EP2076551B1 - Système de catalyseur d'arylphénoxy produisant un homopolymère ou des copolymères d'éthylène et des alpha-olefines - Google Patents

Système de catalyseur d'arylphénoxy produisant un homopolymère ou des copolymères d'éthylène et des alpha-olefines Download PDF

Info

Publication number
EP2076551B1
EP2076551B1 EP06799305.5A EP06799305A EP2076551B1 EP 2076551 B1 EP2076551 B1 EP 2076551B1 EP 06799305 A EP06799305 A EP 06799305A EP 2076551 B1 EP2076551 B1 EP 2076551B1
Authority
EP
European Patent Office
Prior art keywords
group
alkyl
transition metal
substituted
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06799305.5A
Other languages
German (de)
English (en)
Other versions
EP2076551A1 (fr
EP2076551A4 (fr
Inventor
Tae Woo Woo
Myung Ahn Ok
Jong Sok Hahn
Mal Ou Lee
Sang Ook Kang
Sung Bo Ko
Tae Jin Kim
Sung Kwan Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Innovation Co Ltd
Original Assignee
SK Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Innovation Co Ltd filed Critical SK Innovation Co Ltd
Publication of EP2076551A1 publication Critical patent/EP2076551A1/fr
Publication of EP2076551A4 publication Critical patent/EP2076551A4/fr
Application granted granted Critical
Publication of EP2076551B1 publication Critical patent/EP2076551B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to an arylphenoxy catalyst system for producing ethylene homopolymer or copolymers of ethylene and ⁇ -olefins. More particularly, the present invention pertains to a group 4 transition metal catalyst, a catalyst system which includes the arylphenoxy-based transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and a method of producing an ethylene homopolymer or copolymers of ethylene and ⁇ -olefins using the same.
  • a cyclopentadiene derivative and an arylphenoxide as fixed ligands are located around a group 4 transition metal, arylphenoxide ligand is substituted with at least one aryl derivative at the ortho position thereof and at least one halogen compound, and the ligands are not crosslinked to each other.
  • Ziegler-Natta catalyst system which comprises a main catalyst component of titanium or vanadium compounds and a cocatalyst component of alkyl aluminum compounds has been used to produce an ethylene homopolymer or copolymers of ethylene and ⁇ -olefins.
  • the Ziegler-Natta catalyst system is disadvantageous in that, even though it is highly active in the polymerization of ethylene, the molecular weight distribution of a resultant polymer is wide, and particularly, a compositional distribution is non-uniform in the copolymer of ethylene and ⁇ -olefin due to heterogeneous catalyst active sites.
  • the metallocene catalyst system which comprises a metallocene compound of a group 4 transition metal in the periodic table, such as titanium, zirconium, or hafnium, and methylaluminoxane as a cocatalyst has been developed. Since the metallocene catalyst system is a homogeneous catalyst having one kind of catalytic active site, it can be used to produce polyethylene having a narrow molecular weight distribution and a uniform compositional distribution in comparison with the conventional Ziegler-Natta catalyst system.
  • EP Pat Nos. 320762 and 372632 and Japanese Patent Laid-Open Publication Nos.
  • Sho.63-092621 , Hei.02-84405 , and Hei.03-2347 disclose metallocene compounds, such as Cp 2 TiCl 2 , Cp 2 ZrCl 2 , Cp 2 ZrMeCl, Cp 2 ZrMe 2 , or (ethylene-bis tetrahydroindenyl)ZrCl 2 , activated with methylaluminoxane as a cocatalyst to polymerize ethylene at high catalytic activity, thereby making it possible to produce polyethylene having a molecular weight distribution (Mw/Mn) of 1.5 - 2.0.
  • Mw/Mn molecular weight distribution
  • a constrained geometry non-metallocene catalyst (a so-called single-site catalyst) in which a transition metal is connected to a ligand system in a ring shape has been suggested as a catalyst which has high catalytic activity and is capable of producing a polymer having a high molecular weight in polymerization of only ethylene or in copolymerization of ethylene and ⁇ -olefin under a solution polymerization condition.
  • EP Pat. Nos. 0416815 and 0420436 suggest a catalytic system in which a transition metal is connected to cyclopentadiene ligand and an amide group in a ring shape
  • 0842939 discloses a catalyst in which a phenol-based ligand as an electron donor compound is connected with a cyclopentadiene ligand in a ring shape.
  • a phenol-based ligand as an electron donor compound is connected with a cyclopentadiene ligand in a ring shape.
  • the cyclization of the ligands along with the transition metal compound is achieved at very low yield during synthesis of the constrained geometry catalyst, it is difficult to commercialize them.
  • non-metallocene catalysts which is not a constrained geometry catalyst and is capable of being used under a high temperature solution condition is disclosed in US Pat. No. 6,329,478 and Korean Patent Laid-Open Publication No. 2001-0074722 .
  • the patents disclose a single-site catalyst using one or more phosphinimine compounds as a ligand, having high ethylene conversion during copolymerization of ethylene and ⁇ -olefins under the high temperature solution polymerization condition at 140 °C or higher.
  • a non-bridged type transition metal catalyst in which cyclopentadiene derivatives and arylphenoxide are used as fixed ligands, wherein said arylphenoxide is substituted with at least one aryl derivative at the ortho-position thereof and has at least one halogen compound as substitute group, shows an excellent thermal stability.
  • a catalyst which is used to produce an ethylene homopolymer or copolymers of ethylene and ⁇ -olefins having a high molecular weight, at a high activity during a solution polymerization process at high temperatures of 120 °C or higher, has been developed, thereby the present invention is accomplished.
  • an object of the present invention is to provide a single-site catalyst suitable for high temperature solution polymerization, having single active site leading to a polymer having constant a molecular weight distribution and high molecular weight.
