EP2029878B1 - Method and device for converting thermal energy into mechanical work - Google Patents

Method and device for converting thermal energy into mechanical work Download PDF

Info

Publication number
EP2029878B1
EP2029878B1 EP07718460A EP07718460A EP2029878B1 EP 2029878 B1 EP2029878 B1 EP 2029878B1 EP 07718460 A EP07718460 A EP 07718460A EP 07718460 A EP07718460 A EP 07718460A EP 2029878 B1 EP2029878 B1 EP 2029878B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
pneumatic
working medium
work
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07718460A
Other languages
German (de)
French (fr)
Other versions
EP2029878A2 (en
Inventor
Michael Mayer
Bernd Peter Pfeifer
Franz Peter Jegel
Steve Hargreaves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Innovations Ltd
Original Assignee
International Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Innovations Ltd filed Critical International Innovations Ltd
Publication of EP2029878A2 publication Critical patent/EP2029878A2/en
Application granted granted Critical
Publication of EP2029878B1 publication Critical patent/EP2029878B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors

Definitions

  • the present invention relates to a method and apparatus for converting thermal energy into mechanical work according to the preamble of claim 1.
  • Object of the present invention is to provide a method of the type described above in such a way that even under thermally unfavorable conditions, a high efficiency can be achieved, the apparatus design is minimized.
  • a working medium having a suitable vapor pressure curve such as R134a, which is 1,1,1,2-tetrafluoroethane
  • R134a a working medium having a suitable vapor pressure curve
  • the working medium is in an equilibrium state between a liquid phase and a gas phase.
  • the pressure is chosen so that this balance is maintained. In the case of R134a and an ambient temperature of about 20 ° C, this first pressure will be about 6 bar.
  • the working fluid is transferred to a working container in which there is preferably a second higher pressure.
  • the second pressure is for example 40 bar. The energy expenditure for the transfer can be minimized if in a preferred manner only liquid working medium is pumped into the working container.
  • the working fluid is heated in the working container.
  • heating the pressure is further increased and the working medium evaporates partially.
  • the heating is preferably carried out by waste heat, for example from an internal combustion engine with internal combustion. When heated to 100 ° C, the waste heat can be optimally utilized.
  • the working fluid is flowed into a pneumatic-hydraulic converter.
  • This can take place after the second step, ie first the heat is completely supplied and then the connection between the working container and the pneumatic-hydraulic converter is produced.
  • it may also be a partial or complete simultaneity of these steps, that is, that the medium is heated in the working container during the overflow into the pneumatic-hydraulic converter. In this way, the efficiency can be optimized because the entering due to the expansion of the working medium cooling is compensated immediately.
  • the cycle time is shortened.
  • the incoming working fluid displaces a present in the hydraulic chamber hydraulic medium, which is processed in a suitable machine, such as a hydraulic motor to produce mechanical work, which in turn can be used, for example, to generate electrical energy.
  • a suitable machine such as a hydraulic motor to produce mechanical work, which in turn can be used, for example, to generate electrical energy.
  • the pneumatic-hydraulic converter is filled via a small pump again with the hydraulic medium, wherein the working fluid is displaced and is returned to the storage tank.
  • the working fluid is passed through a second heat exchanger to make a temperature adjustment to ambient temperature can.
  • the efficiency and performance of the system can be optimized if the possible phase transitions are used accordingly.
  • the working medium should be moved only liquid in the first step, while in the third step, only the gas phase is transferred to the pneumatic-hydraulic converter.
  • connection between the working container and the pneumatic-hydraulic converter is interrupted during the return of the working medium from the pneumatic-hydraulic converter into the supply storage. In this way overflow losses can be minimized.
  • the cooling can be done by an ambient heat exchanger, so a conventional cooler, but it is also possible to use cooling capacity from the second heat exchanger, unless the cold is otherwise required, for example, for an air conditioner or a cooling unit.
  • the working medium it is possible for the working medium to be guided out of the pneumatic-hydraulic converter through a second heat exchanger.
  • low temperatures may arise in the second heat exchanger, which may be caused by the expansion of the working medium are. These low temperatures can be used for cooling to save the energy needed there.
  • a further optimization, in particular of the refrigeration production, can take place in that the working medium from the pneumatic-hydraulic converter is expanded to a depressurization pressure, which lies below the first pressure in the supply reservoir and is subsequently compressed to the first pressure.
  • the present invention relates to a device for converting thermal energy into mechanical work, with a storage reservoir, a working container and a working machine for converting hydraulic work into mechanical work.
  • the working container is connected to a first heat exchanger in order to heat the working medium, that the working container is further connected to a pneumatic-hydraulic converter, which transfers the pressure of the working medium to a hydraulic medium, and that a return line for the working fluid from the pneumatic-hydraulic converter is provided in the storage reservoir.
  • a particularly preferred embodiment of the invention provides that a plurality of working containers and pneumatic-hydraulic converter are connected in parallel.
  • Fig. 1 shown devices arranged side by side in parallel and operated offset in time to each other, as is the case for example in a five-cylinder internal combustion engine.
  • a continuous operation can be achieved without appreciable cyclical fluctuations.
  • Fig. 2 shows a typical vapor pressure curve of a working medium.
  • a storage tank 1 In a storage tank 1 is a working medium, in which case, for example, a refrigerant such as R 134 a can be used.
  • the working medium in the storage 1 is in phase equilibrium at ambient temperature and a pressure of about 6 bar before.
  • the storage 1 is connected via a feed pump 2 with a working container 3, wherein this connection is switchable via a valve 4.
  • a first heat exchanger 5 In the working container 3, a first heat exchanger 5 is arranged, which serves to heat the working medium in the working container 3.
  • the heat exchanger 5 is via a feed pump 6 with waste heat an internal combustion engine, not shown here supplied by internal combustion, for example, by passing water at 100 ° C through the first heat exchanger 5.
  • the working container 5 is connected via an overflow line 7 with a first working space 8a of a pneumatic-hydraulic converter 8 in connection, which is designed as a bladder accumulator.
  • the first working space 8a is separated from a second working space 8b by a flexible membrane 8c, which separates the two working spaces 8a, 8b from each other, but allows pressure equalization.
  • the second working space 8b of the pneumatic-hydraulic converter 8 is connected to a hydraulic circuit which consists of a working machine 9 with a generator 10 flanged thereto, an oil reservoir 20, a return pump 17 and a third heat exchanger 11.
  • the third heat exchanger 11 is supplied by a pump 12.
  • Another working line 19 connects the first working space 8a of the pneumatic-hydraulic converter 8 with a second heat exchanger 16, which is connected via a feed pump 14 to the storage 1.
  • the lines 7, 19 by valves 7a, 19a are selectively closed.
  • the valve 4 is closed and there is a heating via the first heat exchanger 5. This heating is the second step. In this case, the waste heat from another process can be used.
  • a fourth step hydraulic medium is transferred from the container 20 into the second working space 8b of the pneumatic-hydraulic converter 8 via the pump 17 returned and the working fluid from the first working chamber 8a passed through the now open valve 19a in the conduit 19 through the second heat exchanger 16 and relaxed.
  • the heat absorbed by the working medium in the second heat exchanger 16 heat can be dissipated as a cooling capacity, for example, to operate a cooling system or air conditioning.
  • Fig. 2 represents a typical vapor pressure curve of a usable in the above-described cycle process working medium. It is this known as the refrigeration medium R 134 a, ie 1,1,1,2-tetrafluoroethane.
  • R 134 a ie 1,1,1,2-tetrafluoroethane.
  • the liquid phase is in equilibrium with the gas phase at ambient temperature at a pressure of about 6 bar. At a temperature of 100 ° C, this equilibrium pressure is about 40 bar.
  • the present invention makes it possible to optimally utilize waste heat from other processes, such as the operation of an internal combustion engine, with a simple apparatus design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turning (AREA)
  • Heat Treatment Of Articles (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention relates to a method for converting thermal energy into mechanical work. Said method comprises the following steps which are performed as a cycle: A liquid work medium is fed from a supply reservoir (1) to a work container (3); the work medium in the work container (3) is heated by a first heat exchanger (5); a sub-amount of the work medium flows from the work container (3) to a pneumatic-hydraulic-converter (8), a hydraulic medium from the pneumatic-hydraulic-converter (8) is compressed in a work machine (9) in order to convert the hydraulic work of the hydraulic medium into mechanical work; the work medium from the pneumatic-hydraulic-converter (8) is fed back into the supply reservoir (1) and the hydraulic medium is returned into the pneumatic-hydraulic-converter (8). The invention also relates to a device for carrying out said method.

