EP2032834B1 - Dispositif d'injection de carburant pour un moteur à combustion interne - Google Patents

Dispositif d'injection de carburant pour un moteur à combustion interne Download PDF

Info

Publication number
EP2032834B1
EP2032834B1 EP07728518A EP07728518A EP2032834B1 EP 2032834 B1 EP2032834 B1 EP 2032834B1 EP 07728518 A EP07728518 A EP 07728518A EP 07728518 A EP07728518 A EP 07728518A EP 2032834 B1 EP2032834 B1 EP 2032834B1
Authority
EP
European Patent Office
Prior art keywords
chamber
pressure
fuel injection
injection device
valve element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07728518A
Other languages
German (de)
English (en)
Other versions
EP2032834A1 (fr
Inventor
Falko Bredow
Martin Katz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2032834A1 publication Critical patent/EP2032834A1/fr
Application granted granted Critical
Publication of EP2032834B1 publication Critical patent/EP2032834B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0054Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/705Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with means for filling or emptying hydraulic chamber, e.g. for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/705Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with means for filling or emptying hydraulic chamber, e.g. for compensating clearance or thermal expansion
    • F02M2200/706Valves for filling or emptying hydraulic chamber

Definitions

  • the invention relates to a fuel injection device for an internal combustion engine according to the preamble of claim 1.
  • a valve element is arranged in a housing, which in the region of a fuel outlet opening has a total acting in the opening direction of the valve element pressure surface.
  • a control surface acting in the closing direction is present, which delimits a control chamber. The control surface acting in the closing direction is greater overall than the pressure surface acting in the opening direction when the valve element is open.
  • a high fuel pressure is present at a region of the pressure surface acting in the opening direction and at the control surface acting in the closing direction, as is provided, for example, by a fuel rail.
  • the pressure applied to the control surface is lowered until the hydraulic force resultant in the opening direction on the pressure surface exceeds the force acting in the closing direction. As a result, opening of the valve element is effected.
  • a hydraulic pressure booster for a fuel injection device is off US 2003/0116640 A1 known, in which between a first larger piston and a second smaller piston, a leakage gap is present.
  • a check valve serves as a pressure-holding valve, which is intended to prevent the high-pressure fuel from flowing out.
  • Object of the present invention is to develop a fuel injection device of the type mentioned so that the closing force is increased to close the nozzle needle and that it works reliably.
  • the inventively provided check valve now prevents the control piston, when the nozzle needle comes into contact with the valve seat, on a "fluid cushion" is seated, which was not available before opening the valve element. In the worst case, this fluid cushion would be at each opening and Enlarge closing operation of the valve element until an opening of the valve element would not be possible at all.
  • a valve element of the check valve is acted upon by a spring in its closed position.
  • the valve element is securely held in the pressureless idle state of the fuel injection device by such a spring.
  • such a spring allows the setting of a certain opening-pressure difference, whereby a secure closing of the nozzle needle is ensured.
  • a valve element of the check valve has such a maximum lift that a predetermined maximum time interval between a closing and a subsequent opening of the valve element can be maintained. Especially for multiple injections within a working cycle very short time intervals between a closing and opening of the valve element are required. By limiting the maximum stroke of the check valve element ensures that the check valve can close quickly when the pressure in the hydraulic coupling chamber begins to decrease at the beginning of an opening operation.
  • a gap between the control piston and a housing section bounding the coupling space to a high-pressure chamber can be designed such that opening of the nozzle needle takes place with a delay.
  • the smallest quantity capability of the fuel injection device according to the invention is improved: During an opening movement of the control piston, fluid passes through the gap into the coupling space, which leads to a delayed reaction of the nozzle needle. This is different when closing, where no later than when the spool comes into contact with the nozzle needle, an immediate closing of the nozzle needle is forced.
  • an internal combustion engine carries the reference numeral 10. Overall, it serves to drive a motor vehicle, not shown.
  • a high-pressure conveyor 12 conveys fuel from a fuel reservoir 14 into a fuel pressure accumulator 16 ("rail"). In this, the fuel, such as diesel or gasoline, stored under very high pressure.
  • the fuel such as diesel or gasoline, stored under very high pressure.
  • To the rail 16 a plurality of fuel injection devices 20 are connected by means of a high pressure port 18, which inject the fuel directly into them associated combustion chambers 22.
  • the fuel injection devices 20 also each have a low-pressure connection 24, via which they are connected to a low-pressure region, in the present case to the fuel reservoir 14.
  • the fuel injection device 20 comprises a housing 26 having a nozzle body 28, a main body 30 and an end body 32.
  • a stepped recess 34 in which a needle-like valve element 36 is received. This is in two parts: It consists of a control piston 38 and a nozzle needle 40th
  • the nozzle needle 40 has pressure surfaces 42, which delimit a pressure chamber 44 and their hydraulic force resulting in the opening direction of the nozzle needle 40 shows. At her in FIG. 2 lower end, the nozzle needle 40 works in FIG. 2 not shown manner with a housing-side valve seat (without reference numerals) together. In this way, fuel outlet openings 46 can be separated from the pressure chamber 44 or connected thereto.
  • the nozzle needle 40 has a portion 48 with a smaller and a portion 50 with larger Diameter up. With the section 50, the nozzle needle 40 is guided longitudinally displaceable in the nozzle body 28.
  • the control piston 38 is received in the main body 30.
  • An in FIG. 2 Upper end portion of the control piston 38 is worked out as a guide, which is received and guided in the end body 32.
  • a spring 52 is supported on a shoulder formed by an annular collar (without reference numeral) on the control piston 38 and acted upon in the closing direction.