  • Another object of the present invention is to provide a catalyst system containing a single-site catalyst and co-catalyst used thereof.
  • Still another object of the present invention is to provide solution polymerization method, which is possible to easily and commercially produce an ethylene homopolymer or copolymers of ethylene and ⁇ -olefins having various physical properties using the catalyst.
  • an aspect of the present invention provides an arylphenoxy-based transition metal catalyst expressed by Formula 1, which includes a cyclopentadiene derivative and arylphenoxide as fixed ligands around a transition metal.
  • Arylphenoxide is substituted with at least one aryl derivative at the ortho position thereof and at least one halogen compound, and the ligands are not crosslinked to each other: wherein M is the group 4 transition metal of a periodic table; Cp is cyclopentadienyl group, capable of forming an ⁇ 5 -bond along with the central metal, or a derivative thereof; at least one of substituent R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 of the arylphenoxide ligand is a halogen atom or a C1-C20 linear or nonlinear alkyl group substituted with at least one halogen atom, and the substituents of the arylphen
  • X is selected from or two or more independently selected from a group consisting of the halogen atom, the C1-C20 alkyl group which is not a Cp derivative, the C7-C30 arylalkyl group, an alkoxy group which contains the C1-C20 alkyl group, the C3-C20 alkyl-substituted siloxy group, and an amido group which contains a C 1-C20 hydrocarbon group; and n is 1 or 2 depending on the oxidation state of the transition metal.
  • Another aspect of the present invention relates to a catalyst system which comprises the transition metal catalyst, and aluminum or a boron compound as a cocatalyst.
  • Still another aspect of the present invention relates to a method of producing ethylene polymers using the transition metal catalyst.
  • the arylphenoxy catalyst system according to the present invention is advantageous in that it is easy to handle, it is possible to produce it using environmentally-friendly raw materials at high yield, and it has a high catalytic activity in a high temperature solution polymerization performing at the range of 120 ⁇ 250 °C temperature condition due to its excellent thermal stability in the course of producing a polymer having a high molecular weight, thus it is more useful than a conventional metallocene or non-metallocene catalysts. Therefore, it is useful for producing an ethylene homopolymer or copolymers of ethylene and ⁇ -olefins having various physical properties.
  • FIG. 1 illustrates a crystalline structure of a (dichloro) (pentamethylcyclo pentadienyl)(2-phenyl-4-fluoro-2-phenylphenoxy) titanium(IV) catalyst according to the present invention.
  • an aspect of the present invention pertains to an arylphenoxy-based transition metal catalyst expressed by Formula 1, which has stability for high temperature solution polymerization with temperature condition of 120 - 250°C, and includes a cyclopentadiene derivative and arylphenoxide as fixed ligands around a transition metal.
  • Said arylpherioxide is substituted with at least one aryl derivative at the ortho position thereof and at least one halogen compound, and the ligands are not crosslinked to each other: wherein M is the group 4 transition metal of a periodic table; Cp is cyclopentadienyl group, capable of forming an ⁇ 5 -bond along with the central metal, or a derivative thereof; at least one of substituent R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 of the arylphenoxide ligand is that is, a halogen atom or a C1-C20 linear or nonlinear alkyl group substituted with at least one halogen atom and the substituents of the arylphenoxide ligand other than the halogen containing substituent are independently hydrogen atom, a C1-C20 linear or nonlinear alkyl group, a silyl group which contains the C1-C20 linear
  • Another aspect of the present invention relates to a catalyst system which comprises the transition metal catalyst, and aluminum or a boron compound as a cocatalyst.
  • Still another aspect of the present invention relates to a method of producing ethylene polymers using the transition metal catalyst.
  • M of the transition metal catalyst in Formula 1 is preferably titanium, zirconium, or hafnium.
  • Cp is a cyclopentadiene anion capable of forming an ⁇ 5 -bond along with a central metal, or a derivative thereof.
  • cyclopentadienyl methylcyclopentadienyl, dimethylcyclopentadienyl, tetramethylcyclopentadienyl, pentamethylcyclopentadienyl, butylcyclopentadienyl, sec-butylcyclopentadienyl, tert-butylmethylcyclopentadienyl, trimethylsilylcyclopentadienyl, indenyl, methylindenyl, dimethylindenyl, ethylindenyl, isopropylindenyl, fluorenyl, methylfluorenyl, dimethylfluorenyl, ethylfluorenyl, and isopropylfluorenyl.
  • halogen atom is selected, such as fluorine, chlorine, bromine, and iodine atoms;
  • substituents which can be optionally halogen compound set forth as follow: a C1-C20 alkyl group is exemplified by methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, amyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, and n-eicosyl group,
  • the alkyl group may arbitrarily be substituted with one or more halogen atoms, and is exemplified by fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloromethyl group, dichloromethyl group, trichloromethyl group, bromomethyl group, dibromomethyl group, tribromomethyl group, iodomethyl group, diiodomethyl group, triiodomethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, tetrafluoroethyl group, pentafluoroethyl group, chloroethyl group, dichloroethyl group, trichloroethyl group, tetrachloroethyl group, pentachloroethyl group, bromoethyl group, dibromoethyl group, tribromoethyl group, tetrab
