cookware element 18 or of the overall system.
  • the control unit 16 uses the thus determined pair of electrical characteristics L, R for identifying the cookware element 18, which is placed on the cover plate 32.
  • the control unit 16 reads from memory unit 24 a thermal parameter Tpot, TGlass specific to the identified cookware element 18 and uses it these thermal parameters Tpot, TGlass as parameters of a function by means of which the control unit 16 determines an estimated value for the cookware temperature 20 from the sensor temperature 14.
  • the function is a numerical model or a simulation of the dynamic behavior of the overall system comprising the cookware element 18 and the induction heating element 10, which takes into account in particular the thermal behavior of the parts involved.
  • the numerical model depends in particular on two parameters, namely the first parameter Tpot, which describes the energy transfer between the induction coil of the induction heating element 10 and the cookware element 18 or a delay in this energy transfer, and a second parameter TGlass, which describes a heat transfer between the cookware element 18 and the temperature sensor 12 describes. If these parameters Tpot, TGlass are known, the control unit 16 can determine the cookware temperature 20 from the course of the sensor temperature and / or from a functional value of the heating power fed by the induction heating element 10.
  • Fig. 2 schematically shows the sequence of an executed by the control unit 16 operating program.
  • a first step 34 it is checked whether the automatic calibration mode is switched on. If yes, in a step 36 an electrical calibration is started, in which first in a step 38 the values of the electrical characteristics L, R are determined from an impedance of the overall system composed of the cookware element 18 and the induction heating element 10.
  • the control unit 16 checks whether the value pair of the parameters L, R within a predetermined tolerance with a corresponding value pair L i , R i of a stored in the storage unit 24 cooking utensil element coincides.
  • the cookware element 18 is identified as one of the cookware elements already stored in the storage unit 24, and the control unit 16 reads out the thermal parameter Tpot i associated with that cookware element from the storage unit 24.
  • control unit 16 also determines second cooking element thermal parameter Tglass 18, which is stronger than first thermal parameter Tpot from a position of cookware element 18 relative to induction heating element 10 and a second Bombing a bottom of the cooking utensil 18 is dependent.
  • control unit 16 automatically switches to a safety mode in which the induction heating element 10 is operated at a low heat output to avoid overheating. The same applies if the calibration fails.
  • FIGS. 3 and 4 show the time course of a heating power of the induction heater 10, or a sensor temperature 14, a resulting from the dynamic model for the thermal behavior of the cooking utensil element 18 value of the cookware temperature 20 and an actual value 46 of the cookware temperature.
  • the heating power is set in the calibration program 22 in a first phase 48 by the control unit 16 to a very high value and then, after about 2 minutes, reduced to a lower heating power level 50.
  • the high heating power in the first phase 48 results in a rapid rise in the cookware temperature 20, followed by a rise in the sensor temperature 14 with some delay.
  • the cookware temperature 20 approaches an asymptotic limit and adjusts to the sensor temperature 14.
  • this behavior differs for different cookware elements.
  • the gradient of the first, rapid rise of the cookware temperature 20 is mainly dependent on the first thermal parameter Tpot, while the asymptotic value of the cookware temperature and the sensor temperature, respectively, depends mainly on the second thermal parameter TGlass.
  • the control unit 16 simulates the course of the sensor temperature 14 for different value pairs of thermal parameters Tpot, TGlass, compares the simulation result with the actually measured curve of the sensor temperature 14 and selects that Value pair Tpot, TGlass, in which the simulation result has the smallest deviation from the actually measured time profile of the sensor temperature 14.
  • the determination of the optimal values for the thermal parameters Tpot, TGlass can take place in any multidimensional optimization method, for example also by evaluating pairs of values, which in a two-dimensional representation, in which the values of the individual parameters correspond to the respective coordinate axes, in a rectangular matrix are arranged, for example, 6 x 6 or 8 x 8 or 4 x 6 points (see. FIGS. 5 and 6 ).
  • the control unit 16 calculates for each of the models represented by a pair of values of the thermal parameters Tpot, TGlass the progression of the cookware temperature 20 and the course of the sensor temperature 14 and compares the thus calculated profile of the sensor temperature 14 with the measured value of the temperature sensor 12.
  • the calibration program 22 determines the one Model that allows the lowest sensor temperature error and thus the best temperature estimate.
  • FIG. 12 shows the cook line temperature isolines 20 that are substantially horizontal while the time-varying isolines of the sensor temperature 14 are tilted during the course of the calibration program 22 and during the cooking process, respectively, with respect to the x-axis.
  • the sensor temperature isolines are therefore determined solely by the value of the parameter TGlass.
  • the fully automated thermal calibration therefore determines the correctly discretized model depending on the time course of the measurement of the sensor temperature 14.
  • the control unit 16 determines in which of the columns of the model matrix in the representations in FIG FIGS. 5 and 6 the lowest sensor temperature error is reached.
  • control unit 16 determines the correct line depending on the timing of the sensor temperature isolines. If both the correct row and the correct column of the model matrix are known, the value of the thermal parameter Tpot can be easily determined.
  • models calculated by the control unit 16 are shown as circles with thin edge lines, the characteristics of the actual cookware 18 by a filled circle, and the model with the minimum sensor temperature error as a circle with thick edge line.
  • Fig. 7 shows an equivalent circuit diagram of the induction cooktop with the induction heating element 10 and the cookware element 18 comprehensive overall system 52, which can be represented by a series connection of a resistor R and an inductance L.
  • the induction cooktop control unit 16 measures various values of load current, voltage and power. These electrical parameters are specific to the cookware element heated by the induction heating element 10.
  • Fig. 8 shows temperature curves of a cookware temperature 20 for various cookware elements. It turns out that the smaller the parameter Tpot, which describes a thermal coupling between the cookware element and the induction heating element, the faster the cookware temperature 20 increases.
  • Fig. 9 shows the electrical characteristics of various cookware elements, each of which can be represented by a vector in a two-dimensional vector space.
  • Each of the points in Fig. 9 corresponds to a value pair L, PF from the inductance L and a power factor PF, which corresponds to the ratio of the resistance R and the amount of impedance Z.
  • Fig. 9 also shows a tolerance range 54. If the values L, R determined in step 38 are within the tolerance range 54, the cookware element is associated with the stored cookware element corresponding to the value pair described by the point in the center of the tolerance range 54. The cookware element 18 to be identified is identified as this already calibrated cookware element.
  • the calibration program 22 is partially automated and requires user intervention.
  • the induction hob is equipped with a in Fig. 1 equipped temperature sensor element 30, which is designed as a thermochromic element or as a thermochromic sticker.
  • the operator places or glues the temperature sensor element 30 onto a surface of the cookware element 18 and actuates a corresponding switch of the user interface 28 as soon as the temperature sensor element 30 changes color. This color change occurs when the cookware temperature 20 has reached a target value.
  • the control unit 16 reads the signal from the user interface 28 and determines the thermal parameter Tpot depending on the elapsed time to receive the user signal time or depending on the up to the receipt of the user signal in the cookware element 18 coupled heating power.
  • the temperature sensor element 30 can be read out contactlessly by the control unit 16, for example when the temperature sensor element 30 comprises an RFID chip.
  • the control unit 16 implements a method for operating an induction hob with an induction heating element 10 and a temperature sensor 12 for determining the sensor temperature 14.
  • a cookware element 18 is identified by means of at least one electrical characteristic L, R of the cookware element 18, and a cookware temperature 20 of the cookware element 18 is Normal operation depending on at least the sensor temperature 14 and a specific for the cookware element 18 thermal parameters Tpot, TGlass determined.
  • the thermal parameter Tpot, TGlass if this is not already known, determined and the electrical characteristics L, R associated with the cookware 18.
  • the pot When an already calibrated pot or cooking element is already set up on the induction hob, the pot can be easily detected by a quick determination of the electrical parameters L, R and the thermal parameters Tpot, TGlass can be read from the storage unit 24, so that a short heating time can be achieved.
  • the calibration scheme allows for good cooking results that are accurate to those of a system pan.
  • An inventive hob is inexpensive to implement and largely independent of the used cookware element used. Above the cover plate 32 arranged temperature sensors can be avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Cookers (AREA)

