EP2038553B1 - Zylinder-kolbenanordnung für eine fluidpumpe oder einen fluidmotor - Google Patents

Zylinder-kolbenanordnung für eine fluidpumpe oder einen fluidmotor Download PDF

Info

Publication number
EP2038553B1
EP2038553B1 EP07804595.2A EP07804595A EP2038553B1 EP 2038553 B1 EP2038553 B1 EP 2038553B1 EP 07804595 A EP07804595 A EP 07804595A EP 2038553 B1 EP2038553 B1 EP 2038553B1
Authority
EP
European Patent Office
Prior art keywords
dead space
cylinder
piston arrangement
displacer
tk2a
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07804595.2A
Other languages
English (en)
French (fr)
Other versions
EP2038553A2 (de
Inventor
Bernhard Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2038553A2 publication Critical patent/EP2038553A2/de
Application granted granted Critical
Publication of EP2038553B1 publication Critical patent/EP2038553B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/084Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular member being deformed by stretching or distortion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/02Packing the free space between cylinders and pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1002Ball valves
    • F04B53/1007Ball valves having means for guiding the closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1002Ball valves
    • F04B53/1017Semi-spherical ball valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1087Valve seats

Definitions

  • the invention relates to a cylinder-piston arrangement according to the preamble of claim 1.
  • Cylinder-piston arrangements of this type are represented on the relevant market, in particular as high-pressure water pumps.
  • An essential area of application for pumps of this type is the pressure delivery of water loaded with foreign substances, in particular also abrasive granules. Above all, high-speed machines with high working pressures in the range of a few hundred to a thousand bar are required. The energetic as well as the volumetric efficiency is therefore of great importance.
  • a cylinder piston unit which comprises a pulsating working space.
  • the cylinder-piston unit comprises a sealing hose that is axially expandable and inside which the pulsating working space is located.
  • the object of the invention is therefore to create pumps or Fluid motors that are characterized by high efficiencies of the aforementioned type and by a long service life.
  • the solution to this problem according to the invention is determined by the features of claim 1.
  • Axial expansion hose diaphragm pistons with internal working space provide the basis for a robust construction with high wear resistance, even when operating with abrasive fluids.
  • relatively large dead spaces must generally be observed, which adversely affects the volumetric efficiency. It is precisely this problem that is solved with the invention, namely with the aid of dead space displacement bodies. Overall, the invention thus enables a largely optimized type of construction.
  • Fig. 1 is a working piston provided with an axial expansion hose membrane (shown in the top dead center position and hereinafter referred to briefly as ASK) at its lower end with an oscillating drive device AVO shown here only schematically by a downward-pointing arrow.
  • the upper end of the axial expansion hose membrane piston ASK is arranged fixed to the frame and surrounds an inlet valve EV, which is fed via inlet channels EK and is designed as a check valve.
  • the downwardly extending, hollow-cylindrical section Z of the axial expansion hose diaphragm piston is mounted in an axially displaceable manner in a housing bore GB with a lubrication (not shown here).
  • An oscillating working space AR is formed in the interior of the axial expansion hose membrane piston ASK, from which a coaxial delivery channel FK leads to an outlet valve AV, which is also designed as a check valve, and to an outlet channel AK.
  • a substantially cylindrical dead space displacement body TK1 is connected to the axial expansion hose diaphragm piston ASK on the side of the working space AR, which is shown here in the top dead center position and obviously has a significant reduction in the effective dead space.
  • dead space displacer TK1 engaging in the working space AR Fig. 6 illustrated steepening of the pressure rise as well as the pressure drop, overall a significant improvement in volumetric efficiency.
  • a dead space displacement body TK2a is provided which is fixed to the frame, but which in turn is due to the arrangement of the working space AR within the axial expansion hose membrane piston ASK and thus because of the relative movement between the axial expansion hose membrane piston ASK and the dead space displacement body TK2a given by the pump drive AR intervenes and brings about a similar improvement in volumetric efficiency.
  • the reduction of the moving mass due to the dead space displacement body TK2a fixed to the frame is particularly advantageous here.
  • Inlet valve EV and outlet valve AV are analogous to the version according to Fig. 1 formed, however, the connection between the working space and the outlet valve is provided by a longer coaxial channel KOK in the dead space displacement body TK2a and in the inlet valve EV.
  • the associated reduction in dead space displacement can be kept within reasonable limits.
  • This embodiment is particularly advantageous in that the displacement body TK2a has an internal flow and an outside flow around the working fluid with a flow deflection in an opening or end region of the dead space displacement body TK2a.
  • a dead space displacement body TK2b which is fixed to the frame is again provided, with the corresponding dynamic advantages.
  • the dead space displacement volume is maximized.
  • the fluid outlet takes place from the work area AR via cross bores BQ immediately below the inlet valve EV and a short and therefore practically harmless longitudinal channel LK.
  • a dead space displacement body TK2c with fixed frame is also provided with the corresponding dynamic advantages.
  • a compression-inactive arrangement of the outlet valve AV is provided at the end of an outlet coaxial channel AKOK on the working space side, which ensures optimum dead space displacement.
  • valve body VK designed as a partial spherical shell is pivotably mounted about the center of the ball relative to a correspondingly shaped valve seat.
  • a longitudinal guide by means of a swivel guide SF and a centering member ZG is also required.
  • the latter is connected to the valve body VK by a tight-elastic snap lock SV, so that relatively light and vibration-damping material can be considered for the swivel guide SF.
  • the inner bore of the swivel guide is weak Toroidal with a suitable sliding seat for the centering member ZG. Such a construction has proven itself due to its high stability and wear resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