  • a C7-C30 arylalkyl group is exemplified by benzyl group, (2-methylphenyl)methyl group, (3-methylphenyl)methyl group, (4-methylphenyl)methyl group, (2,3-dimethylphenyl)methyl group, (2,4-dimethylphenyl)methyl group, (2,5-dimethylphenyl)methyl group, (2,6-dimethylphenyl)methyl group, (3,4-dimethylphenyl)methyl group, (4,6-dimethylphenyl)methyl group, (2,3,4-trimethylphenyl)methyl group, (2,3,5-trimethylphenyl)methyl group, (2,3,6-trimethylphenyl)methyl group, (3,4,5-trimethylphenyl)methyl group, (2,4,6-trimethylphenyl)methyl group, (2,3,4,5-tetramethylphenyl)methyl goup, (2,3,4,6-tetramethylphenyl)methyl
  • a C1-C20 alkoxy group is exemplified by methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, neopentoxy group, n-hexoxy group, n-octoxy group, n-dodecoxy group, n-pentadecoxy goup, or n-eicosoxy group, and preferably, methoxy group, ethoxy group, isopropoxy group, and tert-butoxy group.
  • a C3-C20 alkyl-substituted or C6-C20 aryl-substituted siloxy group is exemplified by trimethylsiloxy group, triethylsiloxy group, tri-n-propylsiloxy group, triisopropylsiloxy group, tri-n-butylsiloxy group, tri-sec-butylsiloxy group, tri-tert-butylsiloxy group, tri-isobutylsiloxy group, tert-butyldimethylsiloxy group, tri-n-pentylsiloxy group, tri-n-hexylsiloxy group, tricyclohexylsiloxy group, or triphenylsiloxy group, and preferably, trimethylsiloxy group, tert-butyldimethylsiloxy group, and triphenylsiloxy group.
  • the above-mentioned substituent groups may be arbitrarily substituted with one or more hal
  • an amido group or a phosphido group having a C1-C20 hydrocarbon group is exemplified by dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, di-sec-butylamino group, di-tert-butylamino group, diisobutylamino group, tert-butylisopropylamino group, di-n-hexylamino group, di-n-octylamino group, di-n-decylamino group, diphenylamino group, dibenzylamide group, methylethylamide group, methylphenylamide group, benzylhexylamide group, bistrimethylsilylamino group, or bis-tert-butyldimethylsilylamino group, or phosphido group which is substituted with the same al
  • a C1-C20 mercapto group is exemplified by methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, 1-butyl mercaptan, or isopentyl mercaptan, and preferably, ethyl mercaptan and isopropyl mercaptan.
  • a halogen atom is exemplified by fluorine, chlorine, bromine, and iodine atoms and a C1-C20 alkyl group which is not the Cp derivative is exemplified by methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl goup, neopentyl group, amyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, and n-eicosyl group, and preferably, methyl group, ethyl group, isopropyl group, tert-butyl group, and amyl group.
  • a C7-C30 arylalkyl group is exemplified by benzyl group, (2-methylphenyl)methyl group, (3-methylphenyl)methyl group, (4-methylphenyl)methyl group, (2,3-dimethylphenyl)methyl group, (2,4-dimethylphenyl)methyl group, (2,5-dimethylphenyl)methyl group, (2,6-dimethylphenyl)methyl group, (3,4-dimethylphenyl)methyl group, (4,6-dimethylphenyl)methyl group, (2,3,4-trimethylphenyl)methyl group, (2,3,5-trimethylphenyl)methyl group, (2,3,6-trimethylphenyl)methyl group, (3,4,5-trimethylphenyl)methyl group, (2,4,6-trimethylphenyl)methyl group, (2,3,4,5-tetramethylphenyl)methyl group, (2,3,4,6-tetramethylphenyl)methyl group, (2,3,5,6-tetramethylpheny
  • a C1-C20 alkoxy group is exemplified by methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, neopentoxy group, n-hexoxy group, n-octoxy group, n-dodecoxy group, n-pentadecoxy group, or n-eicosoxy group, and preferably, methoxy group, ethoxy group, isopropoxy group, and tert-butoxy group.
  • a C3-C20 alkyl-substituted siloxy group is exemplified by trimethylsiloxy group, triethylsiloxy group, tri-n-propylsiloxy group, triisopropylsiloxy group, tri-n-butylsiloxy group, tri-sec-butylsiloxy group, tri-tert-butylsiloxy group, tri-isobutylsiloxy group, tert-butyldimethylsiloxy group, tri-n-pentylsiloxy group, tri-n-hexylsiloxy group, or tricyclohexylsiloxy group, and preferably, trimethylsiloxy group and tert-butyldimethylsiloxy group.
  • An amido group or a phosphido group having a C1-C20 hydrocarbon group is exemplified by dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, di-sec-butylamino group, di-tert-butylamino group, diisobutylamino group, tert-butylisopropylamino group, di-n-hexylamino group, di-n-octylamino group, di-n-decylamino group, diphenylamino group, dibenzylamide group, methylethylamide group, methylphenylamide group, benzylhexylamide group, bistrimethylsilylamino group, or bis-tert-butyldimethylsilylamino group, or phosphido group which is substituted with the same alky
  • a substituted or unsubstituted arylphenoxide-based ligand is produced and reacted with a 4 th transition metal compound having one cyclopentadiene derivative.
  • an anisole compound which is expressed by Formula 2 and substituted with one or two halogen atoms, and a substituted or unsubstituted arylboronic acid, which is as shown in Formula 3, are reacted with an organic phosphine ligand using a palladium metal compound as a catalyst in an organic solvent at preferably -20 to 120 °C to produce an aryl-substituted anisole compound, and reacted with a tribromoboron compound in an organic solvent at a temperature preferably ranging from -78 to 50 °C, to produce an aryl-substituted phenoxide ligand.
  • the ligand thus produced is reacted with sodium hydride, alkyl lithium, or alkyl magnesium halide compound in an organic solvent at a temperature preferably ranging from -78 to 120°C so as to be converted into anions, and then subjected to a ligand exchange reaction along with the 4 th transition metal compound which is expressed by Formula 4 and has one cyclopentadiene derivative at -20 to 120°C in an equivalent ratio.
  • the resulting product is purified to produce an arylphenoxide-based transition metal catalyst component.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are independently a hydrogen atom, a halogen atom, a C1-C20 linear or nonlinear alkyl group arbitrarily substituted with one or more halogen atoms, a silyl group which contains the C1-C20 linear or nonlinear alkyl group arbitrarily substituted with one or more halogen atoms, a C6-C30 aryl group arbitrarily substituted with one or more halogen atoms, a C7-C30 arylalkyl group arbitrarily substituted with one or more halogen atoms, a C1-C20 alkylalkoxy group arbitrarily substituted with one or more halogen atoms, or a C3-C20 alkyl-substituted siloxy group or C6-C20 aryl-substituted siloxy group, optionally