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Umwandlung thermischer Energie in mechanische Arbeit gemäß dem Oberbegriff von Patentanspruch 1.The present invention relates to a method and apparatus for converting thermal energy into mechanical work according to the preamble of claim 1.

Es sind viele Arten von Kreisprozessen und Vorrichtungen bekannt, die dazu dienen, thermische Energie in mechanische Arbeit und gegebenenfalls in weiterer Folge in elektrischen Strom umzuwandeln. Es handelt sich dabei beispielsweise um Dampfkraftprozesse, Sterlingprozesse oder dergleichen. Eine Möglichkeit des Einsatzes solcher Verfahren besteht darin, den Wirkungsgrad von Brennkraftmaschinen zu steigern, indem die Abwärme einer Nutzung unterzogen wird. Problematisch ist dabei jedoch, dass die zur Verfügung stehenden Temperaturniveaus relativ ungünstig sind, da der Kühlkreislauf von Brennkraftmaschine üblicherweise bei Temperaturen arbeitet, die etwa bei 100°C liegen. Ein ähnliches Problem besteht dann, wenn Wärme aus Solaranlagen in mechanische Arbeit übergeführt werden soll.There are many types of cycle processes and devices known which serve to convert thermal energy into mechanical work and optionally subsequently into electrical power. These are, for example, steam power processes, Sterling processes or the like. One way of using such methods is to increase the efficiency of internal combustion engines by the waste heat is subjected to a use. The problem is, however, that the available temperature levels are relatively unfavorable, since the cooling circuit of internal combustion engine usually operates at temperatures that are approximately at 100 ° C. A similar problem exists when heat from solar systems is to be converted into mechanical work.

Eine spezielle Lösung für einen solchen Wärmekraftprozess ist in der WO 03/081011 A gezeigt. In dieser Druckschrift ist ein Verfahren beschrieben, bei dem durch Erwärmung eines Arbeitsmediums in mehreren Blasenspeichern ein Hydraulikmedium unter Druck gesetzt wird, das in einer Arbeitsmaschine abgearbeitet wird. Obwohl ein solches Verfahren grundsätzlich funktionstüchtig ist, hat sich herausgestellt, dass der Wirkungsgrad bescheiden ist und der apparative Aufwand im Verhältnis zur erzeugbaren Energiemenge relativ groß ist.A special solution for such a thermal power process is in the WO 03/081011 A shown. In this document, a method is described in which a hydraulic medium is pressurized by heating a working medium in a plurality of bladder accumulators, which is processed in a working machine. Although such a method is basically functional, it has been found that the efficiency is modest and the expenditure on equipment is relatively large in relation to the amount of energy that can be generated.

Weiters ist aus der US 3,803,847 A ein diskontinuierlich betriebenes Verfahren bekannt, das mit bescheidenem Wirkungsgrad Arbeit durch Umwandlung von Wärme erzeugen kann.Furthermore, is from the US Pat. No. 3,803,847 a batch process is known which can produce work by modifying heat with modest efficiency.

Aus der WO 00/26509 A , der JP 2002-089209 A und aus der US 4,617,801 A sind verschiedene Verfahren und Vorrichtungen zur Umwandlung von Wärme in mechanische Arbeit bekannt. Obgleich bei diesen Verfahren pneumatisch hydraulische Wandler eingesetzt werden, sind die erzielbaren Wirkungsgrade unbefriedigend.From the WO 00/26509 A , of the JP 2002-089209 A and from the US 4,617,801 A Various methods and devices for converting heat into mechanical work are known. Although pneumatic hydraulic transducers are used in these methods, the achievable efficiencies are unsatisfactory.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren der oben beschriebenen Art so auszubilden, dass auch unter thermisch ungünstigen Voraussetzungen ein hoher Wirkungsgrad erreicht werden kann, wobei der apparative Aufbau möglichst gering ist.Object of the present invention is to provide a method of the type described above in such a way that even under thermally unfavorable conditions, a high efficiency can be achieved, the apparatus design is minimized.