  • upper axial end surface of the control piston 38 forms a hydraulic control surface 54 acting in the closing direction of the valve element 36. It defines, together with the end body 32, a hydraulic control chamber 56.
  • the control chamber 56 is connected via an inlet throttle 58 in the end body 32 with a high pressure chamber 60, which can be referred to as a storage space due to its large volume and which is connected to the high pressure port 18.
  • the control chamber 56 is further connected to an electromagnetically actuated 2/2-way switching valve 64 through an outlet throttle 62, which is incorporated in the end body 32. Depending on the switching position, this connects or blocks the outlet throttle 62 to the low pressure port 24.
  • the high pressure chamber 60 is further, in yet to be shown manner, connected via a connecting channel 66 to the pressure chamber 44.
  • FIG. 3 The guide element 68 then has a step-shaped through-hole (without reference numeral), whose in FIG. 3 Upper portion forms a guide portion 70.
  • the guide element 72 is slightly larger than the diameter of the portion 50 of the nozzle needle 40, but smaller than the diameter of the control piston 38 in the region which is guided in the end body 32.
  • control piston 38 below the end portion 72 still has an end pin 74 whose diameter is smaller than that of the end portion 72 and also smaller than the control piston 38 adjacent portion of the nozzle needle 40.
  • end pin 74 Approximately at the axial height of this end pin 74 extends from the through hole in the guide member 68 radially inwardly of a circumferential annular collar 76, which forms a stop for the nozzle needle 40, since its inside diameter is smaller than the outside diameter of the end region of the nozzle needle 40 adjacent to it.
  • the stop 76 is not absolutely necessary.
  • the annular space formed between the end journal 74, the end region 72, the nozzle needle 40 and the guide element 68 is referred to as a coupling space 78. It is, as will be explained in more detail below, part of a hydraulic coupler 80, through which the movements of the control piston 38 and the nozzle needle 40 are coupled together.
  • the hydraulic coupler 80 also includes a check valve 82 having a valve member 84 formed as a ball, which is acted upon by a valve spring 86 in a closed position. In the open state, the check valve 82 connects the hydraulic coupling chamber 78 with the high pressure chamber 60. The check valve 82 is aligned so that it opens away from the coupling chamber 78 to the high pressure chamber 60 out.
  • a lying in the guide member 68 portion of the connecting channel 66 includes a flow restrictor 88.
  • An opening portion 90 of the connecting channel 66 to the high-pressure chamber 60 toward is funnel-shaped.
  • the fuel injection device 20 operates as follows: In the initial state, with de-energized switching valve 64, the hydraulic control chamber 56 is separated from the low pressure port 24 and connected via the inlet throttle 58 to the high pressure port 18 and thus to the rail 16. Due to a certain leakage between the guide portion 70 of the guide member 68 and the end portion 72 of the control piston 38 as well as leakage between the nozzle needle 40 and the nozzle body 28 in section 50, this pressure is also in the coupling chamber 78 at. Overall, in this constellation results in a force acting in the closing direction of the valve member 36, which presses this against the valve seat in the region of the fuel outlet openings 46.
  • the switching valve 64 is returned to its closed position, in which the connection of the hydraulic control chamber 56 is locked to the low pressure port 24.
  • the pressure in the hydraulic control chamber 56 increases.
  • the control piston 38 is again moved in the closing direction, since the pressure in the coupling chamber 78 is initially lower than in the hydraulic control chamber 56.
  • the pressure in the coupling chamber 78 increases due to the reduction in volume again, which ultimately leads to a total in the closing direction of the nozzle needle 40 leads to this acting force.
  • the movement of the nozzle needle 40 is at an end when this with its in FIG. 2 bottom end rests again on the housing-side valve seat and thus no fuel can escape through the fuel outlet openings 46.
  • the control piston 38 Since, as already mentioned above, in the meantime fuel has passed from the high-pressure chamber 60 and the pressure chamber 44 into the coupling chamber 78, the control piston 38 encounters a "fuel cushion" at the end of its closing movement, which leads to a dynamic pressure increase in the coupling chamber 78 to a pressure , which is greater than the pressure in the high-pressure chamber 60. As a result, the check valve 82 opens, so that the fuel which has penetrated into the coupling chamber 78 can escape into the high-pressure chamber 60. At the end of its closing movement, therefore, the control piston 38 again comes into abutment against the nozzle needle 40.
  • the valve element 36 must be able to open again immediately after it has reached its closed position.
  • the prerequisite for this is that the coupling space 78, after the "excess" fuel present in the coupling space 78 has been removed via the check valve 82 into the high-pressure chamber 60, again forms a closed volume as quickly as possible, which couples the nozzle needle 40 to the opening movement of the control piston 38.
  • This is achieved by limiting the stroke of the valve member 84 of the check valve 82 to a very small maximum lift. If the pressure in the coupling chamber 78 thus drops again due to an opening movement of the control piston 38, the valve element 84 has to travel only a small stroke until it is in its closed position again and thus the coupling space 78 can form a closed volume.
  • the configuration of the mouth region 90 of the connecting channel 66 in the form of a funnel which widens towards the high-pressure chamber 60 has the following effect: Due to the opening and closing of the valve element 36, pressure oscillations occur in the high-pressure chamber 60, which, however, are hardly noticeable there due to the size of the high-pressure chamber 60 , However, the connecting channel 66 and the pressure chamber 44 have a significantly smaller volume than the high-pressure chamber 60, so that pressure fluctuations would have an increased effect there and thus would reduce the injection accuracy.
  • the funnel-shaped configured mouth region 90 attacks: Through this impact waves striking the mouth region 90 are "dispersed" or reduced, so that the pressure fluctuations are transmitted only reduced in the connecting channel 66 into it. Therefore, the fuel can be metered with the fuel injection device 20 presented here with particularly high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (6)