  • Cp is cyclopentadienyl capable of forming an ⁇ 5 -bond along with a central metal, or a derivative thereof
  • M is a group 4 transition metal in a periodic table
  • X is a halogen atom, a C1-C20 alkyl group which is not a Cp derivative, a C7-C30 arylalkyl group, a C1-C20 alkylalkoxy group, a C3-C20 alkyl-substituted siloxy group, or an amido group having a C1-C20 hydrocarbon group
  • m is 2 or 3 depending on the oxidation value of the transition metal.
  • an X ligand is extracted from a transition metal complex to convert the central metal into cations, and aluminoxane compounds or boron compounds which are capable of acting as opposite ions having weak bonding strength, that is, anions, are used along with a cocatalyst.
  • aluminoxane which is expressed by the following Formula 5 or 6, is frequently used as the aluminoxane compound used in the present invention.
  • Formula 5 (-Al(R 9 )-O-) m
  • Formula 6 (R 9 )Al-(-O(R 9 -) p -(R 9 ) 2
  • R 9 is a C1-C20 alkyl group, and preferably, a methyl group or an isobutyl group, and m and p are integers ranging from 5 to 20.
  • the mixing ratio of the two components is set so that the molar ratio of the central metal to aluminum is preferably 1:20 to 1:10,000, and more preferably, 1:50 to 1:5,000.
  • a boron compound which is capable of being used as a cocatalyst of the present invention may be selected from compounds of the following Formulae 7 to 9 as disclosed in US Patent No. 5,198,401 .
  • B is a boron atom
  • R 10 is an unsubstituted phenyl group, or a phenyl group which is substituted with 3 to 5 substituent groups selected from the group consisting of a C1-C4 alkyl group which is substituted or unsubstituted with a fluorine atom and a C1-C4 alkoxy group which is substituted or unsubstituted with the fluorine atom
  • R 11 is a C5-C7 cyclic aromatic cation or an alkyl-substituted aromatic cation, for example, triphenylmethyl cation
  • Z is a nitrogen atom or a phosphorus atom
  • R 12 is a C1-C4 alkyl radical or an anilinium radical which is substituted with two C1-C4 alkyl groups along with a nitrogen atom
  • q is an integer of 2 or 3.
  • Examples of the boron-based cocatalyst include tris(pentafluorophenyl)borane, tris(2,3,5,6-tetrafluorophenyl)borane, tris(2,3,4,5-tetrafluorophenyl)borane, tris(3,4,5-trifluorophenyl)borane, tris(2,3,4-trifluorophenyl)borane, phenylbis(pentafluorophenyl)borane, tetrakis(pentafluorophenyl)borate, tetrakis(2,3,5,6-tetrafluorophenyl)borate, tetrakis(2,3,4,5-tetrafluorophenyl)borate, tetrakis(3,4,5-tetrafluorophenyl)borate, tetrakis(2,2,4-trifluorophenyl)borate, phenylbis(pent
  • ferrocenium tetrakis(pentafluorophenyl)borate 1,1'-dimethylferrocenium tetrakis(pentafluorophenyl)borate, silver tetrakis(pentafluorophenyl)borate, triphenylmethyl tetrakis(pentafluorophenyl)borate, triphenylmethyl tetrakis(3,5-bistrifluoromethylphenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, tripropylammonium tetrakis(pentafluorophenyl)borate, tri(n-butyl)ammonium tetrakis(pentafluorophenyl)borate, tri(n-butyl)ammonium tetrakis(pentafluorophenyl)borate, tri(n-butyl)
  • the molar ratio of the central metal to the boron atom is preferably 1:0.01 - 1:100, and more preferably, 1:0.5 - 1:5.
  • the aluminum compound is used to remove polar compounds acting as a catalytic poison from a reaction solvent, and may act as an alkylating agent if X of the catalyst components is halogen.
  • the organic aluminum compound is expressed by the following Formula 10.
  • R 13 is a C1-C8 alkyl group
  • E is a hydrogen atom or a halogen atom
  • r is an integer ranging from 1 to 3.
  • the organic aluminum compound is exemplified by trialkylaluminum including trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum; dialkylaluminum chloride including dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, and dihexylaluminum chloride; alkylaluminum dichloride including methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, and hexylaluminum dichloride; or dialkylaluminum hydride including dimethylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, diisobutylaluminum hydride, and dihexylalum
  • the molar ratio of the central metal : the boron atom : the aluminum atom is preferably 1 : 0.1 - 100 : 10 - 1000, and more preferably, 1 : 0.5 - 5 : 25 - 500.
  • the transition metal catalyst, the cocatalyst, and ethylene or a vinyl-based comonomer come into contact with each other in the presence of a predetermined organic solvent.
  • the transition metal catalyst and the cocatalyst are separately loaded into a reactor, or loaded into the reactor after they are previously mixed with each other. There are no limits to mixing conditions, such as the order of addition, temperature, or concentration.
  • the organic solvent useful in the method is C3-C20 hydrocarbons, and is exemplified by butane, isobutane, pentane, hexane, heptane, octane, isooctane, nonane, decane, dodecane, cyclohexane, methylcyclohexane, benzene, toluene, or xylene.
  • ethylene homopolymer that is, high density polyethylene (HDPE)
  • HDPE high density polyethylene
  • ethylene is used alone as a monomer
  • pressure of ethylene useful to the present invention is 101.325 kPa to 101.325 MPa (100 atm), and preferably, 1013.25 kPa to 15.19875 MPa (0 - 150 atm).
  • a polymerization temperature is 80 - 300°C, and preferably, 120 - 250°C.
  • the transition metal catalyst of present invention has a stability at the range of 120 - 250°C as mentioned above, not leading to lowering catalyst activity, instead it shows a stable catalyst activity at 140 - 220°C preferably.
  • Aforementioned catalyst activity may result in, for example, obtaining stable yield of polymer using high temperature solution polymerization as can be seen in below examples.