Description

  • Die Erfindung geht aus von einem Induktionskochfeld mit wenigstens einem Induktionsheizelement und wenigstens einem Temperatursensor nach dem Oberbegriff des Anspruchs 1 und von einem Verfahren zum Betreiben eines solchen Induktionskochfelds nach dem Oberbegriff des Anspruchs 15.
  • Aus der EP 1 708 545 A2 ist ein Induktionskochfeld mit einem Induktionsheizelement und einem Temperatursensor bekannt. Das Induktionskochfeld umfasst ferner eine Steuereinheit, die über das Induktionsheizelement auf ein Kochgeschirrelement übertragene bzw. von dem Kochgeschirrelement mittels des als Antenne genutzten Induktionsheizelements empfangene Informationssignale zum Identifizieren des Kochgeschirrelements nutzt. Ferner ist es bekannt, zum Beheizen von sogenannten Systemkochtöpfen mit bekannten thermischen Eigenschaften aus der von einem unter einer Abdeckplatte aus Glaskeramik des Induktionskochfelds angeordneten Temperatursensor erfassten Sensortemperatur und unter Verwendung der die thermischen Eigenschaften des Kochgeschirrelements beschreibenden Parameter die tatsächliche Temperatur des Kochgeschirrelements zu bestimmen und als Regelgröße zum Einregeln der Kochgeschirrtemperatur zu nutzen. Dadurch kann beispielsweise zum Frittieren die Temperatur des Kochgeschirrelements bzw. eines Inhalts des Kochgeschirrelements auf einen von einer eingestellten Heizstufe abhängigen Sollwert geregelt werden.
  • Dokumente EP-A-1420613 und DE-A-198 21439 offenbaren ebenfalls Kalibrierungsverfahren für Induktionskochfelder.
  • Der Erfindung liegt insbesondere die Aufgabe zugrunde, eine sichere Bestimmung der Kochgeschirrtemperatur auch für Kochgeschirrelemente mit unbekannten thermischen Eigenschaften ohne aufwendige Sensorik zu ermöglichen.
  • Die Aufgabe wird insbesondere durch die Merkmale der unabhängigen Patentansprüche gelöst, während sich vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung aus den Unteransprüchen ergeben.
  • Die Erfindung geht insbesondere aus von einem Induktionskochfeld mit wenigstens einem Induktionsheizelement und mit wenigstens einem Temperatursensor zum Bestimmen einer Sensortemperatur, sowie mit einer Steuereinheit zum Identifizieren eines Kochgeschirrelements mittels wenigstens einer elektrischen Kenngröße des Kochgeschirrelements. Die Steuereinheit nutzt zum Bestimmen einer Kochgeschirrtemperatur des Kochgeschirrelements eine Funktion, die wenigstens von der Sensortemperatur und von wenigstens einem für das Kochgeschirrelement spezifischen thermischen Parameter abhängt.
  • Es wird vorgeschlagen, dass die Steuereinheit zum Ausführen eines zumindest teilautomatisierten Kalibrierungsprogramms zum Bestimmen des thermischen Parameters und zum Zuordnen des thermischen Parameters zu der elektrischen Kenngröße ausgelegt ist. Durch das Kalibrierungsprogramm können beliebige Kochgeschirrelemente mit zunächst für das Induktionskochfeld unbekannten thermischen Eigenschaften so kalibriert werden, dass sie wie bekannte Systemkochtöpfe und insbesondere auch in einem temperaturgeregelten Betrieb genutzt werden können. Die Zuordnung bzw. Verknüpfung zwischen den thermischen Eigenschaften einerseits und den elektrischen Kenngrößen andererseits kann dazu genutzt werden, in späteren Verwendungen des kalibrierten Kochgeschirrelements eine schnelle und einfache Identifikation mittels der elektrischen Eigenschaften zu ermöglichen und die thermischen Parameter aus einer Speichereinheit des Induktionskochfelds bzw. der Steuereinheit auszulesen.
  • Als elektrische Kenngrößen sollen in diesem Zusammenhang auch elektromagnetische bzw. magnetische Kenngrößen bezeichnet werden, beispielsweise ein Induktionskoeffizient des Kochgeschirrelements und/oder eine Impedanz des Kochgeschirrelements. Die Steuereinheit kann durch eine geeignete Software oder auch durch eine spezielle Hardware zum Ausführen des Kalibrierungsprogramms ausgelegt sein. Als thermische Parameter kommen insbesondere Kenngrößen für thermische Eigenschaften des Kochgeschirrelements in Betracht, die eine Reaktion des Kochgeschirrelements auf von dem Induktionsheizelement in dem Kochgeschirrelement bzw. in dessen Boden erzeugte Wärme und/oder eine Kopplung zwischen dem Kochgeschirrelement und dem Temperatursensor beschreiben.
  • In einer Weiterbildung der Erfindung wird vorgeschlagen, dass die Steuereinheit dazu ausgelegt ist, zum Identifizieren des Kochgeschirrelements wenigstens zwei unabhängige elektrische Kenngrößen des Kochgeschirrelements zu nutzen. Dadurch kann eine sichere und insbesondere eindeutige Identifizierung des Kochgeschirrelements erreicht werden, die durch die Verwendung von drei oder mehr elektrischen Kenngrößen bzw. durch das Erfassen von Frequenzabhängigkeiten der elektrischen Kenngrößen weiter verbessert werden kann. Ein erfasster Vektor von elektrischen Kenngrößen kann wie ein Fingerabdruck zur Identifikation des Kochgeschirrelements genutzt werden.
  • Wenn die Steuereinheit das teilautomatisierte Kalibrierungsprogramm zumindest dann ausführt, wenn die elektrische Kenngröße keinem in einer Speichereinheit gespeicherten Datensatz für ein Kochgeschirrelement zugeordnet werden kann, kann ein unnötiges Kalibrieren bereits gespeicherter Kochgeschirrelemente vermieden werden und ein unkontrollierter Heizbetrieb mit unkalibrierten Kochgeschirrelementen kann nicht stattfinden.