    TECHNISCHES GEBIET
  • Die Erfindung betrifft eine Zylinder-Kolbenanordnung nach dem Oberbegriff des Anspruchs 1. Zylinder-Kolbenanordnungen dieser Art sind auf dem einschlägigen Markt vertreten, insbesondere als Hochdruck-Wasserpumpen.
  • Ein wesentliches Einsatzfeld für Pumpen dieser Art ist die Druckförderung von mit Fremdstoffen, insbesondere auch abrasiven Granulaten, beladenem Wasser. Vor allem sind dabei Schnellläufer mit hohen Arbeitsdrücken im Bereich von einigen hundert bis zu eintausend bar gefragt. Dem energetischen wie auch dem volumetrischen Wirkungsgrad kommt daher grosse Bedeutung zu.
  • STAND DER TECHNIK
  • Aus dem Dokument DE2914694 ist ein Zylinderkolben-Aggregat bekannt, das einen pulsierenden Arbeitsraum umfasst. Das Zylinderkolben-Aggregat umfasst einen Dichtungsschlauch, der axial dehnbar ist und in dessen Inneren sich der pulsierende Arbeitsraum befindet.
  • BESCHREIBUNG DER ERFINDUNG
  • Aufgabe der Erfindung ist daher die Schaffung von Pumpen Bzw. Fluidmotoren, die sich durch hohe Wirkungsgrade der vorgenannten Art sowie durch hohe Lebensdauer auszeichnen. Die erfindungsgemässe Lösung dieser Aufgabe ist bestimmt durch die Merkmale des Anspruchs 1.
  • Weiterbildungen und Varianten, auch solche, die nicht in jedem Fall zu realisieren sind, ergeben sich durch Merkmale und Merkmalskombinationen bzw. Kombinationen von Unteransprüchen, gegebenenfalls einschliesslich von fakultativen Merkmalen oder Merkmalskombinationen.
  • Axialdehnungs-Schlauchmembrankolben mit innenliegendem Arbeitsraum bieten die Grundlage für eine robuste Konstruktion mit hoher Verschleissbeständigkeit, auch beim Betrieb mit abrasiven Fluiden. Allerdings sind hier aus konstruktiven Gründen im allgemeinen relativ grosse Toträume einzuhalten, wodurch der volumetrische Wirkungsgrad nachteilig beeinflusst wird. Gerade dieses Problem wird mit der Erfindung gelöst, nämlich mit Hilfe von Totraum-Verdrängungskörpern. Insgesamt ermöglicht die Erfindung damit einen weitgehend optimierten Konstruktionstyp.
  • KURZE BESCHREIBUNG DER FIGUREN
  • Die Erfindung wird weiter unter Bezugnahme auf die in den Zeichnungen schematisch dargestellten Ausführungsbeispiele erläutert. Darin zeigt:
  • Fig.1
    einen Teil-Axialschnitt einer Hochdruckpumpe mit einem als Axialdehnungs-Schlauchmembrankolben ausgebildetem Arbeitskolben, mit dem ein in den Arbeitsraum eingreifender und an der oszillatorischen Antriebsbewegung teilnehmender Totraum-Verdrängungskörper gekuppelt ist;
    Fig.2
    einen zu Fig.1 ähnlichen Teil-Axialschnitt, ebenfalls mit einem als Axialdehnungs-Schlauchmembrankolben ausgebildeten Arbeitskolben sowie mit einem Totraum-Verdrängungskörper, der jedoch in der Pumpe gestellfest angeordnet ist und infolge der oszillatorischen Antriebsbewegung des Arbeitskolbens relativ zu diesem in den innenliegenden Arbeitsraum des Axialdehnungs-Schlauchmembrankolbens eingreift;
    Fig.3
    einen zu Fig.2 ähnlichen Teil-Axialschnitt, ebenfalls mit einem als Axialdehnungs-Schlauchmembrankolben ausgebildeten Arbeitskolben mit innenliegendem Arbeitsraum sowie mit einem gestellfesten Totraum-Verdrängungskörper, jedoch mit andersartigem Strömungsweg des Arbeitsfluids;
    Fig.4