  • C3-C18 ⁇ -olefins are used as comonomers along with ethylene, and are selected from the group consisting of propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, and 1-octadecene. More preferably, 1-butene, 1-hexene, 1-octene, or 1-decene is copolymerized with ethylene.
  • the pressure of ethylene and the polymerization temperature are preferably the same as in the method of producing high density polyethylene.
  • the ethylene copolymers produced according to the present invention include 60 wt% or more ethylene, and preferably, 75 wt% ethylene.
  • linear low density polyethylene (LLDPE) which is produced using C4-C10 ⁇ -olefin as the comonomer has a density of 910 - 940 kg/m 3 , and, in connection with this, it is possible to produce very or ultra low density polyethylene (VLDPE or ULDPE) having a density of 910 kg/m 3 or less.
  • hydrogen may be used as a molecular weight controlling agent to control a molecular weight
  • the ethylene homopolymer or copolymers typically has weight average molecular weight (Mw) of 80,000 - 500,000.
  • the catalyst system of the present invention is homogeneous in a polymerization reactor, it is preferable for application to a solution polymerization process which is conducted at a temperature of a melting point or higher of the polymer to be produced.
  • the transition metal catalyst and the cocatalyst may be supported by a porous metal oxide supporter so as to be used in a slurry polymerization process or a gaseous polymerization process as a heterogeneous catalyst system.
  • n-Heptane as a polymerization solvent was passed through a column in which a molecular sieve 5A and activated alumina were packed, and bubbling was conducted using highly pure nitrogen to sufficiently remove moisture, oxygen, and other catalytic poison materials before it was used.
  • the resulting polymers were analyzed using the following methods.
  • MI Melt index
  • Measurement was conducted using Dupont DSC2910 in a nitrogen atmosphere at a rate of 10 °C/min under a 2 nd heating condition.
  • the mixture was allowed to cool at a room temperature, and then the organic layer was separated from the mixture by using diethylether (10ml ⁇ 3) and water. After adding magnesium sulfate to the separated organic layer, it was stirred for 30 minutes. The mixture was filtered and volatile materials of the mixture were then removed. The residue was added in a dried flask and dissolved in methylenechloride. After decreasing the temperature up to -78°C, boron tribromide (30.48ml of 1.0M solution in methylenechloride, Aldrich) was slowly dropped thereon.
  • the 2-phenyl-4-fluorophenol of 0.95g(5.07mmol) was dissolved in 40mL of diethylether, followed by slowly dropping 2.4mL of n-butyllithium (1.6M solution in hexanes, Aldrich) at 0°C. After the reaction proceeds for 5 hours at room temperature, a trichloro (pentamethylcyclopentadienyl)titanium(IV)(1.64g, 5.5mmol) solution in 10 mL of diethylether was slowly dropped into the flask at - 78°C. Stirring for 5 hours at room temperature, followed by filtering and removing volatile materials, the recrystallization was conducted using a mixed solution of toluene/hexane at -35 °C to obtained 1.86g of red solid component.
  • n-heptane 300 mL was added into a stainless steel reactor which was purged with nitrogen after sufficient drying and had a volume of 500 mL, and 0.5 mL of triisobutylaluminum (Aldrich) (200 mM n-heptane solution) was added thereto.
  • the temperature of the reactor was then increased to 140°C, and, subsequently, 0.2 mL of (dichloro)(pentamethylcyclopentadienyl)(2-phenyl-4-fluorophenoxy) titanium(IV) (5 mM toluene solution) produced according to example 1, and 0.3 mL of triphenylmethylinium tetrakis(pentafluorophenyl)borate (99 %, Boulder Scientific) (5 mM toluene solution) were sequentially added thereto. Ethylene was then injected into the reactor until the pressure in the reactor was 30 atm and continuously fed for polymerization.
  • n-heptane 300 mL was added into a stainless steel reactor which was purged with nitrogen after sufficient drying and had a volume of 500 mL, and 0.5 mL of triisobutylaluminum (Aldrich) (200 mM n-heptane solution) was added thereto.
  • the temperature of the reactor was then increased to 140°C, and, subsequently, 0.2 mL of (dichloro)(pentamethylcyclopentadienyl)((2-(4-trifluoromethyl) phenyl) phenoxy) titanium (IV) (5 mM toluene solution), produced according to example 2, and 0.3 mL of triphenylmethylinium tetrakis(pentafluorophenyl)borate (99 %, Boulder Scientific) (5 mM toluene solution) were sequentially added thereto. Ethylene was then injected into the reactor until the pressure in the reactor was 30 atm, and was continuously fed for polymerization.
  • Polymerization was conducted through the same procedure as in example 3 except that 0.2 mL of (trimethyl)(pentamethylcyclopentadienyl)titanium(IV) (97 %, Strem) (5 mM toluene solution), 0.24 mL of triisobutylaluminum (200 mM n-heptane solution) (Aldrich), and 0.25 mL of triphenylmethylinium tetrakis(pentafluorophenyl)borate (99 %, Boulder Scientific) (5 mM toluene solution) were used.
  • the product was dried to produce 3.0 g of polymer.
  • the polymer had a melting point of 132.0°C and a melt index of 0.16 g/10 min, and a weight average molecular weight of 150,000 and a molecular weight distribution of 5.47, which were determined through gel chromatography analysis.
  • Polymerization was conducted through the same procedure as in example 5 except that 0.3 mL of rac-dimethylsilyl bis(20methylindenyl) zirconiumdichloride(Boulder Scientific)(5 mM toluene solution) as catalyst component, 1-octene- as co-monomer were used. 15.0 g of dried polymer was obtained. The melting point of the polymer was 123.2°C and the melt index was 110.0 g/10 min. The weight average molecular weight was 28,000 and a molecular weight distribution was 12.0, which were determined through gel chromatography analysis, and the content of 1-octene was 2.4 wt%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Claims (13)