  • Eine hinreichend genaue Modellierung bzw. Simulation des thermischen Verhaltens des Kochgeschirrelements kann erreicht werden, wenn die Funktion zum Bestimmen des Kochgeschirrelements von wenigstens zwei thermischen Parametern abhängt. Als thermische Parameter kommen beispielsweise Reaktionszeiten in Betracht, die eine Verzögerung der Wärmeübertragung zwischen dem Induktionsheizelement und dem Kochgeschirrelement bzw. zwischen dem Kochgeschirrelement und dem Temperatursensor beschreiben. Ferner können Wärmekapazitäten oder dergleichen als thermische Parameter verwendet werden.
  • Wenn die Steuereinheit dazu ausgelegt ist, in dem Kalibrierungsprogramm automatisch die wenigstens eine elektrische Kenngröße des Kochgeschirrelements zu bestimmen und eine Sequenz von vorgegebenen Heizleistungsstufen zu erzeugen, bis ein Bediener über eine Benutzerschnittstelle das Erreichen eines Sollwerts der Kochgeschirrtemperatur signalisiert, kann das Kalibrierungsprogramm ohne aufwendige Sensorik durchgeführt werden. Ein Sensor zum unmittelbaren Detektieren der Kochgeschirrtemperatur, der automatisch von der Steuereinheit ausgelesen wird, kann durch die Benutzerinteraktion vermieden werden.
  • Um dem Benutzer das Bestimmen der Kochgeschirrtemperatur in einer komfortablen Weise zu ermöglichen, kann das Induktionskochfeld mit einem Temperatursensorelement zum unmittelbaren Bestimmen der Kochgeschirrtemperatur im Kalibrierungsprogramm ausgestattet sein. Das Temperatursensorelement kann beispielsweise als thermochromes Element ausgebildet sein, das beim Erreichen des Sollwerts der Kochgeschirrtemperatur seine Farbe ändert. Solche thermochromen Sticker, die in direkten Kontakt mit einer Oberfläche des Kochgeschirrelements gebracht werden können, sind kostengünstig verfügbar und einfach anwendbar.
  • Unsicherheiten durch den Benutzereingriff können vermieden werden, wenn die Steuereinheit zum vollautomatischen Ausführen des Kalibrierungsprogramms ausgelegt ist. Zum Bestimmen des thermischen Parameters kann die Steuereinheit wenigstens eine Kenngröße des zeitlichen Verlaufs der Sensortemperatur ermitteln, beispielsweise einen asymptotischen Wert der Sensortemperatur und/oder einen Gradienten der Sensortemperatur. Der Gradient kann eine Kenngröße für eine Geschwindigkeit eines Anstiegs der Sensortemperatur bilden. Als elektrische Kenngrößen kommen eine Induktivität des Kochgeschirrelements, ein Widerstand des Kochgeschirrelements oder ein aus der Induktivität und dem Widerstand zusammengesetzter Leistungsfaktor des Kochgeschirrelements in Betracht.
  • In einer Weiterbildung der Erfindung wird vorgeschlagen, dass die Steuereinheit dazu ausgelegt ist, dann, wenn die elektrische Kenngröße keinem in einer Speichereinheit gespeicherten Datensatz für ein Kochgeschirrelement zugeordnet werden kann, das Induktionsheizelement in einem Sicherheitsmodus mit einer geringen Heizleistung zu betreiben.
  • Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zum Betreiben eines Induktionskochfelds mit wenigstens einem Induktionsheizelement und wenigstens einem Temperatursensor zum Bestimmen einer Sensortemperatur. Dazu wird ein Kochgeschirrelement mittels wenigstens einer elektrischen Kenngröße des Kochgeschirrelements identifiziert. Eine Kochgeschirrtemperatur des Kochgeschirrelements wird im Normalbetrieb abhängig von wenigstens der Sensortemperatur und wenigstens einem für das Kochgeschirrelement spezifischen thermischen Parameter bestimmt.
  • Um eine Bestimmung der Kochgeschirrtemperatur auch für Kochgeschirrelemente mit unbekanntem thermischen Parameter zu ermöglichen, wird vorgeschlagen, dass das Verfahren zum Bestimmen des thermischen Parameters und zum Zuordnen des thermischen Parameters zu der elektrischen Kenngröße ein zumindest teilautomatisiertes Kalibrierungsprogramm umfasst.
  • Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
  • Dabei zeigen:
  • Fig. 1
    ein Induktionskochfeld mit einer Induktionsspule, einem Temperatursensor und einem Kochgeschirrelement,
    Fig. 2
    ein Ablaufdiagramm eines in einer Steuereinheit des Induktionskochfelds aus Fig. 1 implementierten Betriebsprogramms,
    Fig. 3
    einen zeitlichen Verlauf einer Heizleistung zur thermischen Kalibrierung des Kochgeschirrelements,
    Fig. 4
    einen zeitlichen Verlauf einer Sensortemperatur und einer Kochgeschirrtemperatur während einer thermischen Kalibrierung,
    Fig. 5
    ein zweidimensionales Koordinatensystem mit zwei thermischen Parametern und Kochgeschirrtemperatur-Isolinien,
    Fig. 6
    ein zweidimensionales Diagramm mit zwei thermischen Parametern und Sensortemperatur-Isolinien,
    Fig. 7
    ein Ersatzschaltbild des Induktionskochfelds zur elektrischen Identifizierung des Kochgeschirrelements,
    Fig. 8
    Temperaturverläufe einer Kochgeschirrtemperatur für verschiedene Kochgeschirrelemente und
    Fig. 9
    eine zweidimensionale Koordinatendarstellung zur Identifizierung eines Kochgeschirrelements abhängig von zwei elektrischen Kenngrößen des Kochgeschirrelements.