  1. Dispositif d'injection de carburant (20) pour un moteur à combustion interne (10) comprenant un boîtier (26) et un élément de soupape (36) disposé dans le boîtier (26), qui coopère avec un siège de soupape se trouvant dans la région d'au moins une ouverture de sortie de carburant (46), au moins un piston de commande (38) et une aiguille de buse (40) de l'élément de soupape (36) étant accouplés l'un à l'autre par le biais d'un coupleur hydraulique (80), entre un tourillon d'extrémité (74) et une région d'extrémité (72) du piston de commande (38), l'aiguille de buse (40) et un élément de guidage (68) étant réalisé un espace annulaire qui forme un espace de couplage (78) du coupleur hydraulique (80), le piston de commande (38) présentant une surface de commande hydraulique (54) agissant dans la direction de fermeture de l'élément de soupape (36), qui, conjointement avec un corps d'extrémité (32) du boîtier (26) limite un espace de commande hydraulique (56), l'espace de commande (56) étant connecté par le biais d'un étranglement d'amenée (58) dans le corps d'extrémité (32) à un espace haute pression (60), qui est connecté à un raccord haute pression (18), et, par un étranglement de sortie (62) dans le corps d'extrémité (32), à une soupape de commutation à 2/2 voies (64) à commande électromagnétique, qui, en fonction de la position de commutation, relie l'étranglement de sortie (62) à un raccord basse pression (24) ou le bloque, et un conduit de connexion (66) étant prévu, lequel conduit de l'espace haute pression (60) vers le siège de soupape situé dans la région de l'ouverture de sortie de carburant (42), l'espace de couplage (78) comprenant un clapet anti-retour (82) connecté à celui-ci, qui, dans l'état ouvert, relie l'espace de couplage (78) à l'espace haute pression (60), de telle sorte que le clapet anti-retour (82) s'ouvre à l'écart de l'espace de couplage (78) vers l'espace haute pression (60).
  2. Dispositif d'injection de carburant selon la revendication 1, caractérisé en ce qu'un élément de soupape (84) du clapet anti-retour (82) est sollicité par un ressort (86) dans sa position de fermeture.
  3. Dispositif d'injection de carburant selon la revendication 2, caractérisé en ce que l'élément de soupape (84) du clapet anti-retour (82) présente une course maximale telle qu'un intervalle de temps prédéfini entre une fermeture et une ouverture subséquente de l'élément de soupape (36) du dispositif d'injection de carburant (20) puisse être conservé.
  4. Dispositif d'injection de carburant selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une fente entre le piston de commande (38) et une portion de boîtier (70) limitant l'espace de couplage (78) par rapport à un espace haute pression (60) est conçue de telle sorte qu'il se produise une ouverture de l'aiguille de buse (40) de manière retardée.
  5. Dispositif d'injection de carburant selon la revendication 1, caractérisé en ce qu'une région d'embouchure (90) du conduit de connexion (66) à l'espace haute pression (60) est réalisée de telle sorte que les ondes de pression soient réduites.
  6. Dispositif d'injection de carburant selon la revendication 5, caractérisé en ce que la région d'embouchure (90) est en forme d'entonnoir.
EP07728518A 2006-06-09 2007-04-25 Dispositif d'injection de carburant pour un moteur à combustion interne Not-in-force EP2032834B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006026877A DE102006026877A1 (de) 2006-06-09 2006-06-09 Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
PCT/EP2007/054063 WO2007141094A1 (fr) 2006-06-09 2007-04-25 Dispositif d'injection de carburant pour un moteur à combustion interne