    einen zu Fig.3 ähnlichen Teil-Axialschnitt, ebenfalls mit einem als Axialdehnungs-Schlauchmembrankolben ausgebildeten Arbeitskolben mit innenliegendem Arbeitsraum sowie mit einem gestellfesten Totraum-Verdrängungskörper, jedoch mit andersartigem Strömungsweg des Arbeitsfluids und mit ebensolcher Ventilanordnung, insgesamt resultierend in einem weiter reduzierten Totraumvolumen;
    Fig.5
    ein Zeitdiagramm des Förderdruckes p (bar) für einen Arbeitskolben einer volumetrischen Pumpe über der Zeit t (msec), und zwar für eine Konstruktion ohne Totraum-Verdrängungskörper; und
    Fig.6
    ein Diagramm entsprechend Fig.5, jedoch für eine Konstruktion mit Totraum-Verdrängungskörper. Diese letztere Darstellung gilt grundsätzlich nicht nur für bewegliche, mit dem Arbeitskolben gekuppelte Totraum-Verdrängungskörper (siehe Fig.1), sondern ebenso für gestellfest ruhende und durch Bewegung des Arbeitsraumes in diesen eingreifende Totraum-Verdrängungskörper (siehe Figuren 2 bis 4). Dies kommt insbesondere bei Einsatz von Axialdehnungs-Schlauchmembrankolben in Betracht.
    Fig.7
    eine Ventilkonstruktion, insbesondere für Auslassventile
    DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
  • In der Ausführung gemäss Fig.1 ist ein mit einer Axialdehnungs-Schlauchmembran versehener Arbeitskolben (in oberer Totpunktlage dargestellt und im Folgenden kurz als ASK bezeichnet) an seinem unteren Ende mit einer hier nur schematisch durch einen abwärts gerichteten Pfeil dargestellten, oszillatorisch wirkenden Antriebsvorrichtung AVO gekuppelt. Das obere Ende des Axialdehnungs-Schlauchmembrankolbens ASK ist gestellfest angeordnet und umgibt ein über Einlasskanäle EK gespeistes, als Rückschlagventil ausgebildetes Einlassventil EV. Der sich abwärts erstreckende, hohlzylindrische Abschnitt Z des Axialdehnungs-Schlauchmembrankolbens ist mit einer hier nicht dargestellten Schmierung in einer Gehäusebohrung GB axialverschiebbar gelagert. Im Inneren des Axialdehnungs-Schlauchmembrankolbens ASK ist ein oszillierender Arbeitsraum AR gebildet, von dem ein koaxialer Förderkanal FK zu einem ebenfalls als Rückschlagventil ausgebildeten Auslassventil AV und zu einem Auslasskanal AK führt.
  • Mit dem Axialdehnungs-Schlauchmembrankolben ASK ist auf der Seite des Arbeitsraumes AR ein im wesentlichen zylindrischer Totraum-Verdrängungskörper TK1 verbunden, der hier in der Oberen Totpunktlage dargestellt ist und ersichtlich eine wesentliche Verminderung des wirksamen Totraumes zur Folge hat.
  • Zur Feststellung der Wirkungsweise dieser Konstruktion ist auf die bereits gegebene Darstellung in dem Figuren 5 und 6 zurückzugreifen.
  • Dort zeigt das Zeitdiagramm in Fig.5 einen verlangsamten Anstieg des Förderdruckes p für einen Arbeitskolben einer volumetrischen Pumpe für eine Konstruktion ohne Totraum-Verdrängungskörper. Entsprechend verlangsamt ist der Druckabfall am Ende des Fördertaktes. Beides bedeutet eine deutliche Verminderung des auf den Kolbenhub bezogenen Fördervolumens, d.h. des volumetrischen Wirkungsgrades. Der Grund dafür ist die Kompressibilität des im Totraum befindlichen Arbeitsfluids.
  • Demgegenüber bewirkt der gemäss Fig.1 in den Arbeitsraum AR eingreifende Totraum-Verdrängungskörper TK1 die in Fig.6 veranschaulichte Versteilerung des Druckanstiegs wie auch des Druckabfalls, insgesamt also eine wesentliche Verbesserung des volumetrischen Wirkungsgrades.