Typischerweise besteht ein solches Verfahren gemäß Patentanspruch 1 aus folgenden Schritten, die als Kreisprozess ausgeführt werden:

    • Zufuhr von einem flüssigen Arbeitsmedium von einem Vorratsspeicher in einen Arbeitsbehälter;
    • Erwärmen des Arbeitsmediums im Arbeitsbehälter durch einen ersten Wärmetauscher;
    • Überströmen lassen einer Teilmenge des Arbeitsmediums aus dem Arbeitsbehälter in einen Pneumatik-Hydraulik-Wandler, wodurch ein Hydraulikmedium aus dem Pneumatik-Hydraulik-Wandler in eine Arbeitsmaschine gedrückt wird, um die hydraulische Arbeit des Hydraulikmediums in mechanische Arbeit umzuwandeln;
    • Zurückführen des Arbeitsmediums aus dem Pneumatik-Hydraulik-Wandler in den Vorratsspeicher, indem Hydraulikmedium in den Pneumatik-Hydraulik-Wandler rückgeführt wird.
Typically, such a method according to claim 1 consists of the following steps, which are carried out as a cyclic process:
    • Supply of a liquid working medium from a storage reservoir in a working container;
    • Heating the working medium in the working container through a first heat exchanger;
    • Overflowing a subset of the working fluid from the working container in a pneumatic-hydraulic converter, whereby a hydraulic medium from the pneumatic-hydraulic converter is forced into a working machine to convert the hydraulic work of the hydraulic medium into mechanical work;
    • Returning the working fluid from the pneumatic-hydraulic converter in the storage tank by hydraulic fluid is returned to the pneumatic-hydraulic converter.

Im ersten Schritt wird ein Arbeitsmedium, das eine passende Dampfdruckkurve hat, wie beispielsweise R134a, das ist 1,1,1,2-Tetrafluorethan, aus einem Vorratsspeicher entnommen. In diesem Vorratsspeicher liegt das Arbeitsmedium in einem Gleichgewichtszustand zwischen einer flüssigen Phase und einer Gasphase vor. Der Druck ist dabei so gewählt, dass dieses Gleichgewicht erhalten bleibt. Im Fall von R134a und einer Umgebungstemperatur von etwa 20°C wird dieser erste Druck etwa 6 bar betragen. Das Arbeitsmedium wird in einen Arbeitsbehälter übergeführt, in dem vorzugsweise ein zweiter höherer Druck herrscht. Der zweite Druck liegt beispielsweise bei 40 bar. Der Energieaufwand für das Überführen kann minimiert werden, wenn in bevorzugter Weise nur flüssiges Arbeitsmedium in den Arbeitsbehälter umgepumpt wird.In the first step, a working medium having a suitable vapor pressure curve, such as R134a, which is 1,1,1,2-tetrafluoroethane, is withdrawn from a storage reservoir. In this storage reservoir, the working medium is in an equilibrium state between a liquid phase and a gas phase. The pressure is chosen so that this balance is maintained. In the case of R134a and an ambient temperature of about 20 ° C, this first pressure will be about 6 bar. The working fluid is transferred to a working container in which there is preferably a second higher pressure. The second pressure is for example 40 bar. The energy expenditure for the transfer can be minimized if in a preferred manner only liquid working medium is pumped into the working container.

Im zweiten Schritt wird das Arbeitsmedium im Arbeitsbehälter erwärmt. Durch die Erwärmung wird der Druck weiter erhöht und das Arbeitsmedium verdampft teilweise. Die Erwärmung erfolgt vorzugsweise durch Abwärme, beispielsweise aus einer Brennkraftmaschine mit innerer Verbrennung. Bei einer Erwärmung auf 100°C kann die Abwärme optimal ausgenutzt werden.In the second step, the working fluid is heated in the working container. By heating the pressure is further increased and the working medium evaporates partially. The heating is preferably carried out by waste heat, for example from an internal combustion engine with internal combustion. When heated to 100 ° C, the waste heat can be optimally utilized.

Im dritten Schritt wird das Arbeitsmedium in einen Pneumatik-Hydraulik-Wandler überströmen gelassen. Dies kann zeitlich nach dem zweiten Schritt erfolgen, d.h. dass zunächst die Wärme vollständig zugeführt wird und danach die Verbindung zwischen dem Arbeitsbehälter und dem Pneumatik-Hydraulik-Wandler hergestellt wird. Es kann aber auch eine teilweise oder vollständige Gleichzeitigkeit dieser Schritte vorliegen, d.h., dass das Medium im Arbeitsbehälter während des Überströmens in den Pneumatik-Hydraulik-Wandler erwärmt wird. Auf diese Weise kann der Wirkungsgrad optimiert werden, da die durch die Expansion des Arbeitsmediums eintretende Abkühlung sofort kompensiert wird. Darüber hinaus wird die Zykluszeit verkürzt. Im Pneumatik-Hydraulik-Wandler, der beispielsweise als Blasenspeicher ausgeführt ist, verdrängt das einströmende Arbeitsmedium ein im Hydraulikraum vorliegendes Hydraulikmedium, das in einer geeigneten Arbeitsmaschine, beispielsweise einem Hydraulikmotor abgearbeitet wird, um mechanische Arbeit zu erzeugen, die wiederum beispielsweise zur Erzeugung elektrischer Energie genutzt werden kann.In the third step, the working fluid is flowed into a pneumatic-hydraulic converter. This can take place after the second step, ie first the heat is completely supplied and then the connection between the working container and the pneumatic-hydraulic converter is produced. However, it may also be a partial or complete simultaneity of these steps, that is, that the medium is heated in the working container during the overflow into the pneumatic-hydraulic converter. In this way, the efficiency can be optimized because the entering due to the expansion of the working medium cooling is compensated immediately. In addition, the cycle time is shortened. In the pneumatic-hydraulic converter, for example designed as a bladder accumulator, the incoming working fluid displaces a present in the hydraulic chamber hydraulic medium, which is processed in a suitable machine, such as a hydraulic motor to produce mechanical work, which in turn can be used, for example, to generate electrical energy.