  • Fig. 1 zeigt ein Induktionskochfeld mit einem Induktionsheizelement 10, das unter einer Abdeckplatte 32 des Induktionskochfelds angeordnet ist. Die Abdeckplatte 32 ist aus Glas oder Glaskeramik ausgebildet. Unter der Abdeckplatte 32 ist im Bereich des Induktionsheizelements 10 ein Temperatursensor 12 zum indirekten Messen einer Kochgeschirrtemperatur 20 (Fig. 4) angeordnet. Der Temperatursensor 12 misst unmittelbar eine Sensortemperatur 14 (Fig. 4) des eigentlichen Temperatursensors 12, die durch den fehlenden unmittelbaren Wärmekontakt zwischen dem Temperatursensor 12 und einem auf der Abdeckplatte 32 des Induktionskochfelds aufgestellten Kochgeschirrelements 18, insbesondere bei schnell veränderlichen Kochgeschirrtemperaturen 20, unterschiedlich von der Kochgeschirrtemperatur 20 sein kann.
  • Das Induktionsheizelement 10 und der Temperatursensor 12 sind mit einer Steuereinheit 16 des Induktionskochfelds verbunden, die das Induktionsheizelement 10 betreibt und die Messdaten des Temperatursensors 12 auslesen kann. Die Steuereinheit 16 kann Daten in einer Speichereinheit 24 des Induktionskochfelds speichern, bzw. Daten aus der Speichereinheit 24 auslesen. Der Benutzer kann das Induktionskochfeld über eine von der Steuereinheit 16 betriebene Benutzerschnittstelle 28 betätigen, die hier nur schematisch dargestellt ist und beispielsweise als Touchscreen oder als konventionelle Anordnung von Bedienknebeln ausgebildet sein kann.
  • Wenn das Kochgeschirrelement 18 im Bereich des Induktionsheizelements 10 auf der Abdeckplatte 32 abgestellt ist, beeinflusst das Kochgeschirrelement 18 die elektrischen und elektromagnetischen Eigenschaften des aus dem Induktionsheizelement 10 und dem Kochgeschirrelement 18 zusammengesetzten Gesamtsystems. Insbesondere beeinflusst eine Induktivität des Kochgeschirrelements 18 eine Induktivität L des als Induktionsspule ausgebildeten Induktionsheizelements 10, und die durch Wirbelströme im Boden des Kochgeschirrelements 18 dissipierte Leistung erhöht einen Verlustwinkel des Induktionsheizelements 10 bzw. einen scheinbaren Widerstand R des Induktionsheizelements 10.
  • Eine elektrische Autokalibrierungsfunktion der Steuereinheit 16 dient zum Bestimmen eines Paars von elektrischen Kenngrößen, insbesondere zum Bestimmen der Induktivität L und des Widerstands R des Kochgeschirrelements 18 bzw. des Gesamtsystems. Die Steuereinheit 16 nutzt das derart bestimmte Paar von elektrischen Kenngrößen L, R zum Identifizieren des Kochgeschirrelements 18, das auf der Abdeckplatte 32 aufgestellt ist.
  • Wenn das Kochgeschirrelement 18 wie weiter unten beschrieben identifiziert werden konnte, liest die Steuereinheit 16 aus der Speichereinheit 24 einen für das identifizierte Kochgeschirrelement 18 spezifischen thermischen Parameter Tpot, TGlass aus und nutzt diesen thermischen Parameter Tpot, TGlass als Parameter einer Funktion, mittels derer die Steuereinheit 16 einen Schätzwert für die Kochgeschirrtemperatur 20 aus der Sensortemperatur 14 bestimmt. Die Funktion ist ein numerisches Modell bzw. eine Simulation des dynamischen Verhaltens des das Kochgeschirrelement 18 und das Induktionsheizelement 10 umfassenden Gesamtsystems, welches insbesondere das thermische Verhalten der beteiligten Teile berücksichtigt. Das numerische Modell hängt insbesondere von zwei Parametern ab, und zwar von dem ersten Parameter Tpot, der die Energieübertragung zwischen der Induktionsspule des Induktionsheizelements 10 und dem Kochgeschirrelement 18 bzw. eine Verzögerung dieser Energieübertragung beschreibt, und von einem zweiten Parameter TGlass, der eine Wärmeübertragung zwischen dem Kochgeschirrelement 18 und dem Temperatursensor 12 beschreibt. Wenn diese Parameter Tpot, TGlass bekannt sind, kann die Steuereinheit 16 aus dem Verlauf der Sensortemperatur und/oder aus einem Funktional der von dem Induktionsheizelement 10 eingespeisten Heizleistung die Kochgeschirrtemperatur 20 bestimmen.
  • Fig. 2 zeigt schematisch den Ablauf eines von der Steuereinheit 16 ausgeführten Betriebsprogramms. In einem ersten Schritt 34 wird überprüft, ob der automatische Kalibrierungsmodus eingeschaltet ist. Wenn ja, startet in einem Schritt 36 eine elektrische Kalibrierung, in welcher zunächst in einem Schritt 38 die Werte der elektrischen Kenngrößen L, R aus einer Impedanz des aus dem Kochgeschirrelement 18 und dem Induktionsheizelement 10 zusammengesetzten Gesamtsystems bestimmt wird. In einem Schritt 40 überprüft die Steuereinheit 16, ob das Wertepaar der Kenngrößen L, R innerhalb einer vorgegebenen Toleranz mit einem entsprechenden Wertepaar Li, Ri eines in der Speichereinheit 24 gespeicherten Kochgeschirrelements übereinstimmt.
  • Wenn dies der Fall ist, wird das Kochgeschirrelement 18 als eines der bereits in der Speichereinheit 24 gespeicherten Kochgeschirrelemente identifiziert und die Steuereinheit 16 liest den diesem Kochgeschirrelement zugeordneten thermischen Parameter Tpoti aus der Speichereinheit 24 aus. Während des Betriebs des Induktionsheizelements 10 bzw. während des Aufheizens des Kochgeschirrelements 18 bestimmt die Steuereinheit 16 zudem den zweiten thermischen Parameter TGlass des Kochgeschirrelements 18, der stärker als der erste thermische Parameter Tpot von einer Position des Kochgeschirrelements 18 relativ zu dem Induktionsheizelement 10 und von einer Bombierung eines Bodens des Kochgeschirrelements 18 abhängig ist.