  • Bei der Ausführung gemäss Fig.2 ist ein gestellfester Totraum-Verdrängungskörper TK2a vorgesehen, der jedoch infolge der Anordnung des Arbeitsraumes AR innerhalb des Axialdehnungs-Schlauchmembrankolbens ASK und damit wegen der durch den Pumpenantrieb gegebenen Relativbewegung zwischen Axialdehnungs-Schlauchmembrankolben ASK und Totraum-Verdrängungskörper TK2a wiederum in den Arbeitsraum AR eingreift und eine ähnliche Verbesserung des volumetrischen Wirkungsgrades bewirkt. Besonders vorteilhaft ist hier jedoch die Verminderung der bewegten Masse infolge des gestellfesten Totraum-Verdrängungskörpers TK2a.
  • Einlassventil EV und Auslassventil AV sind analog zur Ausführung nach Fig.1 ausgebildet, jedoch ist die Verbindung zwischen Arbeitsraum und Auslassventil durch einen längeren Koaxialkanal KOK im Totraum-Verdrängungskörper TK2a und im Einlassventil EV gegeben. Die damit verbundene Verminderung der Totraumverdrängung kann praktisch in vertretbaren Grenzen gehalten werden.
  • Besonders vorteilhaft tritt bei dieser Ausführung in Erscheinung, dass für den Verdrängungskörpers TK2a eine Innendurchströmung und eine Aussenumströmung des Arbeitsfluids mit einer Strömungsumlenkung in einem Öffnungs- oder Endbereich des Totraum-Verdrängungskörpers TK2a gegeben ist. Damit wird u.a. eine besonders intensive Durchspülung des Arbeitsraumes AR und der Ventile im Hinblick auf Ansammlung von Rückständen und Verunreinigungen, aber auch von kompressionsmindernden Lufteinschlüssen nach längeren Stillstandzeiten ermöglicht.
  • Bei der Ausführung nach Fig.3 ist wiederum ein gestellfester Totraum-Verdrängungskörper TK2b vorgesehen, mit den entsprechenden dynamischen Vorteilen. Gleichzeitig ist jedoch durch Fortfall eines vergleichsweise langen, mit dem Arbeitsraum AR in Verbindung stehenden Koaxialkanals eine Maximierung des Totraum-Verdrängungsvolumens erreicht. Der Fluidauslass erfolgt vom Arbeitsraum AR über Querbohrungen BQ unmittelbar unterhalb des Einlassventils EV sowie einen kurzen und daher praktisch unschädlichen Längskanal LK.
  • Bei der Ausführung nach Fig.4 ist ebenfalls ein gestellfester Totraum-Verdrängungskörper TK2c mit den entsprechenden dynamischen Vorteilen vorgesehen. Darüber hinaus ist jedoch eine kompressionsinaktive Anordnung des Auslassventils AV am arbeitsraumseitigen Ende eines Auslass-Koaxialkanals AKOK vorgesehen, die für eine optimale Totraumverdrängung sorgt.
  • Ergänzend ist noch auf eine Ventilkonstruktion gemäss Fig. 7 hinzuweisen, die insbesondere für Auslassventile AV in Betracht kommt. Hier ist ein als Teilkugelschale ausgebildeter Ventilkörper VK relativ zu einem entsprechend formangepassten Ventilsitz um den Kugelmittelpunkt schwenkbar gelagert. Gleichzeitig bedarf es jedoch auch einer Längsführung mittels einer Schwenkführung SF und eines Zentriergliedes ZG. Letzteres ist mit dem Ventilkörper VK durch einen straff-elastischen SchnappVerschluss SV verbunden, so dass für die Schwenkführung SF relativ leichtes und schwingungsdämpfendes Material in Betracht kommt. Im Hinblick auf die erwähnte Schwenkbarkeit ist die Innenbohrung der Schwenkführung schwach toroidförmig mit einem geeigneten Spiel-Schiebesitz für das Zentrierglied ZG ausgebildet. Eine solche Konstruktion hat sich durch hohe Stand- und Verschleissbeständigkeit bewährt.