Im vierten Schritt wird der Pneumatik-Hydraulik-Wandler über eine kleine Pumpe wieder mit dem Hydraulikmedium gefüllt, wobei das Arbeitsmedium verdrängt wird und in den Vorratsspeicher rückgeführt wird. Gegebenenfalls wird das Arbeitsmedium dabei über einen zweiten Wärmetauscher geführt, um eine Temperaturanpassung auf Umgebungstemperatur vornehmen zu können.In the fourth step, the pneumatic-hydraulic converter is filled via a small pump again with the hydraulic medium, wherein the working fluid is displaced and is returned to the storage tank. Optionally, the working fluid is passed through a second heat exchanger to make a temperature adjustment to ambient temperature can.

Nach diesem vierten Schritt wird der Kreisprozess mit dem ersten Schritt weitergeführt.After this fourth step, the cycle continues with the first step.

Der Wirkungsgrad und die Leistungsfähigkeit der Anlage kann optimiert werden, wenn die möglichen Phasenübergänge entsprechend ausgenutzt werden. Insbesondere sollte das Arbeitsmedium im ersten Schritt ausschließlich flüssig bewegt werden, während im dritten Schritt nur die Gasphase in den Pneumatik-Hydraulik-Wandler übergeführt wird.The efficiency and performance of the system can be optimized if the possible phase transitions are used accordingly. In particular, the working medium should be moved only liquid in the first step, while in the third step, only the gas phase is transferred to the pneumatic-hydraulic converter.

Vorzugsweise ist vorgesehen, dass während des Zurückführens des Arbeitsmediums aus dem Pneumatik-Hydraulik-Wandler in den Vorratsspeicher die Verbindung zwischen dem Arbeitsbehälter und dem Pneumatik-Hydraulik-Wandler unterbrochen wird. Auf diese Weise können Überströmverluste minimiert werden.It is preferably provided that the connection between the working container and the pneumatic-hydraulic converter is interrupted during the return of the working medium from the pneumatic-hydraulic converter into the supply storage. In this way overflow losses can be minimized.

Eine Optimierung des Wirkungsgrades ist möglich, wenn das Arbeitsmedium bei der Zufuhr vom Vorratsspeicher in den Arbeitsbehälter gekühlt wird. Die Kühlung kann durch einen Umgebungswärmetauscher, also einen gewöhnlichen Kühler erfolgen, es ist aber auch möglich, Kälteleistung aus dem zweiten Wärmetauscher zu verwenden, sofern die Kälte nicht anderweitig, beispielsweise für eine Klimaanlage oder ein Kühlaggregat benötigt wird.An optimization of the efficiency is possible if the working fluid is cooled in the supply from the storage tank in the working container. The cooling can be done by an ambient heat exchanger, so a conventional cooler, but it is also possible to use cooling capacity from the second heat exchanger, unless the cold is otherwise required, for example, for an air conditioner or a cooling unit.

Besonders günstig ist es, wenn das Hydraulikmedium auf einer Temperatur gehalten wird, die der mittleren Temperatur des Arbeitsmediums im Pneumatik-Hydraulik-Wandler entspricht. Auf diese Weise können unerwünschte Temperaturausgleichseffekte vermieden werden.It is particularly favorable if the hydraulic medium is kept at a temperature which corresponds to the mean temperature of the working medium in the pneumatic-hydraulic converter. In this way, unwanted temperature compensation effects can be avoided.

Wie bereits ausgeführt ist es möglich, dass das Arbeitsmedium aus dem Pneumatik-Hydraulik-Wandler durch einen zweiten Wärmetauscher geführt wird. Je nach Führung des Verfahrens können dabei im zweiten Wärmetauscher tiefe Temperaturen entstehen, die durch die Expansion des Arbeitsmediums verursacht sind. Diese tiefen Temperaturen können zur Kühlung verwendet werden, um die dort benötigte Energie einzusparen.As already stated, it is possible for the working medium to be guided out of the pneumatic-hydraulic converter through a second heat exchanger. Depending on how the process is carried out, low temperatures may arise in the second heat exchanger, which may be caused by the expansion of the working medium are. These low temperatures can be used for cooling to save the energy needed there.

Eine weitere Optimierung insbesondere der Kälteproduktion kann dadurch erfolgen, dass das Arbeitsmedium aus dem Pneumatik-Hydraulik-Wandler auf einen Entspannungsdruck entspannt wird, der unterhalb des ersten Drucks im Vorratsspeicher liegt und in der Folge auf den ersten Druck komprimiert wird.A further optimization, in particular of the refrigeration production, can take place in that the working medium from the pneumatic-hydraulic converter is expanded to a depressurization pressure, which lies below the first pressure in the supply reservoir and is subsequently compressed to the first pressure.

Weiters betrifft die vorliegende Erfindung eine Vorrichtung zur Umwandlung thermischer Energie in mechanische Arbeit, mit einem Vorratsspeicher, einem Arbeitsbehälter und einer Arbeitsmaschine zur Umwandlung von hydraulischer Arbeit in mechanische Arbeit.Furthermore, the present invention relates to a device for converting thermal energy into mechanical work, with a storage reservoir, a working container and a working machine for converting hydraulic work into mechanical work.

Erfindungsgemäß ist vorgesehen, dass der Arbeitsbehälter mit einem ersten Wärmetauscher in Verbindung steht, um das Arbeitsmedium zu erwärmen, dass der Arbeitsbehälter weiters mit einem Pneumatik-Hydraulik-Wandler verbunden ist, der den Druck des Arbeitsmediums auf ein Hydraulikmedium überträgt, und dass eine Rückführleitung für das Arbeitsmedium aus dem Pneumatik-Hydraulik-Wandler in den Vorratsspeicher vorgesehen ist.According to the invention, the working container is connected to a first heat exchanger in order to heat the working medium, that the working container is further connected to a pneumatic-hydraulic converter, which transfers the pressure of the working medium to a hydraulic medium, and that a return line for the working fluid from the pneumatic-hydraulic converter is provided in the storage reservoir.