  1. Catalyseur à métal de transition à base d'arylphénoxy pour produire un homopolymère d'éthylène ou des copolymères d'éthylène et des α-oléfines qui est exprimé par la formule 1,
    qui a une stabilité pour la polymérisation en solution à haute température dans des conditions de température de 120 à 250 °C, et comprend un dérivé de cyclopentadiène et un arylphénoxyde en tant que ligands fixes autour d'un métal de transition ; ledit arylphénoxyde étant substitué par au moins un dérivé d'aryle à la position ortho de celui-ci et au moins un composé halogéné, et les ligands ne sont pas réticulés les uns aux autres :
    Figure imgb0010
    dans laquelle M est un métal de transition du groupe 4 de la table périodique ;
    Cp est un anion cyclopentadiényle capable de former une liaison η5 avec le métal central, ou un dérivé de celui-ci ;
    au moins un des substituants R1, R2, R3, R4, R5, R6, R7, R8 et R9 du ligand arylphénoxyde est un atome d'halogène ou un groupe alkyle en C1-C20 linéaire ou non linéaire substitué par au moins un atome d'halogène, et les substituants du ligand arylphénoxyde autres que le substituant contenant un halogène sont indépendamment un atome d'hydrogène, un groupe alkyle en C1-C20 linéaire ou non linéaire, un groupe silyle qui contient le groupe alkyle en C1-C20 linéaire ou non linéaire, un groupe arylalkyle en C7-C30, un groupe alcoxy qui contient le groupe alkyle en C1-C20, ou un groupe siloxy substitué par alkyle en C3-C20 ou aryle en C6-C20, un groupe amido ou un groupe phosphido qui a le groupe hydrocarboné en C1-C20, ou un groupe mercapto ou nitro substitué par alkyle en C1-C20, facultativement à condition que les groupes substituants puissent arbitrairement liés pour former des cycles ;
    X est choisi parmi ou est deux ou plus indépendamment choisis dans un groupe constitué de l'atome d'halogène, le groupe alkyle en C1-C20 qui n'est pas le dérivé Cp, le groupe arylalkyle en C7-C30, un groupe alcoxy qui contient le groupe alkyle en C1-C20, le groupe siloxy substitué par alkyle en C3-C20, et un groupe amido qui a un groupe hydrocarboné en C1-C20 ; et
    n est 1 ou 2 suivant une valeur d'oxydation du métal de transition.
  2. Catalyseur à métal de transition à base d'arylphénoxy tel que décrit dans la revendication 1, dans lequel M est choisi dans un groupe constitué des titane, zirconium, et hafnium.
  3. Catalyseur à métal de transition à base d'arylphénoxy tel que décrit dans la revendication 1, dans lequel Cp est l'anion cyclopentadiène capable de former la liaison η5 avec le métal central ou le dérivé de celui-ci, et est choisi dans un groupe constitué de cyclopentadiényle, méthylcyclopentadiényle,
    diméthylcyclopentadiényle, tétraméthylcyclopentadiényle, pentaméthylcyclopentadiényle, butylcyclopentadiényle, sec-butylcyclopentadiényle, tert- butylméthylcyclopentadiényle, triméthylsilylcyclopentadiényle, indényle, méthylindényle, diméthylindényle, éthylindényle, isopropylindényle, fluorényle, méthylfluorényle, diméthylfluorényle, éthylfluorényle, et isopropylfluorényle.
  4. Catalyseur à métal de transition à base d'arylphénoxy tel que décrit dans la revendication 1, dans lequel au moins l'un de R1, R2, R3, R4, R5, R6, R7, R8 et R9 du ligand arylphénoxyde est le composé halogéné et les autres sont indépendamment choisis dans un groupe constitué d'un atome d'hydrogène, un groupe méthyle, un groupe éthyle, un groupe isopropyle, un groupe tert-butyle, un groupe amyle, un groupe triméthylsilyle, un groupe tert-butyldiméthylsilyle, un groupe triphénylsilyle, un groupe phényle, un groupe naphtyle, un groupe biphényle, un groupe 2-isopropylphényle, un groupe 3,5-xylyle, un groupe 2,4,6- triméthylphényle, un groupe benzyle, un groupe méthoxy, un groupe éthoxy, un groupe isopropoxy, un groupe tert-butoxy, un groupe triméthylsiloxy, un groupe tert-butyldiméthylsiloxy, un groupe triphénylsiloxy, un groupe trifluorométhyle, un groupe pentafluorophényle, un groupe diméthylsiloxy, un groupe diméthylamino, un groupe diéthylamino, un groupe éthylmercaptan, un groupe isopropylmercaptan, et un groupe nitro.
  5. Catalyseur à métal de transition à base d'arylphénoxy tel que décrit dans la revendication 1, dans lequel X du ligand arylphénoxyde est un ou plusieurs choisis dans un groupe constitué de l'atome d'halogène, un groupe méthyle, un groupe éthyle, un groupe isopropyle, un groupe tert-butyle, un groupe amyle, un groupe benzyle, un groupe méthoxy, un groupe éthoxy, un groupe isopropoxy, un groupe tert-butoxy, un groupe triméthylsiloxy, un groupe tert-butyldiméthylsiloxy, un groupe diméthylamino, et un groupe diéthylamino.
  6. Système de catalyseur à arylphénoxy pour produire un homopolymère d'éthylène ou un copolymère d'éthylène et de α-oléfine, comprenant :
    un catalyseur à métal de transition qui a une stabilité pour la polymérisation en solution à haute température dans des conditions de température de 120 à 250 °C, et comprend un dérivé de cyclopentadiène et un arylphénoxyde en tant que ligands fixes autour d'un métal de transition ; ledit arylphénoxyde étant substitué par au moins un dérivé d'aryle à la position ortho de celui-ci et au moins un composé halogéné, et les ligands ne sont pas réticulés les uns aux autres ; et
    un aluminoxane ou cocatalyseur de composé de bore,
    dans lequel le catalyseur à métal de transition étant exprimé par la formule 1 :
    Figure imgb0011
    dans laquelle M est un métal de transition du groupe 4 de la table périodique ;
    Cp est un anion cyclopentadiényle capable de former une liaison η5 avec le métal central, ou un dérivé de celui-ci ;
    au moins un des substituants R1, R2, R3, R4, R5, R6, R7, R8 et R9 du ligand arylphénoxyde est un atome d'halogène ou un groupe alkyle en C1-C20 linéaire ou non linéaire substitué par au moins un atome d'halogène, et les substituants du ligand arylphénoxyde autres que le substituant contenant un halogène sont indépendamment un atome d'hydrogène, un groupe alkyle en C1-C20 linéaire ou non linéaire, un groupe silyle qui contient le groupe alkyle en C1-C20 linéaire ou non linéaire, un groupe arylalkyle en C7-C30, un groupe alcoxy qui contient le groupe alkyle en C1-C20, ou un groupe siloxy substitué par alkyle en C3-C20 ou aryle en C6-C20, un groupe amido ou un groupe phosphido qui a le groupe hydrocarboné en C1-C20, ou un groupe mercapto ou nitro substitué par alkyle en C1-C20, facultativement à condition que les groupes substituants puissent arbitrairement liés pour former des cycles ;
    X est choisi parmi ou est deux ou plus indépendamment choisis dans un groupe constitué de l'atome d'halogène, le groupe alkyle en C1-C20 qui n'est pas le dérivé Cp, le groupe arylalkyle en C7-C30, un groupe alcoxy qui contient le groupe alkyle en C1-C20, le groupe siloxy substitué par alkyle en C3-C20, et un groupe amido qui a un groupe hydrocarboné en C1-C20 ; et
    n est 1 ou 2 suivant une valeur d'oxydation du métal de transition.
  7. Système de catalyseur à arylphénoxy tel que décrit dans la revendication 6, dans lequel le cocatalyseur d'aluminoxane est exprimé par la formule 5 ou 6, et un rapport molaire d'un métal central à l'aluminium est de 1 : 50 à 1 : 5000 :