  • Wenn in dem Schritt 40 keine Übereinstimmung zwischen dem Wertepaar L, R und einem der gespeicherten Wertepaare Li, Ri (i = 1 ... n) gefunden wird, startet die Steuereinheit 16 in einem Schritt 42 ein Kalibrierungsprogramm 22, in welchem der thermische Parameter Tpot, wie weiter unten detaillierter beschrieben, bestimmt wird. Nach einer erfolgreichen Bestimmung des thermischen Parameters Tpot wird der erste thermische Parameter Tpot zusammen mit den elektrischen Kenngrößen L, R als neue, dem neu kalibrierten Kochgeschirrelement 18 zugeordnete Datenstruktur in einem Schritt 44 in der Speichereinheit 24 gespeichert.
  • Wenn der Bediener über die Benutzerschnittstelle 28 signalisiert, dass er die Ausführung des Kalibrierungsprogramms 22 nicht wünscht, schaltet die Steuereinheit 16 automatisch in einen Sicherheitsmodus, in welchem das Induktionsheizelement 10 mit einer geringen Heizleistung betrieben wird, um ein Überhitzen zu vermeiden. Das Gleiche gilt dann, wenn die Kalibrierung fehlschlägt.
  • Die Figuren 3 und 4 zeigen den zeitlichen Verlauf einer Heizleistung des Induktionsheizelements 10, bzw. einer Sensortemperatur 14, eines sich aus dem dynamischen Modell für das thermische Verhalten des Kochgeschirrelements 18 ergebenden Werts der Kochgeschirrtemperatur 20 und eines tatsächlichen Werts 46 der Kochgeschirrtemperatur. Die Heizleistung wird in dem Kalibrierungsprogramm 22 in einer ersten Phase 48 von der Steuereinheit 16 auf einen sehr hohen Wert gesetzt und dann, nach etwa 2 Minuten, auf eine geringere Heizleistungsstufe 50 reduziert. Die hohe Heizleistung in der ersten Phase 48 hat einen rapiden Anstieg der Kochgeschirrtemperatur 20 zur Folge, der mit einiger Verzögerung einen Anstieg der Sensortemperatur 14 folgt. Nach der Reduktion der Heizleistung auf die geringere Heizleistungsstufe 50 nähert sich die Kochgeschirrtemperatur 20 einem asymptotischen Grenzwert und gleicht sich der Sensortemperatur 14 an. Quantitativ unterscheidet sich dieses Verhalten bei unterschiedlichen Kochgeschirrelementen. Insbesondere ist der Gradient des ersten, rapiden Anstiegs der Kochgeschirrtemperatur 20 hauptsächlich abhängig von dem ersten thermischen Parameter Tpot, während der asymptotische Wert der Kochgeschirrtemperatur bzw. der Sensortemperatur hauptsächlich von dem zweiten thermischen Parameter TGlass abhängt.
  • Die Steuereinheit 16 simuliert den Verlauf der Sensortemperatur 14 für verschiedene Wertepaare von thermischen Parametern Tpot, TGlass, vergleicht das Simulationsergebnis mit dem tatsächlich gemessenen Verlauf der Sensortemperatur 14 und wählt dasjenige Wertepaar Tpot, TGlass aus, bei dem das Simulationsergebnis die geringste Abweichung zu dem tatsächlich gemessenen zeitlichen Verlauf der Sensortemperatur 14 aufweist. Das Bestimmen der optimalen Werte für die thermischen Parameter Tpot, TGlass kann in einem beliebigen mehrdimensionalen Optimierungsverfahren erfolgen, beispielsweise auch durch das Auswerten von Wertepaaren, die in einer zweidimensionalen Darstellung, in der die Werte der einzelnen Parameter den jeweiligen Koordinatenachsen entsprechen, in einer rechtwinkligen Matrix von beispielsweise 6 x 6 oder 8 x 8 oder auch 4 x 6 Punkten angeordnet sind (vgl. Figuren 5 und 6).
  • Die Steuereinheit 16 berechnet für jedes der durch ein Wertepaar der thermischen Parameter Tpot, TGlass repräsentierten Modelle den Verlauf der Kochgeschirrtemperatur 20 und den Verlauf der Sensortemperatur 14 und vergleicht den derart berechneten Verlauf der Sensortemperatur 14 mit dem Messwert des Temperatursensors 12. Das Kalibrierungsprogramm 22 bestimmt dasjenige Modell, das den geringsten Sensortemperaturfehler und damit die beste Temperaturabschätzung ermöglicht.
  • Fig. 5 zeigt die Isolinien der Kochgeschirrtemperatur 20, die im Wesentlichen horizontal verlaufen, während die zeitlich veränderlichen Isolinien der Sensortemperatur 14 sich während des Verlaufs des Kalibrierungsprogramms 22 bzw. während des Kochvorgangs gegenüber der X-Achse neigen. In einem stationären Zustand sind die Sensortemperatur-Isolinien daher allein durch den Wert des Parameters TGlass bestimmt. Die vollautomatisierte thermische Kalibrierung bestimmt daher das korrekt diskretisierte Modell abhängig von dem zeitlichen Verlauf der Messung der Sensortemperatur 14. Zunächst bestimmt die Steuereinheit 16, in welcher der Spalten der Modellmatrix in den Darstellungen in Fig. 5 und 6 der geringste Sensortemperaturfehler erreicht wird.
  • Danach bestimmt die Steuereinheit 16 die korrekte Zeile abhängig von dem zeitlichen Verlauf der Sensortemperatur-Isolinien. Sind sowohl die korrekte Zeile als auch die korrekte Spalte der Modellmatrix bekannt, kann der Wert des thermischen Parameters Tpot leicht ermittelt werden.
  • In den Figuren 5 und 6 sind von der Steuereinheit 16 berechnete Modelle als Kreise mit dünnen Randlinien, die Kenngrößen des tatsächlichen Kochgeschirrelements 18 durch einen gefüllten Kreis und das Modell mit dem minimalen Sensortemperaturfehler als Kreis mit dicker Randlinie dargestellt.