Claims (9)

  1. Zylinder-Kolbenanordnung (10) für eine volumetrisch wirkende Fluidpumpe oder einen Fluidmotor, mit wenigstens einem Axialdehnungs-Schlauchmembrankolben (ASK), der mindestens einen innenliegenden, pulsierenden Arbeitsraum (AR) begrenzt, dadurch gekennzeichnet, dass mindestens ein Totraum-Verdrängungskörper (TK1, TK2a, TK2b, TK2c, VK) vorgesehen ist, der mit dem pulsierenden Arbeitsraum (AR) in Wirkverbindung steht und wobei der Totraum-Verdrängungskörper (TK1, TK2a, TK2b, TK2c, VK) derart ausgebildet ist, dass der wirksame Totraum im Arbeitsraum (AR) vermindert wird und eine Versteilerung des zeitlichen Verlaufs des Druckanstiegs wie auch des Druckabfalls im Vergleich zu einer Zylinder-Kolbenanordnung ohne Totraum-Verdrängungskörper bewirkt wird.
  2. Zylinder-Kolbenanordnung (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Totraum-Verdrängungskörper (TK1, TK2a, TK2b, TK2c) als ein in den pulsierenden Arbeitsraum (AR) der Zylinder-Kolbenanordnung (10) eingreifender Totraum-Verdrängungskörper (TK1, TK2a, TK2b, TK2c) ausgebildet ist.
  3. Zylinder-Kolbenanordnung (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für den Totraum-Verdrängungskörper (TK2a, TK2c) eine Innendurchströmung und eine Aussenumströmung (KOK, LK, AKOK) durch ein Arbeitsfluid mit einer Strömungsumlenkung in einem Öffnungs- oder Endbereich des Totraum-Verdrängungskörpers (TK2a, TK2c) vorgesehen ist.
  4. Zylinder-Kolbenanordnung (10) für eine Fluidpumpe oder einen Fluidmotor, mit wenigstens einem Axialdehnungs-Schlauchmembrankolben (ASK), der mindestens einen innenliegenden, pulsierenden Arbeitsraum (AR) begrenzt, nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in einer Fluidströmung mindestens ein als Mehrfachsitz-Hubventil ausgebildetes Einlassventil (EV) und/oder ein entsprechendes Auslassventil (AV) angeordnet ist, und dass im Bereich zwischen Sitzen (S1, S2) dieses Ventils mindestens ein durch den Ventilhub zwischen Verschluss und Durchlass umsteuerbarer Fluidraum (FR) gebildet ist.
  5. Zylinder-Kolbenanordnung (10) nach Anspruch 4, dadurch gekennzeichnet, dass mindestens ein Teil der Sitze (S1, S2) des Mehrfachsitz-Hubventils wenigstens im Wesentlichen in einer gemeinsamen Kugelfläche (KF) verlaufende Dichtlinien oder Dichtflächen aufweist.
  6. Zylinder-Kolbenanordnung (10) nach Anspruch 4 oder 5, gekennzeichnet durch mindestens einen zwischen Verschluss und Durchlass umsteuerbaren Ventilkörper (VK), der mindestens eine wenigstens im Wesentlichen oder wenigstens annähernd als Kugelfläche (KF) ausgebildete Dichtfläche aufweist und relativ zu mindestens einer Dichtlinie oder Dichtfläche beweglich gelagert ist.
  7. Zylinder-Kolbenanordnung (10) nach Anspruch 6, dadurch gekennzeichnet, dass der Ventilkörper (VK) um eine wenigstens im Wesentlichen oder wenigstens annähernd durch den Mittelpunkt der Kugelfläche (KF) verlaufende Schwenkachse oder einen entsprechenden Schwenkpunkt beweglich gelagert ist.
  8. Zylinder-Kolbenanordnung (10) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass eine Schwenklagerung des Ventilkörpers (VK) eine mit einem konvex oder konkav gewölbten Führungsglied zusammenwirkende Halterung aufweist und dass zwischen dem Ventilkörper (VK) und der Schwenklagerung ein vorzugsweise elastisch verformbarer Schnappverschluss (SV) vorgesehen ist.
  9. Zylinder-Kolbenanordnung (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Totraum-Verdrängungskörper (TK2a, TK2b, TK2c) den Ventilkörper (VK) umfasst oder dass ein weiterer Totraum-Verdrängungskörper vorgesehen ist, der mit dem pulsierenden Arbeitsraum (AR) in Wirkverbindung steht und der den Ventilkörper (VK) umfasst.
EP07804595.2A 2006-07-11 2007-07-11 Zylinder-kolbenanordnung für eine fluidpumpe oder einen fluidmotor Active EP2038553B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH11192006 2006-07-11
PCT/IB2007/001953 WO2008007209A2 (de) 2006-07-11 2007-07-11 Zylinder-kolbenanordnung für eine fluidpumpe oder einen fluidmotor