            Formule 5     (-Al(R9)-O-)m

            Formule 6     (R9 )2Al-(-O(R9)-)p-(R9)2

    dans laquelle R9 est un groupe alkyle en C1-C4, et m et p sont chacun un entier dans la plage de 5 à 20.
  8. Système de catalyseur à arylphénoxy tel que décrit dans la revendication 6, dans lequel le cocatalyseur de composé de bore est choisi dans un groupe constitué de tétrakis(pentafluorophényl)borate de N,N-diméthylanilinium, tétrakis(pentafluorophényl)borate de triphénylméthylinium, et tris(pentafluoro)borane.
  9. Système de catalyseur à arylphénoxy tel que décrit dans la revendication 6, dans lequel le cocatalyseur de composé de bore est en outre mélangé avec de l'aluminoxane ou un alkylaluminium organique de sorte qu'un rapport molaire de métal central : atome de bore : atome d'aluminium soit de 1 : 0,5 - 5 : 25 - 500.
  10. Système de catalyseur à arylphénoxy tel que décrit dans la revendication 9, dans lequel l'aluminoxane est choisi dans un groupe constitué de composés exprimés par la formule 5 ou 6, et l'alkylaluminium organique est choisi dans un groupe constitué de composés exprimés par la formule 10 :

            Formule 5     (-Al(R9)-O-)m

            Formule 6     (R9)2Al-(-O(R9)-)p-(R9)2

    dans laquelle R9 est un groupe alkyle en C1-C20, et de préférence un groupe méthyle ou un groupe isobutyle, et m et p sont chacun un entier dans la plage de 5 à 20,

            Formule 10     (R3)rAl(E)3-r

    dans laquelle R13 est un groupe alkyle en C1-C8, E est un atome d'hydrogène ou un atome d'halogène, et r est un entier dans la plage de 1 à 3.
  11. Système de catalyseur à arylphénoxy tel que décrit dans la revendication 10, dans lequel l'alkylaluminium organique est triéthylaluminium ou triisobutylaluminium.
  12. Procédé de production d'un homopolymère d'éthylène ou d'un copolymère d'éthylène et de α-oléfine utilisant le catalyseur à métal de transition à base d'arylphénoxy selon la revendication 1, dans lequel la pression dans un système de réaction d'homopolymère d'éthylène ou un copolymère d'éthylène et de α-oléfine est de 10 à 150 atm et la température de polymérisation est de 120 à 250 °C.
  13. Procédé de production d'un copolymère d'éthylène et de α-oléfine utilisant le système de catalyseur à arylphénoxy selon la revendication 6, dans lequel un comonomère qui est utilisé pour conduire la polymérisation avec de l'éthylène est un ou plusieurs choisis dans un groupe constitué de 1-butène, 1-hexène, 1-octène, et 1-décène, et la teneur en éthylène du copolymère est de 60 % en poids ou plus.
EP06799305.5A 2006-10-18 2006-10-18 Système de catalyseur d'arylphénoxy produisant un homopolymère ou des copolymères d'éthylène et des alpha-olefines Active EP2076551B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2006/004231 WO2008047957A1 (fr) 2006-10-18 2006-10-18 SYSTÈME DE CATALYSEUR D'ARYLPHÉNOXY PRODUISANT UN HOMOPOLYMÈRE OU DES COPOLYMÈRES D'ÉTHYLÈNE ET DES α-OLEFINES

Publications (3)

Publication Number Publication Date
EP2076551A1 EP2076551A1 (fr) 2009-07-08
EP2076551A4 EP2076551A4 (fr) 2012-10-31
EP2076551B1 true EP2076551B1 (fr) 2014-08-06

Family

ID=39314161

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06799305.5A Active EP2076551B1 (fr) 2006-10-18 2006-10-18 Système de catalyseur d'arylphénoxy produisant un homopolymère ou des copolymères d'éthylène et des alpha-olefines

Country Status (6)

Country Link
EP (1) EP2076551B1 (fr)
JP (1) JP5229636B2 (fr)
CN (1) CN101522727B (fr)
CA (1) CA2665557C (fr)
ES (1) ES2509343T3 (fr)
WO (1) WO2008047957A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029293A1 (fr) 2016-08-11 2018-02-15 Sabic Global Technologies B.V. Composition polymère pour capuchons et fermetures
WO2018028921A1 (fr) 2016-08-11 2018-02-15 Sabic Global Technologies B.V. Tuyau fabriqué avec une composition polymère
WO2018153917A1 (fr) 2017-02-23 2018-08-30 Sabic Global Technologies B.V. Composition de polyoléfine
WO2019141838A1 (fr) 2018-01-22 2019-07-25 Sabic Global Technologies B.V. Composition de polyoléfine possédant une meilleure résistance aux fissures dues à des contraintes environnementales (escr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146875B1 (ko) * 2006-11-01 2012-05-16 에스케이이노베이션 주식회사 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는에틸렌과 올레핀의 공중합체 제조방법
KR101152413B1 (ko) * 2008-09-12 2012-06-05 에스케이이노베이션 주식회사 에틸렌 공중합체 및 이의 제조방법
KR101142117B1 (ko) * 2008-09-25 2012-05-09 에스케이이노베이션 주식회사 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101167082B1 (ko) * 2008-11-05 2012-07-20 에스케이이노베이션 주식회사 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
KR101149755B1 (ko) * 2009-01-06 2012-06-01 에스케이종합화학 주식회사 에틸렌-프로필렌-디엔 공중합체 제조방법
KR101271395B1 (ko) * 2009-12-21 2013-06-05 에스케이종합화학 주식회사 메탈로센 촉매를 이용한 에틸렌과 알파-올레핀의 공중합체를 제조하는 방법
CN112745444B (zh) * 2019-10-31 2023-02-28 中国石油化工股份有限公司 一种烯烃聚合反应及烯烃聚合物
CN115246898B (zh) * 2021-04-27 2023-08-15 中国石油化工股份有限公司 一种烯烃聚合催化剂及其制备方法、包含该催化剂的复合催化剂以及应用
CN115160472B (zh) * 2022-08-09 2023-07-11 万华化学集团股份有限公司 一种高插入率的乙烯共聚物溶液聚合方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934768B2 (ja) * 1997-01-29 2007-06-20 住友化学株式会社 オレフィン重合用触媒成分、オレフィン重合用触媒、及びオレフィン系重合体の製造方法
JP4419653B2 (ja) * 2004-04-01 2010-02-24 住友化学株式会社 エチレン系重合体の製造方法
KR100639696B1 (ko) * 2005-07-01 2006-10-30 에스케이 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용아릴페녹시 촉매계