Eine besonders bevorzugte Ausführungsvariante der Erfindung sieht vor, dass mehrere Arbeitsbehälter und Pneumatik-Hydraulik-Wandler parallel geschaltet sind.A particularly preferred embodiment of the invention provides that a plurality of working containers and pneumatic-hydraulic converter are connected in parallel.

Bei der praktischen Ausführung werden beispielsweise fünf der in Fig. 1 dargestellten Vorrichtungen parallel nebeneinander angeordnet und zeitlich versetzt zueinander betrieben, wie dies beispielsweise bei einer Fünfzylinderbrennkraftmaschine der Fall ist. Dadurch kann eine kontinuierlicher Betrieb ohne nennenswerte zyklische Schwankungen erreicht werden.For example, in practice, five of the Fig. 1 shown devices arranged side by side in parallel and operated offset in time to each other, as is the case for example in a five-cylinder internal combustion engine. As a result, a continuous operation can be achieved without appreciable cyclical fluctuations.

In der Folge werden das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung anhand des Schaltungsdiagramms von Fig. 1 näher erläutert, das die wesentlichen Komponenten der Anlage darstellt. Fig. 2 zeigt eine typische Dampfdruckkurve eines Arbeitsmediums.As a result, the inventive method and the device according to the invention with reference to the circuit diagram of Fig. 1 explained in more detail, which represents the essential components of the system. Fig. 2 shows a typical vapor pressure curve of a working medium.

In einem Vorratsspeicher 1 liegt ein Arbeitsmedium vor, wobei hier beispielsweise ein Kältemittel, wie R 134 a zum Einsatz gelangen kann. Das Arbeitsmedium im Vorratsspeicher 1 liegt dabei im Phasengleichgewicht bei Umgebungstemperatur und einem Druck von etwa 6 bar vor. Der Vorratsspeicher 1 ist über eine Speisepumpe 2 mit einem Arbeitsbehälter 3 verbunden, wobei diese Verbindung über ein Ventil 4 schaltbar ist. Im Arbeitsbehälter 3 ist ein erster Wärmetauscher 5 angeordnet, der zur Erwärmung des Arbeitsmediums im Arbeitsbehälter 3 dient. Der Wärmetauscher 5 wird über eine Förderpumpe 6 mit Abwärme einer hier nicht dargestellten Brennkraftmaschine mit innerer Verbrennung versorgt, indem beispielsweise Wasser mit 100°C durch den ersten Wärmetauscher 5 hindurchgeführt wird. Der Arbeitsbehälter 5 steht über eine Überströmleitung 7 mit einem ersten Arbeitsraum 8a eines Pneumatik-Hydraulik-Wandlers 8 in Verbindung, der als Blasenspeicher ausgebildet ist. Der erste Arbeitsraum 8a ist von einem zweiten Arbeitsraum 8b durch eine flexible Membran 8c getrennt, die die beiden Arbeitsräume 8a, 8b voneinander trennt, jedoch einen Druckausgleich ermöglicht. Der zweite Arbeitsraum 8b des Pneumatik-Hydraulik-Wandlers 8 steht mit einem Hydraulikkreislauf in Verbindung, der aus einer Arbeitsmaschine 9 mit daran angeflanschtem Generator 10, einem Ölbehälter 20, einer Rückführpumpe 17 und einem dritten Wärmetauscher 11 besteht. Der dritte Wärmetauscher 11 wird von einer Pumpe 12 versorgt. Eine weitere Arbeitsleitung 19 verbindet den ersten Arbeitsraum 8a des Pneumatik-Hydraulik-Wandlers 8 mit einem zweiten Wärmetauscher 16, der über eine Förderpumpe 14 mit dem Vorratsspeicher 1 in Verbindung steht. Im Übrigen sind die Leitungen 7, 19 durch Ventile 7a, 19a wahlweise verschließbar.In a storage tank 1 is a working medium, in which case, for example, a refrigerant such as R 134 a can be used. The working medium in the storage 1 is in phase equilibrium at ambient temperature and a pressure of about 6 bar before. The storage 1 is connected via a feed pump 2 with a working container 3, wherein this connection is switchable via a valve 4. In the working container 3, a first heat exchanger 5 is arranged, which serves to heat the working medium in the working container 3. The heat exchanger 5 is via a feed pump 6 with waste heat an internal combustion engine, not shown here supplied by internal combustion, for example, by passing water at 100 ° C through the first heat exchanger 5. The working container 5 is connected via an overflow line 7 with a first working space 8a of a pneumatic-hydraulic converter 8 in connection, which is designed as a bladder accumulator. The first working space 8a is separated from a second working space 8b by a flexible membrane 8c, which separates the two working spaces 8a, 8b from each other, but allows pressure equalization. The second working space 8b of the pneumatic-hydraulic converter 8 is connected to a hydraulic circuit which consists of a working machine 9 with a generator 10 flanged thereto, an oil reservoir 20, a return pump 17 and a third heat exchanger 11. The third heat exchanger 11 is supplied by a pump 12. Another working line 19 connects the first working space 8a of the pneumatic-hydraulic converter 8 with a second heat exchanger 16, which is connected via a feed pump 14 to the storage 1. Incidentally, the lines 7, 19 by valves 7a, 19a are selectively closed.

In der Folge wird der Betrieb der erfindungsgemäßen Vorrichtung näher erläutert:

  • In einem ersten Schritt wird flüssiges Arbeitsmedium aus dem Vorratsspeicher 1 durch die Speisepumpe 2 in den Arbeitsbehälter 3 übergeführt, wobei der Druck von 6 bar auf 40 bar erhöht wird.
In the following, the operation of the device according to the invention will be explained in more detail:
  • In a first step, liquid working medium is transferred from the storage tank 1 through the feed pump 2 in the working container 3, wherein the pressure of 6 bar is increased to 40 bar.

Nachdem der Arbeitsbehälter 3 vollständig mit flüssigem Arbeitsmedium gefüllt ist, wird das Ventil 4 geschlossen und es erfolgt eine Erwärmung über den ersten Wärmetauscher 5. Diese Erwärmung stellt den zweiten Schritt dar. Dabei kann die Abwärme aus einem anderen Prozess genutzt werden.After the working container 3 is completely filled with liquid working medium, the valve 4 is closed and there is a heating via the first heat exchanger 5. This heating is the second step. In this case, the waste heat from another process can be used.