  • Fig. 7 zeigt ein Ersatzschaltbild des Induktionskochfelds mit dem das Induktionsheizelement 10 und das Kochgeschirrelement 18 umfassenden Gesamtsystem 52, das durch eine Reihenschaltung eines Widerstands R und einer Induktivität L dargestellt werden kann. Die Steuereinheit 16 des Induktionskochfelds misst verschiedene Werte des Laststroms, der Spannung und der Leistung. Diese elektrischen Parameter sind spezifisch für das von dem Induktionsheizelement 10 beheizte Kochgeschirrelement.
  • Fig. 8 zeigt Temperaturverläufe einer Kochgeschirrtemperatur 20 für verschiedene Kochgeschirrelemente. Es stellt sich heraus, dass die Kochgeschirrtemperatur 20 umso schneller ansteigt, je kleiner der Parameter Tpot ist, der eine thermische Kopplung zwischen dem Kochgeschirrelement und dem Induktionsheizelement beschreibt.
  • Fig. 9 zeigt die elektrischen Kenngrößen verschiedener Kochgeschirrelemente, die jeweils durch einem Vektor in einem zweidimensionalen Vektorraum dargestellt werden können. Jeder der Punkte in Fig. 9 entspricht einem Wertepaar L, PF aus der Induktivität L und einem Leistungsfaktor PF, der dem Verhältnis aus dem Widerstand R und dem Betrag einer Impedanz Z entspricht. PF = R Z = R R 2 + ω 2 L 2
    Figure imgb0001
  • Fig. 9 zeigt ferner einen Toleranzbereich 54. Wenn die im Schritt 38 ermittelten Werte L, R innerhalb des Toleranzbereichs 54 liegen, wird das Kochgeschirrelement dem gespeicherten Kochgeschirrelement zugeordnet, das dem durch den Punkt in der Mitte des Toleranzbereichs 54 beschriebenen Wertepaar entspricht. Das zu identifizierende Kochgeschirrelement 18 wird als dieses bereits kalibrierte Kochgeschirrelement identifiziert.
  • In einem alternativen Ausführungsbeispiel der Erfindung ist das Kalibrierungsprogramm 22 teilautomatisiert und bedarf eines Benutzereingriffs. Das Induktionskochfeld ist mit einem in Fig. 1 dargestellten Temperatursensorelement 30 ausgestattet, das als thermochromes Element bzw. als thermochromer Sticker ausgebildet ist. Nach dem Start des Kalibrierungsprogramms 22 legt oder klebt der Bediener das Temperatursensorelement 30 auf eine Oberfläche des Kochgeschirrelements 18 und betätigt einen entsprechenden Schalter der Benutzerschnittstelle 28, sobald das Temperatursensorelement 30 seine Farbe verändert. Diese Farbveränderung erfolgt dann, wenn die Kochgeschirrtemperatur 20 einen Sollwert erreicht hat. Die Steuereinheit 16 liest das Signal von der Benutzerschnittstelle 28 und bestimmt den thermischen Parameter Tpot abhängig von der bis zum Empfang des Benutzersignals verstrichenen Zeit bzw. abhängig von der bis zum Empfang des Benutzersignals in das Kochgeschirrelement 18 eingekoppelten Heizleistung.
  • In weiteren alternativen Ausgestaltungen der Erfindung kann das Temperatursensorelement 30 kontaktlos von der Steuereinheit 16 ausgelesen werden, beispielsweise wenn das Temperatursensorelement 30 einen RFID-Chip umfasst.
  • Die Steuereinheit 16 implementiert ein Verfahren zum Betreiben eines Induktionskochfelds mit einem Induktionsheizelement 10 und einem Temperatursensor 12 zum Bestimmen der Sensortemperatur 14. Ein Kochgeschirrelement 18 wird mittels wenigstens einer elektrischen Kenngröße L, R des Kochgeschirrelements 18 identifiziert, und eine Kochgeschirrtemperatur 20 des Kochgeschirrelements 18 wird im Normalbetrieb abhängig von wenigstens der Sensortemperatur 14 und einem für das Kochgeschirrelement 18 spezifischen thermischen Parameter Tpot, TGlass bestimmt. In einem teilautomatisierten Kalibrierungsprogramm 22 wird der thermische Parameter Tpot, TGlass, sofern dieser nicht bereits bekannt ist, bestimmt und den elektrischen Kenngrößen L, R des Kochgeschirrelements 18 zugeordnet.
  • Wenn ein bereits kalibrierter Topf bzw. ein bereits kalibriertes Kochgeschirrelement auf das Induktionskochfeld aufgestellt wird, kann der Topf durch eine schnelle Bestimmung der elektrischen Parameter L, R einfach erkannt werden und die thermischen Parameter Tpot, TGlass können aus der Speichereinheit 24 ausgelesen werden, so dass eine kurze Aufheizzeit erreicht werden kann. Das Kalibrierungsschema ermöglicht gute Kochergebnisse, die in ihrer Genauigkeit denjenigen einer Systempfanne entsprechen. Ein erfindungsgemäßes Kochfeld ist kostengünstig realisierbar und weitestgehend unabhängig von dem verwendeten Kochgeschirrelement einsetzbar. Oberhalb der Abdeckplatte 32 angeordnete Temperatursensoren können vermieden werden.
  • Bezugszeichen
  • 10
    Induktionsheizelement
    12
    Temperatursensor
    14
    Sensortemperatur
    16
    Steuereinheit
    18
    Kochgeschirrelement
    20
    Kochgeschirrtemperatur
    22
    Kalibrierungsprogramm
    24
    Speichereinheit
    26
    Funktion
    28
    Benutzerschnittstelle
    30
    Temperatursensorelement
    32
    Abdeckplatte
    34
    Schritt
    36
    Schritt
    38
    Schritt
    40
    Schritt
    42
    Schritt
    44
    Schritt
    46
    Wert
    48
    Phase
    50
    Heizleistungsstufe
    52
    Gesamtsystem
    54
    Toleranzbereich

