EP1404948A1 - Assembly of gas expansion elements and a method for operating said assembly - Google Patents

Assembly of gas expansion elements and a method for operating said assembly

Info

Publication number
EP1404948A1
EP1404948A1 EP02754307A EP02754307A EP1404948A1 EP 1404948 A1 EP1404948 A1 EP 1404948A1 EP 02754307 A EP02754307 A EP 02754307A EP 02754307 A EP02754307 A EP 02754307A EP 1404948 A1 EP1404948 A1 EP 1404948A1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
gas mixture
pressure vessel
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02754307A
Other languages
German (de)
French (fr)
Other versions
EP1404948B1 (en
Inventor
Gerhard Stock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1404948A1 publication Critical patent/EP1404948A1/en
Application granted granted Critical
Publication of EP1404948B1 publication Critical patent/EP1404948B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/005Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion

Definitions

  • the invention relates to an arrangement of gas expansion elements for a device for converting thermal into motor energy, in particular for a hot water engine, which comprises two closed pressure vessels filled with a gas or gas mixture, which are effectively connected to the device and an upper injection opening for warm - And have cold water, and a method for operating the arrangement.
  • DE 197 19 190 C2 discloses an arrangement for converting thermal into electrical energy, which consists of a working circuit with a working fluid for driving a flow machine and a multiplicity of heat exchangers alternately flowed through by a cold and warm medium.
  • an expansion element which expands and contracts depending on the temperature of the medium, the temperature-related expansions and contractions of which are fed to the working circuit via a buffer store.
  • each heat exchanger is assigned a buffer memory designed as a spring, with each spring being connected to the piston of a pressure cylinder, the work space of which is connected to a working oil circuit via controllable valves via suction and pressure lines, the e ne turbine with a generator.
  • This arrangement has and comprises a relatively complex structure, in particular due to the buffer stores designed as springs the disadvantages of a heat exchanger explained above.
  • WO 00/53898 describes a gas expansion element for an arrangement for converting thermal energy into motor energy, in particular for a hot water engine, consisting of a closed pressure container filled with a gas or gas mixture, which is effectively connected to the arrangement via a displaceable piston , known.
  • the pressure vessel has an upper injection opening for hot and cold water and a lower water drain opening.
  • a hot water engine comprises two groups of pressure vessels with associated liquid piston pumps, which act on a working cycle of a water turbine. During a first cycle, a warm, expanding gas or gas mixture is present in the first pressure container and the second pressure container contains a cold, contracting gas or gas mixture.
  • the gas or gas mixture of the first pressure vessel is cooled by injecting cold water and the gas or gas mixture of the second pressure vessel is heated by injecting hot water, so that the gas volumes change accordingly.
  • the entire gas mixture still containing hot water is rinsed out with cold water in the first pressure vessel until the temperature in this pressure vessel is reduced to an initial level. The remaining thermal energy is lost.
  • the object is achieved in such a way that a short-circuit pipeline with at least one controllable valve for pressure equalization between the pressure vessels after the work of the gas or gas mixture has been provided between the two pressure vessels.
  • the valve is opened by appropriate expansion or contracting and the associated driving of a displaceable piston of the hot water engine, the piston being able to be designed as a liquid piston pump. Since the gas mixture heated in a first cycle is cooled in a subsequent second cycle, it is necessary (to lower the temperature of the gas mixture of this container below the equilibrium temperature, the remaining heat of the gas mixture being used to heat the cooled and now to heating gas mixture is used. The residual heat is therefore not lost unused, which is why a relatively large output is achieved with a relatively low technical outlay. The residual heat also does not get into the working circuit of the hot water motor, from which it had to be extracted.
  • the short-circuit pipeline is arranged in the upper region of the pressure vessel.
  • this area of the pressure vessel in which there is a flange or a cover, there is neither hot nor cold water, which is why the gas mixture can get into the short-circuit pipeline undisturbed through the open valve.
  • the gas mixture with the highest temperature is approximately in this range.
  • a controllable valve is preferably arranged in the area in the short-circuit pipeline directly adjacent to the associated pressure vessel.