Durch die Erwärmung auf 100°C verdampft ein Teil des Arbeitsmediums im Arbeitsbehälter 3 und dieser Dampf wird in einem dritten Schritt über die Leitung 7 bei geöffneten Ventil 7a in den ersten Arbeitsraum 8a des Pneumatik-Hydraulik-Wandlers 8 übergeführt. Der Druckabfall wird dabei durch weitere Erwärmung über den ersten Wärmetauscher 5 ausgeglichen. Gleichzeitig verschiebt sich die Membran 8c des Pneumatik-Hydraulik-Wandlers 8 in Richtung des zweiten Arbeitsraums 8b, so dass Hydraulikmedium durch die Arbeitsmaschine 9 gedrückt wird, die den Generator 10 antreibt. Der dritte Schritt ist beendet, sobald der zweite Arbeitsraum 8b des Pneumatik-Hydraulik-Wandlers 8 weitgehend entleert ist.By heating to 100 ° C, a portion of the working medium in the working tank 3 evaporates and this vapor is transferred in a third step via line 7 with open valve 7a in the first working space 8a of the pneumatic-hydraulic converter 8. The pressure drop is compensated by further heating via the first heat exchanger 5. At the same time, the diaphragm 8c of the pneumatic-hydraulic converter 8 shifts in the direction of the second working space 8b, so that hydraulic medium is pressed by the working machine 9, which drives the generator 10. The third step is ended as soon as the second working space 8b of the pneumatic-hydraulic converter 8 has been substantially emptied.

In einem vierten Schritt wird über die Pumpe 17 Hydraulikmedium aus dem Behälter 20 in den zweiten Arbeitsraum 8b des Pneumatik-Hydraulik-Wandlers 8 zurückgeführt und das Arbeitsmedium aus dem ersten Arbeitsraum 8a über das mittlerweile geöffnete Ventil 19a in der Leitung 19 durch den zweiten Wärmetauscher 16 hindurchgeführt und entspannt. Eine Förderpumpe 14 führt das Arbeitsmedium zurück in den Vorratsspeicher 1. Wie durch den Pfeil 21 angedeutet, kann die vom Arbeitsmedium im zweiten Wärmetauscher 16 aufgenommene Wärme als Kälteleistung abgeführt werden, um beispielsweise eine Kühlanlage oder Klimaanlage zu betreiben. Es kann aber auch ein Teilstrom über einen Wärmetauscher 15 dazu verwendet werden, das Arbeitsmedium beim Verdichten zu kühlen.In a fourth step, hydraulic medium is transferred from the container 20 into the second working space 8b of the pneumatic-hydraulic converter 8 via the pump 17 returned and the working fluid from the first working chamber 8a passed through the now open valve 19a in the conduit 19 through the second heat exchanger 16 and relaxed. As indicated by the arrow 21, the heat absorbed by the working medium in the second heat exchanger 16 heat can be dissipated as a cooling capacity, for example, to operate a cooling system or air conditioning. However, it is also possible to use a partial flow via a heat exchanger 15 to cool the working medium during compression.

Fig. 2 stellt eine typische Dampfdruckkurve eines im oben beschriebenen Kreisprozess verwendbaren Arbeitsmediums dar. Es handelt sich dabei um das als Kältemediume bekannt R 134 a, also 1,1,1,2-Tetrafluorethan. Wie ersichtlich, steht die flüssige Phase mit der Gasphase bei Umgebungstemperatur bei einem Druck von etwa 6 bar im Gleichgewicht. Bei einer Temperatur von 100°C beträgt dieser Gleichgewichtsdruck etwa 40 bar. Fig. 2 represents a typical vapor pressure curve of a usable in the above-described cycle process working medium. It is this known as the refrigeration medium R 134 a, ie 1,1,1,2-tetrafluoroethane. As can be seen, the liquid phase is in equilibrium with the gas phase at ambient temperature at a pressure of about 6 bar. At a temperature of 100 ° C, this equilibrium pressure is about 40 bar.

Die vorliegende Erfindung ermöglicht es, mit einfachem apparativem Aufbau Abwärme von anderen Prozessen, wie etwa dem Betrieb einer Brennkraftmaschine mit innerer Verbrennung optimal zu nutzen.The present invention makes it possible to optimally utilize waste heat from other processes, such as the operation of an internal combustion engine, with a simple apparatus design.

Claims (18)