Claims (15)

  1. Induktionskochfeld mit wenigstens einem Induktionsheizelement (10) und wenigstens einem Temperatursensor (12) zum Bestimmen einer Sensortemperatur (14), sowie mit einer Steuereinheit (16) zum Identifizieren eines Kochgeschirrelements (18) mittels wenigstens einer elektrischen Kenngröße des Kochgeschirrelements (18), wobei die Steuereinheit (16) zum Bestimmen einer Kochgeschirrtemperatur (20) des Kochgeschirrelements (18) mittels einer Funktion (26) ausgelegt ist, die wenigstens von der Sensortemperatur (14) und von wenigstens einem für das Kochgeschirrelement (18) spezifischen thermischen Parameter abhängt, wobei die Steuereinheit (16) zum Ausführen eines zumindest teilautomatisierten Kalibrierungsprogramms (22) zum Bestimmen des thermischen Parameters und zum Zuordnen des thermischen Parameters zu der elektrischen Kenngröße ausgelegt ist.
  2. Induktionskochfeld nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit (16) dazu ausgelegt ist, zum Identifizieren des Kochgeschirrelements (18) wenigstens zwei unabhängige elektrische Kenngrößen des Kochgeschirrelements (18) zu nutzen.
  3. Induktionskochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (16) das teilautomatisierte Kalibrierungsprogramm (22) zumindest dann ausführt, wenn die elektrische Kenngröße keinem in einer Speichereinheit (24) gespeicherten Datensatz für ein Kochgeschirrelement (18) zugeordnet werden kann.
  4. Induktionskochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Funktion (26) zum Identifizieren der Kochgeschirrtemperatur (20) des Kochgeschirrelements (18) von wenigstens zwei thermischen Parametern abhängt.
  5. Induktionskochfeld nach Anspruch 4, dadurch gekennzeichnet, dass ein erster thermischer Parameter eine Energieübertragung zwischen dem Induktionsheizelement (10) und dem Kochgeschirrelement (18) beschreibt und dass ein zweiter thermischer Parameter eine Energieübertragung zwischen dem Kochgeschirrelement (18) und dem Temperatursensor (12) beschreibt.
  6. Induktionskochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (16) dazu ausgelegt ist, in dem Kalibrierungsprogramm (22) automatisch die wenigstens eine elektrische Kenngröße des Kochgeschirrelements (18) zu bestimmen und eine Sequenz von vorgegebenen Heizleistungsstufen zu erzeugen, bis ein Bediener über eine Benutzerschnittstelle (28) das Erreichen eines Sollwerts der Kochgeschirrtemperatur (20) signalisiert.
  7. Induktionskochfeld nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Temperatursensorelement (30) zum unmittelbaren Bestimmen der Kochgeschirrtemperatur (20) im Kalibrierungsprogramm (22).
  8. Induktionskochfeld nach Anspruch 7, dadurch gekennzeichnet, dass das Temperatursensorelement (30) als thermochromes Element ausgebildet ist.
  9. Induktionskochfeld nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass die Steuereinheit (16) zum vollautomatischen Ausführen des Kalibrierungsprogramms (22) ausgelegt ist und zum Bestimmen des thermischen Parameters wenigstens eine Kenngröße des zeitlichen Verlaufs der Sensortemperatur (14) ermittelt.
  10. Induktionskochfeld nach den Ansprüchen 4 oder 5 und 9, dadurch gekennzeichnet, dass die Steuereinheit (16) zum Bestimmen der beiden thermischen Parameter zumindest eine erste Kenngröße für eine Geschwindigkeit eines Anstiegs der Sensortemperatur (14) und einen asymptotischen Wert der Sensortemperatur (14) bei einer vorgegebenen Heizleistungsstufe nutzt.
  11. Induktionskochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Kenngröße einer Induktivität des Kochgeschirrelements (18) entspricht.
  12. Induktionskochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Kenngröße einem Widerstand des Kochgeschirrelements (18) entspricht.
  13. Induktionskochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Kenngröße einem Leistungsfaktor des Kochgeschirrelements (18) entspricht.
  14. Induktionskochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (16) dazu ausgelegt ist, dann, wenn die elektrische Kenngröße einem in einer Speichereinheit (24) gespeicherten Datensatz für ein Kochgeschirrelement (18) zugeordnet werden kann, das Induktionsheizelement (10) in einem Sicherheitsmodus mit einer geringen Heizleistung zu betreiben.
  15. Verfahren zum Betreiben eines Induktionskochfelds mit wenigstens einem Induktionsheizelement (10) und wenigstens einem Temperatursensor (12) zum Bestimmen einer Sensortemperatur (14), wobei ein Kochgeschirrelement (18) mittels wenigstens einer elektrischen Kenngröße des Kochgeschirrelements (18) identifiziert wird und eine Kochgeschirrtemperatur (20) des Kochgeschirrelements (18) abhängig von wenigstens der Sensortemperatur (14) und wenigstens einem für das Kochgeschirrelement (18) spezifischen thermischen Parameter bestimmt wird, wobei zum Bestimmen des thermischen Parameters und zum Zuordnen des thermischen Parameters zu der elektrischen Kenngröße ein zumindest teilautomatisiertes Kalibrierungsprogramm (22) ausgeführt wird.
EP09100133.9A 2008-02-22 2009-02-20 Induktionskochfeld mit wenigstens einem Induktionsheizelement und wenigstens einem Temperatursensor Active EP2094059B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200800615A ES2339087B1 (es) 2008-02-22 2008-02-22 Campo de coccion por induccion con al menos un elemento de calentamiento por induccion y al menos un sensor de temperatura.