Publications (2)

Publication Number Publication Date
EP2032834A1 EP2032834A1 (fr) 2009-03-11
EP2032834B1 true EP2032834B1 (fr) 2011-09-21

Family

ID=38446481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07728518A Not-in-force EP2032834B1 (fr) 2006-06-09 2007-04-25 Dispositif d'injection de carburant pour un moteur à combustion interne

Country Status (7)

Country Link
US (1) US20090184183A1 (fr)
EP (1) EP2032834B1 (fr)
CN (1) CN101466944B (fr)
AT (1) ATE525565T1 (fr)
DE (1) DE102006026877A1 (fr)
ES (1) ES2370855T3 (fr)
WO (1) WO2007141094A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055129A1 (de) * 2009-12-22 2011-06-30 Robert Bosch GmbH, 70469 Brennstoffeinspritzeinrichtung
DE102010030383A1 (de) 2010-06-23 2011-12-29 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung mit hydraulischem Koppler
CN105275693B (zh) * 2014-06-08 2019-11-08 董仲国 双针阀喷油器总成
CN104033307B (zh) * 2014-06-19 2016-06-08 中国第一汽车股份有限公司无锡油泵油嘴研究所 一种共轨喷油器连接腔
CN109869251A (zh) * 2019-02-28 2019-06-11 一汽解放汽车有限公司 一种液力耦合喷油器
CN109909090B (zh) * 2019-04-02 2021-02-09 北京理工大学 一种高压环境单液滴发生装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107265A (ja) * 1985-11-02 1987-05-18 Nippon Soken Inc 電歪式油圧制御弁
JPH03163280A (ja) * 1989-11-20 1991-07-15 Nippondenso Co Ltd 積層型圧電体装置
US5094397A (en) * 1991-02-11 1992-03-10 Cummins Engine Company, Inc Unit fuel injector with injection chamber spill valve
JPH06272522A (ja) * 1993-01-21 1994-09-27 Nippon Soken Inc 弁駆動装置
US5487508A (en) * 1994-03-31 1996-01-30 Caterpillar Inc. Injection rate shaping control ported check stop for a fuel injection nozzle
US5456222A (en) * 1995-01-06 1995-10-10 Ford Motor Company Spool valve control of an electrohydraulic camless valvetrain
US5456221A (en) * 1995-01-06 1995-10-10 Ford Motor Company Rotary hydraulic valve control of an electrohydraulic camless valvetrain
US5456223A (en) * 1995-01-06 1995-10-10 Ford Motor Company Electric actuator for spool valve control of electrohydraulic valvetrain
US5685490A (en) * 1995-07-27 1997-11-11 Caterpillar Inc. Fuel injector with pressure bleed-off stop
US5871155A (en) * 1997-06-10 1999-02-16 Caterpillar Inc. Hydraulically-actuated fuel injector with variable rate return spring
DE19743640A1 (de) * 1997-10-02 1999-04-08 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
US5950931A (en) * 1998-01-30 1999-09-14 Caterpillar Inc. Pressure decay passage for a fuel injector having a trapped volume nozzle assembly
US6113012A (en) * 1998-06-25 2000-09-05 Caterpillar Inc. Rate shaped fuel injector with internal dual flow rate office
DE19936668A1 (de) * 1999-08-04 2001-02-22 Bosch Gmbh Robert Common-Rail-Injektor
DE19954802A1 (de) * 1999-11-13 2001-05-17 Bosch Gmbh Robert Brennstoffeinspritzventil
EP1171708B1 (fr) * 2000-02-07 2005-09-14 Robert Bosch Gmbh Buse d'injection
DE10031579A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Druckgesteuerter Injektor mit Vario-Register-Einspritzdüse
DE10046323B4 (de) * 2000-09-19 2004-02-12 Siemens Ag Hydraulisches Spielausgleichssystem
US6752334B2 (en) * 2001-07-13 2004-06-22 Siemens Diesel Systems Technology Fuel injector and method for controlling fuel flow
US6557776B2 (en) * 2001-07-19 2003-05-06 Cummins Inc. Fuel injector with injection rate control
DE10139545A1 (de) * 2001-08-10 2003-02-20 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10157419A1 (de) 2001-11-23 2003-06-12 Bosch Gmbh Robert Leckagereduzierte Druckversorgung für Kraftstoffinjektoren
DE10157411A1 (de) * 2001-11-23 2003-06-26 Bosch Gmbh Robert Injektor zur Hochdruckeinspritzung von Kraftstoff
DE10160191A1 (de) * 2001-12-07 2003-06-26 Bosch Gmbh Robert Kraftstoffinjektor mit fremdbetätigtem Steller und optimierter Systemdruckversorgung
DE10229415A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Einrichtung zur Nadelhubdämpfung an druckgesteuerten Kraftstoffinjektoren
US7004406B2 (en) * 2002-09-12 2006-02-28 International Engine Intellectual Property Company, Llc Enhanced needle motion controller
DE10343017A1 (de) * 2003-09-17 2005-04-14 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004010760A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit Nadelhubdämpfung
JP4196868B2 (ja) * 2004-03-31 2008-12-17 三菱ふそうトラック・バス株式会社 燃料噴射装置
DE102006009659A1 (de) 2005-07-25 2007-02-01 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung

Also Published As

Publication number Publication date
US20090184183A1 (en) 2009-07-23
DE102006026877A1 (de) 2007-12-13
CN101466944B (zh) 2012-07-04
WO2007141094A1 (fr) 2007-12-13
CN101466944A (zh) 2009-06-24
ES2370855T3 (es) 2011-12-23
EP2032834A1 (fr) 2009-03-11
ATE525565T1 (de) 2011-10-15

Similar Documents

Publication Publication Date Title
EP1520096B1 (fr) Systeme a rampe commune comprenant une buse variable et un systeme multiplicateur de pression
EP1654456B1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
EP2108080B1 (fr) Injecteur pour injecter du carburant dans les chambres de combustion des moteurs à combustion interne
EP1598551B1 (fr) Dispositif d'injection de carburant
EP2032834B1 (fr) Dispositif d'injection de carburant pour un moteur à combustion interne
EP1990532A1 (fr) Injecteur de carburant pour un moteur à combustion interne comprenant un système d'injection à rampe commune
EP2686588B1 (fr) Dispositif formant soupape permettant de coupler ou de distribuer un fluide
EP2294309B1 (fr) Injecteur de carburant
DE102007043538A1 (de) Injektor mit hydraulischem Dämpfer
EP1045975B1 (fr) Unite servant a commander l'etablissement de la pression dans une unite de pompage
EP2743493B1 (fr) Injecteur de carburant
EP2123898B1 (fr) Injecteur de carburant
DE102004005451A1 (de) Kraftstoffeinspritzsystem für Brennkraftmaschinen
EP1541859B1 (fr) Injecteur
EP1911966B1 (fr) Injecteur de carburant pour un moteur à combustion interne
EP1697628A1 (fr) Injecteur
EP2138704B1 (fr) Injecteur de carburant
EP1961949B1 (fr) Injecteur doté d'une servo-vanne supplémentaire
EP2126333B1 (fr) Injecteur de carburant à coupleur
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
DE102018200565A1 (de) Injektor zur Dosierung von gasförmigem Kraftstoff, Gaseinblassystem mit einem solchen Injektor und Verfahren zum Betreiben dieses Injektors
DE102016201539A1 (de) Kraftstoffinjektor
EP3184803B1 (fr) Injecteur de carburant
WO2017211485A1 (fr) Injecteur
DE102007050807B4 (de) Kraftstoffsystem für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090728

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008217

Country of ref document: DE

Effective date: 20111201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2370855

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111223

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

26N No opposition filed

Effective date: 20120622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008217

Country of ref document: DE

Effective date: 20120622

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 525565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200516

Year of fee payment: 14

Ref country code: DE

Payment date: 20200623

Year of fee payment: 14

Ref country code: FR

Payment date: 20200421

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200423

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008217

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200425