  1. A method for converting thermal energy into mechanical work, with said method involving the following steps that are performed in the stated sequence as a cyclic process:
    - supplying a liquid working medium to a work tank (3) from a storage reservoir (1) in which it is present in a gas phase of the working medium in equilibrium;
    - heating the working medium in the work tank (3) via a first heat exchanger (5), so that the pressure of the working medium will rise and it will evaporate partly;
    - allowing a fraction of the working medium to overflow from the work tank (3) into a pneumatic-hydraulic converter (8), thus causing a hydraulic medium to be urged from the pneumatic-hydraulic converter (8) into a working machine (9) for conversion of the hydraulic work of the hydraulic medium into mechanical work;
    - returning the working medium from the pneumatic-hydraulic converter (8) into the storage reservoir (1) by recirculating hydraulic medium into the pneumatic-hydraulic converter (8) by means of a pump;
    characterised in that the working medium is cooled by a heat exchanger (15) during the supply from the storage reservoir (1) into the work tank (3), and the working medium is guided through a second heat exchanger (16) from the pneumatic-hydraulic converter (8) during recirculation into the storage reservoir (1) in order to cool the working medium in the heat exchanger (15).
  2. A method according to claim 1, characterised in that the working medium is compressed from a first, lower pressure in the storage reservoir (1) to a second, higher pressure in the work tank (3).
  3. A method according to one of the claims 1 or 2, characterised in that the working medium is transferred in a liquid form from the storage reservoir (1) to the work tank (3).
  4. A method according to one of the claims 1 through 3, characterised in that the working medium evaporates partially while being heated in the work tank (3) and is directed in the gaseous state from the work tank (3) into the pneumatic-hydraulic converter (8).
  5. A method according to one of the claims 1 through 4, characterised in that the working medium is heated isochorically in the work tank (3).
  6. A method according to one of the claims 1 through 5, characterised in that the connection between the work tank (3) and the pneumatic-hydraulic converter (8) is interrupted by a valve (7a) while the working medium is being returned from the pneumatic-hydraulic converter (8) into the storage reservoir (1).
  7. A method according to one of the claims 1 through 6, characterised in that the hydraulic medium is maintained by a heat exchanger at a temperature that corresponds to the mean temperature of the working medium in the pneumatic-hydraulic converter (8).
  8. A method according to one of the claims 1 through 9, characterised in that the working fluid coming from the pneumatic-hydraulic converter (8) is caused to expand to an expansion pressure that is lower than the first pressure in the storage reservoir (1) and is compressed to the first pressure thereafter.
  9. A method according to one of the claims 1 through 8, characterised in that a partial flow of the cooling capacity discharged in the heat exchanger (16) is used for cooling the heat exchanger (15).
  10. An apparatus for converting thermal energy into mechanical work, comprising a storage reservoir (1) for storing working medium in a liquid-vapor equilibrium, a work tank (3) and a working machine (9) for converting hydraulic work into mechanical work;
    - with an apparatus being provided for transferring working medium between storage reservoir (1) and work tank (3);
    - with the work tank (3) being in connection with a first heat exchanger (5) in order to heat the working medium, to thus increase its pressure and to partly evaporate the same;
    - with the work tank (3) further being connected with a pneumatic-hydraulic converter (8) which transfers the pressure of the working medium onto a hydraulic medium which drives the working machine in order to generate mechanical work, and
    - with a pump (17) being provided for refilling the pneumatic-hydraulic converter (8) with hydraulic medium and a recirculation line for the working medium from the pneumatic-hydraulic converter (8) to the storage reservoir (1), and
    - with a second heat exchanger (16) being arranged between the hydraulic-pneumatic converter (8) and the storage reservoir (1) which is in connection with the heat exchanger (15).
  11. An apparatus according to claim 10, characterised in that there is provided a feed pump (2) for pumping the working medium from the storage reservoir (1) into the work tank (3).
  12. An apparatus according to one of the claims 10 through 11, characterised in that the first heat exchanger (5) is mounted in the work tank (3).
  13. An apparatus according to one of the claims 10 through 12, characterised in that the working machine (9) is configured to be a hydraulic motor.
  14. An apparatus according to one of the claims 10 through 13, characterised in that the pneumatic-hydraulic converter (8) is configured to be a bladder accumulator, the work tank (3) is arranged as an evaporator and the second heat exchanger (16) is arranged as a condenser.
  15. An apparatus according to one of the claims 10 through 14, characterised in that a feed pump is provided downstream of the second heat exchanger (16).
  16. An apparatus according to one of the claims 10 through 15, characterised in that a third heat exchanger (11) is disposed in the circuit of the hydraulic medium.
  17. An apparatus according to one of the claims 10 through 16, characterised in that there is provided an internal combustion engine having a cooling system that communicates with the work tank (3).
  18. An apparatus according to one of the claims 10 through 17, characterised in that a plurality of work tanks (3) and of pneumatic-hydraulic converters (8) are connected in parallel.
EP07718460A 2006-06-01 2007-05-24 Method and device for converting thermal energy into mechanical work Not-in-force EP2029878B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0095006A AT503734B1 (en) 2006-06-01 2006-06-01 METHOD FOR CONVERTING THERMAL ENERGY TO MECHANICAL WORK
PCT/AT2007/000249 WO2007137315A2 (en) 2006-06-01 2007-05-24 Method and device for converting thermal energy into mechanical work

Publications (2)

Publication Number Publication Date
EP2029878A2 EP2029878A2 (en) 2009-03-04
EP2029878B1 true EP2029878B1 (en) 2010-11-10

Family

ID=38777785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07718460A Not-in-force EP2029878B1 (en) 2006-06-01 2007-05-24 Method and device for converting thermal energy into mechanical work

Country Status (15)

Country Link
US (1) US20090229265A1 (en)
EP (1) EP2029878B1 (en)
JP (1) JP2009539005A (en)
KR (1) KR20090018619A (en)
CN (1) CN101484683B (en)
AT (2) AT503734B1 (en)
AU (1) AU2007266295A1 (en)
BR (1) BRPI0712746A2 (en)
CA (1) CA2652928A1 (en)
DE (1) DE502007005619D1 (en)
ES (1) ES2356091T3 (en)
MX (1) MX2008015306A (en)
RU (1) RU2429365C2 (en)
WO (1) WO2007137315A2 (en)
ZA (1) ZA200809859B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBZ20070049A1 (en) * 2007-11-23 2009-05-24 Walu Tec Di Christoph Schwienb EQUIPMENT FOR RECOVERY OF ENERGY FROM MOTOR MACHINES
CN101676525A (en) * 2008-09-17 2010-03-24 北京丸石有机肥有限公司 Method and device of transforming energy of low-temperature gas
KR20130079335A (en) * 2010-04-15 2013-07-10 게르손 머신 리미티드 Generator
US8800280B2 (en) * 2010-04-15 2014-08-12 Gershon Machine Ltd. Generator
US9540963B2 (en) 2011-04-14 2017-01-10 Gershon Machine Ltd. Generator
KR101755804B1 (en) 2015-07-07 2017-07-07 현대자동차주식회사 Recovered power transfer apparatus of waste heat recovery system
DE102016205359A1 (en) * 2016-03-31 2017-10-05 Siemens Aktiengesellschaft Method and device for compressing a fluid
EP3599440A1 (en) * 2018-07-24 2020-01-29 Siemens Aktiengesellschaft Device and method for compression of a gas
MA51537B1 (en) * 2020-10-19 2022-10-31 Byah Ahmed Converter of heat energy stored in ocean waters and in the atmosphere into electrical energy.