Publications (2)

Publication Number Publication Date
EP2038553A2 EP2038553A2 (de) 2009-03-25
EP2038553B1 true EP2038553B1 (de) 2020-07-08

Family

ID=38752552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07804595.2A Active EP2038553B1 (de) 2006-07-11 2007-07-11 Zylinder-kolbenanordnung für eine fluidpumpe oder einen fluidmotor

Country Status (7)

Country Link
US (1) US8794938B2 (de)
EP (1) EP2038553B1 (de)
JP (1) JP5502470B2 (de)
CN (1) CN101523052B (de)
CA (1) CA2657348C (de)
RU (1) RU2476724C2 (de)
WO (1) WO2008007209A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005504C2 (nl) * 2010-10-12 2012-04-16 Innas Bv Hydraulische inrichting met een spiegelplaat.
AT512043B1 (de) * 2012-03-05 2013-05-15 Bhdt Gmbh Hochdruckeinrichtung für flüssige Medien
WO2014191130A2 (de) * 2013-05-29 2014-12-04 Magna Powertrain Bad Homburg GmbH Kugel-zylinder-hülsenventil
DE102013219439A1 (de) * 2013-09-26 2014-11-27 Continental Automotive Gmbh Ventileinrichtung für eine Hochdruckpumpe
WO2017083475A1 (en) 2015-11-11 2017-05-18 Graco Minnesota Inc. Ball cage with directed flow paths for a ball pump
EP3246565B1 (de) 2016-05-19 2019-09-18 Innas B.V. Hydraulikvorrichtung
EP3246566B1 (de) 2016-05-19 2018-12-19 Innas B.V. Hydraulische vorrichtung, verfahren zur herstellung einer hydraulischen vorrichtung und eine gruppe von hydraulischen vorrichtungen
EP3246567B1 (de) 2016-05-19 2022-03-09 Innas B.V. Hydraulikvorrichtung
US11572876B2 (en) 2017-08-30 2023-02-07 Graco Minnesota Inc. Pump piston