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029293A1 (fr) 2016-08-11 2018-02-15 Sabic Global Technologies B.V. Composition polymère pour capuchons et fermetures
WO2018028921A1 (fr) 2016-08-11 2018-02-15 Sabic Global Technologies B.V. Tuyau fabriqué avec une composition polymère
US10889708B2 (en) 2016-08-11 2021-01-12 Sabic Global Technologies B.V. Polymer composition for caps and closures
WO2018153917A1 (fr) 2017-02-23 2018-08-30 Sabic Global Technologies B.V. Composition de polyoléfine
US11091611B2 (en) 2017-02-23 2021-08-17 Sabic Global Technologies B.V. Polyolefin composition
WO2019141838A1 (fr) 2018-01-22 2019-07-25 Sabic Global Technologies B.V. Composition de polyoléfine possédant une meilleure résistance aux fissures dues à des contraintes environnementales (escr)
US11560467B2 (en) 2018-01-22 2023-01-24 Sabic Global Technologies B.V. Polyolefin composition with improved resistance to ESCR

Also Published As

Publication number Publication date
JP2010506993A (ja) 2010-03-04
ES2509343T3 (es) 2014-10-17
CA2665557A1 (fr) 2008-04-24
JP5229636B2 (ja) 2013-07-03
CN101522727A (zh) 2009-09-02
EP2076551A1 (fr) 2009-07-08
CN101522727B (zh) 2011-07-20
CA2665557C (fr) 2015-04-21
WO2008047957A1 (fr) 2008-04-24
EP2076551A4 (fr) 2012-10-31

Similar Documents

Publication Publication Date Title
US7589042B2 (en) Arylphenoxy catalyst system for producing ethylene homopolymer or copolymers of ethylene and α-olefins
EP2076551B1 (fr) Système de catalyseur d'arylphénoxy produisant un homopolymère ou des copolymères d'éthylène et des alpha-olefines
EP2010576B1 (fr) Systèmes catalytiques bis-arylaryloxy utilisés pour produire des homopolymères d'éthylène ou des copolymères d'éthylène avec des alpha-oléfines
KR101470564B1 (ko) 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
US8742043B2 (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using the same
JP5879035B2 (ja) 遷移金属触媒組成物、及びエチレン単独重合体又はエチレンとα−オレフィンの共重合体の製造方法
JP5839521B2 (ja) 共重合性に優れた遷移金属触媒系及びこれを用いたエチレン単独重合体またはエチレン及びα−オレフィンの共重合体の製造方法
US7847039B2 (en) Transition metal complexes, and catalysts compositions for preparing ethylene homopolymers or copolymers
EP2340255B1 (fr) NOUVEAUX SYSTÈMES CATALYTIQUES À BASE DE MÉTAUX DE TRANSITION ET PROCÉDÉS DE PRÉPARATION D'HOMOPOLYMÈRES D ÉTHYLÈNE OU DE COPOLYMÈRES D'ÉTHYLÈNE ET D'alpha-OLÉFINES LES UTILISANT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SK INNOVATION CO., LTD.

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20121004

RIC1 Information provided on ipc code assigned before grant

Ipc: C08F 210/02 20060101AFI20120927BHEP

17Q First examination report despatched

Effective date: 20131009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006042615

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C08F0004642000

Ipc: C08F0010020000

RIC1 Information provided on ipc code assigned before grant

Ipc: C08F 4/659 20060101ALI20140108BHEP

Ipc: C08F 10/02 20060101AFI20140108BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140226

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 681053

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006042615

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2509343

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141017

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006042615

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141018

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

26N No opposition filed

Effective date: 20150507

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006042615

Country of ref document: DE

Representative=s name: HERZOG FIESSER & PARTNER PATENTANWAELTE PARTG , DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006042615

Country of ref document: DE

Owner name: SABIC SK NEXLENE COMPANY PTE. LTD., SG

Free format text: FORMER OWNER: SK INNOVATION CO., LTD., SEOUL, KR

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SABIC SK NEXLENE COMPANY PTE. LTD

Effective date: 20151119

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20151029 AND 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 681053

Country of ref document: AT

Kind code of ref document: T

Owner name: SABIC SK NEXLENE COMPANY PTE. LTD., SG

Effective date: 20151202

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SABIC SK NEXLENE COMPANY PTE. LTD.; SG

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: SK INNOVATION CO., LTD.

Effective date: 20151022

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SABIC SK NEXLENE COMPANY PTE. LTD., SG

Effective date: 20160215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061018

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006042615

Country of ref document: DE

Representative=s name: MATHYS & SQUIRE EUROPE LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006042615

Country of ref document: DE

Representative=s name: MATHYS & SQUIRE GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006042615

Country of ref document: DE

Representative=s name: MATHYS & SQUIRE EUROPE PATENTANWAELTE PARTNERS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006042615

Country of ref document: DE

Representative=s name: MATHYS & SQUIRE GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006042615

Country of ref document: DE

Representative=s name: MATHYS & SQUIRE EUROPE PATENTANWAELTE PARTNERS, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230921

Year of fee payment: 18

Ref country code: GB

Payment date: 20230920

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231110

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230922

Year of fee payment: 18

Ref country code: DE

Payment date: 20230920

Year of fee payment: 18

Ref country code: AT

Payment date: 20230920

Year of fee payment: 18