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900793A (en) * 1954-04-06 1959-08-25 Sulzer Ag Condensing steam heated boiler feed water heating system including a condensate operated turbine
DE2210981A1 (en) * 1971-03-19 1972-09-21 Europ Propulsion Hydraulic heat engine
US3803847A (en) * 1972-03-10 1974-04-16 Alister R Mc Energy conversion system
US4031705A (en) * 1974-11-15 1977-06-28 Berg John W Auxiliary power system and apparatus
GB1536437A (en) * 1975-08-12 1978-12-20 American Solar King Corp Conversion of thermal energy into mechanical energy
JPS55128608A (en) * 1979-03-23 1980-10-04 Ishikawajima Harima Heavy Ind Co Ltd Apparatus in use of heat accumulating material for converting thermal energy into mechanical force
JPS56135705A (en) * 1980-03-28 1981-10-23 Sumitomo Heavy Ind Ltd Energy-collecting method for taking out power continuously from steam fed intermittently
US4393653A (en) * 1980-07-16 1983-07-19 Thermal Systems Limited Reciprocating external combustion engine
US4617801A (en) * 1985-12-02 1986-10-21 Clark Robert W Jr Thermally powered engine
JPH0347403A (en) * 1989-07-13 1991-02-28 Toshiba Corp Water drop removing device for steam turbine
AUPM859994A0 (en) * 1994-10-04 1994-10-27 Thermal Energy Accumulator Products Pty Ltd Apparatus and method relating to a thermovolumetric motor
JPH09222003A (en) * 1996-02-19 1997-08-26 Isao Nihei Method for converting heat energy into power
AU1047000A (en) * 1998-11-03 2000-05-22 Francisco Moreno Meco Fluid motor with low evaporation point
JP2002089209A (en) * 2000-09-07 2002-03-27 Hideo Komatsu Gas turbine-hydraulic power combined generator
AUPS138202A0 (en) * 2002-03-27 2002-05-09 Lewellin, Richard Laurance Engine
DE102004003694A1 (en) * 2004-01-24 2005-11-24 Gerhard Stock Arrangement for converting thermal into motor energy

Also Published As

Publication number Publication date
ATE487868T1 (en) 2010-11-15
RU2008152408A (en) 2010-07-20
CA2652928A1 (en) 2007-12-06
AU2007266295A1 (en) 2007-12-06
CN101484683A (en) 2009-07-15
WO2007137315A3 (en) 2008-12-04
AT503734B1 (en) 2008-11-15
DE502007005619D1 (en) 2010-12-23
ES2356091T3 (en) 2011-04-04
WO2007137315A2 (en) 2007-12-06
AT503734A1 (en) 2007-12-15
JP2009539005A (en) 2009-11-12
US20090229265A1 (en) 2009-09-17
RU2429365C2 (en) 2011-09-20
ZA200809859B (en) 2009-11-25
CN101484683B (en) 2012-02-22
EP2029878A2 (en) 2009-03-04
KR20090018619A (en) 2009-02-20
MX2008015306A (en) 2009-03-06
BRPI0712746A2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
EP2029878B1 (en) Method and device for converting thermal energy into mechanical work
EP1806501B1 (en) Method to convert thermal energy into mechanical energy
DE102008005978B4 (en) Low-temperature power plant and method for operating a thermodynamic cycle
WO2017064163A1 (en) Generation of process steam by means of a high-temperature heat pump
DE102013009351B3 (en) Plant for recovery of energy from heat of e.g. waste incinerator, has valves which connect/disconnect vaporizer units to control flow of working fluid, to take heat from working fluid and to pass heated working fluid to workspace
EP3111058B1 (en) Method and apparatus for storing energy in alkaline solution
EP1759116B1 (en) Heat engine
WO2021228330A1 (en) Heat engine for converting heat energy into mechanical and/or electrical work and method for converting heat energy into mechanical and/or electrical work
EP2415976B1 (en) Thermal engine for converting thermal energy into mechanical energy and method for operating of such a thermal engine
DE102010047520A1 (en) Method for recovering energy from exhaust stream of e.g. petrol engine for motor car, involves circulating working medium in waste heat recovery device formed as closed joule circuit, where pressure level of medium is varied in circuit
EP0010254B1 (en) Process for generating electric power in a counter pressure steam system
EP1391588A1 (en) method and apparatus for generating of force and heat from waste heat or from fuels
AT511823B1 (en) METHOD AND DEVICE FOR GENERATING COLD AND / OR USE HEAT AND MECHANICAL OR BZW. ELECTRICAL ENERGY BY MEANS OF AN ABSORPTION CIRCUIT
WO2011000548A2 (en) Method for operating a power plant using a gas turbine system
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
EP1404948A1 (en) Assembly of gas expansion elements and a method for operating said assembly
DE102007062342B4 (en) Method and arrangement for increasing the temperature level in the circuit of solar thermal systems or combined heat and power plants
DE1906144A1 (en) Thermal power plant for the utilization of the heat generated in a nuclear reactor, with a combined gas turbine-steam turbine plant
WO2004113802A1 (en) Container/heat exchanger for compact sorption refrigeration installation and heat pumps and sorption refrigeration installations with said container/heat exchanger
DE102013001478B4 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself
DE102022128628A1 (en) System and method for energy conversion and energy storage
DE10247387A1 (en) Power station has turbine or piston engine, and pressure build-up devices with heat exchangers filled with carbon dioxide for converting thermal to electrical energy with generator
DE102009031150A1 (en) Solar thermal fluid energy machine for use in e.g. solar steam power plant for converting heat energy into mechanical energy, has working medium with boiling point less than that of water under operating conditions
DE102016014731A1 (en) Waste heat recovery device
EP4379875A1 (en) Device and method for controlling the temperature of a hydrogen-operated vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081229

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090615

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007005619

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2356091

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110404

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

BERE Be: lapsed

Owner name: INTERNATIONAL INNOVATIONS LTD

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005619

Country of ref document: DE

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20120509

Year of fee payment: 6

Ref country code: CH

Payment date: 20120515

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120525

Year of fee payment: 6

Ref country code: GB

Payment date: 20120530

Year of fee payment: 6

Ref country code: FR

Payment date: 20120619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120529

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120521

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110524

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 487868

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130525

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130524

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130524

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140606

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007005619

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201