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1942417A (en) * 1929-04-17 1934-01-09 John J Ferlin Valve
US2606032A (en) * 1944-03-13 1952-08-05 Charles F Warren Jr Check valve assembly
US3227093A (en) * 1964-02-03 1966-01-04 John F Taplin Piston pump having rolling diaphragm
US3250225A (en) * 1964-07-13 1966-05-10 John F Taplin Mechanical system comprising feed pump having a rolling diaphragm
CH424402A (de) * 1964-08-03 1966-11-15 Burckhardt Ag Maschf Konzentrisches Saug- und Druckventil
US3375759A (en) * 1966-05-18 1968-04-02 Bourns Inc Rolling-diaphragm pump
US3311028A (en) * 1966-07-26 1967-03-28 John F Taplin Rolling diaphragm device with rolling diaphragm having clamping bead and resilient clamping means for the bead
FR2375466A1 (fr) * 1976-07-30 1978-07-21 Dba Pompe hydraulique
US4172465A (en) * 1977-11-07 1979-10-30 Conbraco Industries, Inc. Check valve
US4248403A (en) * 1979-01-08 1981-02-03 Leslie, Co. Plug assembly for movable plug valves
DE2914694C2 (de) 1979-04-11 1980-09-11 Hermann Hemscheidt Maschinenfabrik Gmbh & Co, 5600 Wuppertal Zylinderkolben-Aggregat
JPS55161175U (de) * 1979-05-04 1980-11-19
JPS5892485U (ja) * 1981-12-18 1983-06-22 株式会社井上ジャパックス研究所 ポンプ
DE3446914A1 (de) * 1984-12-21 1986-07-03 Ott Kg Lewa Membranpumpe mit hydaulisch angetriebener rollmembran
DE3539057A1 (de) 1985-11-04 1987-05-14 Vdo Schindling Elektromagnetisch betaetigbares kraftstoffeinspritzventil
US4718893A (en) * 1986-02-03 1988-01-12 University Of Minnesota Pressure regulated implantable infusion pump
FR2600723B3 (fr) * 1986-06-26 1988-08-26 Berthoud Sa Pompe a piston a membrane a deroulement.
US4741252A (en) * 1986-09-24 1988-05-03 Allied-Signal Inc. Diaphragm of the rolling type having a membrane portion and a reinforcing portion
JPS63152968U (de) * 1987-03-27 1988-10-06
DE3806401A1 (de) * 1988-02-29 1989-09-07 Teves Gmbh Alfred Bremskraftverstaerker
JPH083784Y2 (ja) * 1989-08-09 1996-01-31 トヨタ自動車株式会社 チェック弁装置
JPH03179184A (ja) * 1989-12-05 1991-08-05 Nippon Pillar Packing Co Ltd 往復動ポンプ
SE465533B (sv) * 1990-02-19 1991-09-23 Saab Automobile Tyst backventil foer pulserande floede
DE19648408A1 (de) * 1996-11-22 1998-05-28 Bosch Gmbh Robert Kolbenpumpe
JPH1137049A (ja) * 1997-07-11 1999-02-09 Nissan Motor Co Ltd 燃料ポンプ
US6048183A (en) * 1998-02-06 2000-04-11 Shurflo Pump Manufacturing Co. Diaphragm pump with modified valves
US7278836B2 (en) * 2002-10-01 2007-10-09 Hammonds Technical Services, Inc. Metering pump
JP2004143960A (ja) * 2002-10-22 2004-05-20 Smc Corp ポンプ装置