Publications (3)

Publication Number Publication Date
EP2094059A2 EP2094059A2 (de) 2009-08-26
EP2094059A3 EP2094059A3 (de) 2009-11-18
EP2094059B1 true EP2094059B1 (de) 2014-08-06

Family

ID=40666827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09100133.9A Active EP2094059B1 (de) 2008-02-22 2009-02-20 Induktionskochfeld mit wenigstens einem Induktionsheizelement und wenigstens einem Temperatursensor

Country Status (2)

Country Link
EP (1) EP2094059B1 (de)
ES (2) ES2339087B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231778A1 (de) * 2022-02-22 2023-08-23 LG Electronics Inc. Induktionsheizvorrichtung und verfahren zur steuerung davon

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2589136T3 (es) 2008-12-02 2016-11-10 Whirlpool Corporation Un procedimiento para controlar el sistema de calentamiento por inducción de un aparato de cocina
DE102008054906B4 (de) * 2008-12-18 2021-09-02 BSH Hausgeräte GmbH Verfahren zum Betreiben eines Aufsatzgeräts
EP2442034B1 (de) * 2010-10-14 2012-12-05 Electrolux Home Products Corporation N.V. Kochfeld mit einem Ausgleichssystem und einem Verfahren zum Einstellen der Temperatur eines Kochgefäßes
US8598497B2 (en) 2010-11-30 2013-12-03 Bose Corporation Cooking temperature and power control
US9006622B2 (en) 2010-11-30 2015-04-14 Bose Corporation Induction cooking
DE102012109204A1 (de) * 2012-09-28 2014-04-03 Miele & Cie. Kg Garsystem
DE102013104107A1 (de) 2013-04-23 2014-10-23 Cuciniale Gmbh Verfahren zur Regelung eines Garprozesses
DE102013218785B4 (de) * 2013-09-19 2018-07-05 E.G.O. Elektro-Gerätebau GmbH Verfahren und Vorrichtung zum Garen von Lebensmitteln
US9470423B2 (en) 2013-12-02 2016-10-18 Bose Corporation Cooktop power control system
PL3001771T3 (pl) * 2014-09-29 2017-09-29 E.G.O. Elektro-Gerätebau GmbH Sposób identyfikowania garnka na punkcie grzejnym pola grzejnego oraz system pola grzejnego z garnkiem
CN108966390B (zh) * 2017-05-18 2021-03-23 佛山市顺德区美的电热电器制造有限公司 一种防止锅具干烧的方法及装置
US10865993B2 (en) 2018-12-10 2020-12-15 Bsh Home Appliances Corporation Cooking vessel support system having a passive wireless reader/transponder for an integral cooking vessel temperature monitoring system
CN109765399B (zh) * 2019-01-18 2021-08-27 中铁工程装备集团有限公司 滚刀动态检测装置的标定设备
ES2785106A1 (es) * 2019-04-01 2020-10-05 Bsh Electrodomesticos Espana Sa Sistema de cocción
US20230122477A1 (en) 2021-10-19 2023-04-20 Whirlpool Corporation Method of determining an induction cooktop gain and related method of regulating a cooking process
US11838144B2 (en) 2022-01-13 2023-12-05 Whirlpool Corporation Assisted cooking calibration optimizer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821439A1 (de) * 1998-05-13 1999-11-18 Bsh Bosch Siemens Hausgeraete Sensorgesteuerte Garungseinheit mit Selbstkalibrierung
US6320169B1 (en) * 1999-09-07 2001-11-20 Thermal Solutions, Inc. Method and apparatus for magnetic induction heating using radio frequency identification of object to be heated
US6462316B1 (en) * 2000-10-10 2002-10-08 General Electric Company Cooktop control and monitoring system including detecting properties of a utensil and its contents
DE10262141B4 (de) * 2002-11-15 2009-10-15 Electrolux Home Products Corporation N.V. Verfahren und Vorrichtung zur thermischen Überwachung eines induktiv erwärmbaren Gargefäßes
EP1613939B1 (de) * 2003-02-25 2016-04-13 MGS Modular Galley Systems GmbH Anordnung und verfahren zur bestimmung von temperaturen
ES2284317B1 (es) 2005-03-31 2008-07-16 Bsh Electrodomesticos España, S.A. Aparato de calentamiento por induccion.
DE102005031392A1 (de) * 2005-07-05 2007-01-11 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät, insbesondere Kochfeld

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231778A1 (de) * 2022-02-22 2023-08-23 LG Electronics Inc. Induktionsheizvorrichtung und verfahren zur steuerung davon

Also Published As

Publication number Publication date
ES2339087A1 (es) 2010-05-14
EP2094059A3 (de) 2009-11-18
ES2339087B1 (es) 2011-03-28
ES2502615T3 (es) 2014-10-03
EP2094059A2 (de) 2009-08-26

Similar Documents

Publication Publication Date Title
EP2094059B1 (de) Induktionskochfeld mit wenigstens einem Induktionsheizelement und wenigstens einem Temperatursensor
EP2661944B1 (de) Induktionskochgerät zum temperaturgesteuerten kochen
EP2705339B1 (de) Verfahren zur bestimmung des einstechwinkels eines kerntemperaturfühlers
EP3111723B1 (de) Kochfeld mit einer mehrzahl von heizelementen
EP1712844B1 (de) Verfahren zur temperatursteuerung und temperatursteuereinheit eines garofens
EP2211591B2 (de) Verfahren zum Betreiben eines Kochfelds mit einer Mehrzahl von Heizelementen
EP2095684B1 (de) Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung
DE19647987C2 (de) Verfahren zum Betreiben einer mit einer Heizeinrichtung versehenen Kochstelle
EP1856452B1 (de) Verfahren und vorrichtung zur regelung von garvorgängen in einem garraum
DE102012217350A1 (de) Gargerät
DE102018105232A1 (de) Verfahren zum Erkennen wenigstens eines Beladungsparameters eines Garraums von einem Gargerät sowie Gargerät
EP3297397A1 (de) Verfahren zum betrieb eines kochfeldes mit mehreren heizeinrichtungen
DE102015201079A1 (de) Verfahren zur Temperaturregelung eines Kochfeldes
DE102005011304A1 (de) Verfahren und Elektrokochgerät zur Auswertung eines Gases, insbesondere zur Steuerung des Elektrogeräts
WO2011055279A1 (de) Kochfeld mit wenigstens einem temperatursensor
EP0806887B1 (de) Verfahren und Vorrichtung zum Erkennen des Kochpunktes von Kochgut
EP3705006B1 (de) Küchenmaschine mit überwachungseinrichtung
DE4217749A1 (de) Verfahren zur Steuerung der Backmuffeltemperatur
DE10332021B3 (de) Verfahren zum Bestimmen von Parametern eines Garprozesses eines Nahrungsmittels und dieses benutzende Steuervorrichtung
DE102015101707A1 (de) Kochsystem und Verfahren zum Betreiben eines Kochsystems
DE4341485A1 (de) Steuerung für Haushaltgeräte zur Auswertung von Sensorsignalen
DE102012201236A1 (de) Hausgerätekalibriervorrichtung
EP4009739A1 (de) Verfahren zum betrieb eines kochfelds, kochfeld und kochfeldsystem
EP3488205B1 (de) Verfahren zur schätzung einer zeitlich veränderbaren messgrösse eines systems
DE102017214753A1 (de) Haushalts-Gargerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100518

17Q First examination report despatched

Effective date: 20100616

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 681548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009748

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2502615

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141003

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BSH HAUSGERAETE GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009748

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009009748

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150408

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BSH HAUSGERATE GMBH

Effective date: 20150529

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

26N No opposition filed

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: BSH HAUSGERATE GMBH, DE

Effective date: 20151022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 681548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 16

Ref country code: ES

Payment date: 20240319

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 16

Ref country code: GB

Payment date: 20240222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240229

Year of fee payment: 16

Ref country code: FR

Payment date: 20240222

Year of fee payment: 16