CN2602206Y (zh) * 2003-03-03 2004-02-04 尚广来 气动液压泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8794938B2 (en) 2014-08-05
CA2657348C (en) 2015-06-16
CN101523052B (zh) 2014-08-27
RU2009104351A (ru) 2010-08-20
JP2009542976A (ja) 2009-12-03
WO2008007209A2 (de) 2008-01-17
US20100119394A1 (en) 2010-05-13
RU2476724C2 (ru) 2013-02-27
EP2038553A2 (de) 2009-03-25
CA2657348A1 (en) 2008-01-17
JP5502470B2 (ja) 2014-05-28
WO2008007209A3 (de) 2008-02-28
CN101523052A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
EP2038553B1 (de) Zylinder-kolbenanordnung für eine fluidpumpe oder einen fluidmotor
DE102007036844B4 (de) Verfahren zum Betrieb einer hydropneumatischen Vorrichtung zur Druckübersetzung
EP2912310B1 (de) Kolben-membranpumpe
DE2162320A1 (de)
WO2004072477A1 (de) Hochdruckpumpe
DE102005017131A1 (de) Kolbenpumpe
WO2010055100A1 (de) Pumpeneinheit für eine hochdruckpumpe
DE2711101A1 (de) Verdraenger-einspritzpumpe
DE3934124A1 (de) Druckluftgetriebene pumpenanordnung
DE2738176A1 (de) Stroemungsmittelbetriebene hydraulische pumpe
JP2009542976A5 (de)
WO2013143535A2 (de) Bolzengelenk für eine exzenterschneckenpumpe
DE1403954C3 (de) Kompressor zum Fördern von Gas
EP2825773A1 (de) Steckpumpe
DE3443768A1 (de) Schlauch-kolbenpumpe
DE10258212B4 (de) Sicherungsringe für Hochdruckdichtungen, Dichtungsanordnung sowie diese enthaltende Pumpen
EP0640764A1 (de) Kolbenkompressor
EP1715183B1 (de) Hydraulische Axialkolbenpumpe
DE2521339A1 (de) Spaltdichtung fuer die abdichtung hin- und hergehender kolben
EP3529492B1 (de) Hochdruckpumpe für ein kraftstoffeinspritzsystem
DE102010038225B4 (de) Schlauchmembran-Prozeßpumpe
DE3928375C2 (de) Kolbenpumpe
DE19921951A1 (de) Piezobetätigte Kolbenpumpe
DE102004062695B4 (de) Hydraulikpumpe
EP1998045A1 (de) Verdrängermaschine mit Koaxialventilanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090202

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016895

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: FREY, BERNHARD, CH

Free format text: FORMER OWNER: FREY, BERNHARD, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016895

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230612

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230613

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230601

Year of fee payment: 17

Ref country code: CH

Payment date: 20230801

Year of fee payment: 17

Ref country code: AT

Payment date: 20230626

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230531

Year of fee payment: 17