  • the short-circuit pipeline with the valves is expediently thermally insulated.
  • the object is achieved according to the invention in a method for operating an arrangement according to claim 1, in which hot and cold water is alternately injected into the pressure vessels, in that after the transfer of the work of the gas or gas mixture one of the pressure vessels has opened the gas or gas mixture of the controllable valve via the short-circuit pipeline into the other pressure vessel.
  • the valve in the short-circuit pipeline is opened for pressure equalization between the two pressure vessels and by the prevailing one Convection of the warm gas mixture creates an equalizing temperature between the two pressure vessels.
  • part of the gas or gas mixture is passed into the other pressure vessel. Since an economically sensible working phase of the gas mixture does not correspond to the entire expansion time of the gas mixture, by opening the valve, the work phase, i.e. the usable expansion work of the gas mixture, is ended and its residual energy is used to increase the pressure and to heat the gas mixture of the other pressure vessel.
  • Two controllable valves of the short-circuit pipeline are expediently opened and closed almost simultaneously.
  • the pressure equalization which results in a heat flow from one to the other pressure vessel, can thus be controlled in a targeted manner and the dead space in the short-circuit pipeline is minimized.
  • Fig.3 e ne representation of a pressure-time diagram to represent the cycle of the arrangement.
  • the arrangement comprises a storage container 1 for water with a full level indicator 2, which is connected to a pipe 3 Cooling 4 and a heating device 5 is connected.
  • a pipe 6 leads from the cooling device 4 and the heating device 5 to a controlled injection opening 7, 8 of a pressure container 9, 10.
  • the closed pressure containers 9, 10 are filled with a gas mixture.
  • a short-circuit pipeline 11 is arranged between the two pressure vessels 9, 10 and has a controllable valve 12, 13 in the region of each pressure vessel 9, 10.
  • At the lower end of each pressure vessel 9, 10 there is an outlet opening 14, 15 which is coupled to a working circuit 16 which comprises two liquid piston pumps 17, 18 of a hot water engine and a turbine 19 with generator.
  • a pump 21 is inserted in the working circuit 16 connected to the storage container 1 via a line 20 m.
  • hot water is prepared in the heating device 5, which reaches the first pressure vessel 9 via the first injection opening 7.
  • the gas mixture expands and does work via a displaceable piston 22 of the first liquid piston pump 17, which is supplied to the turbine 19 for converting thermal energy via the working circuit 16.
  • the water fails, which is drained off via the associated outlet opening 14.
  • cold water is prepared in the cow device 4 and reaches the second pressure vessel 10 via the second injection opening 8.
  • the gas mixture contracts and also performs via the displaceable one Piston 22 of the second liquid piston pump 18 work.
  • the two valves 12, 13 of the short-circuit pipeline 11 are opened and, due to the pressure compensation, a temperature compensation up to a compensation temperature between the first pressure container 9 and the second pressure container 10 is effected.
  • hot water is sprayed into the second pressure vessel 10 and cold water into the first pressure vessel 9. Because the gas mixtures of both pressure vessels 9, 10 are at the compensation temperature, unnecessary heating or cooling of the respective gas mixture is not necessary, as a result of which the arrangement has a relatively high output.
  • the cycle of a conventional arrangement is schematically compared to that of an arrangement according to the invention, the pressure-temperature curves of a conventional arrangement being shown with solid lines and those of the arrangement according to the invention with dashed lines. Accordingly, the work W ⁇ performed by a conventional arrangement is smaller than the work W performed by an arrangement according to the invention.
  • the pressure-time diagram (pt) initially shows a conventional course of the process, in which the pressure P'max of the first pressure vessel 8 drops to the pressure p 'mm, cold water being injected at the time t e and the gas mixture does work in the period ⁇ t a .
  • the pressure of the second pressure vessel 10 increases from the pressure p 'm m to the pressure p' ma ⁇ , with hot water at the time t e is injected into the second pressure vessel 10 and the gas mixture n for the time period ⁇ t a also does work for driving the liquid piston pump 14. No work is done during the time period ⁇ ti and the residual pressure in the pressure vessels 9, 10 is lost to the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Toys (AREA)
  • Transformer Cooling (AREA)

Abstract

An assembly of gas expansion elements for a device for converting thermal energy into motor energy in particular for a hot-water motor, wherein the assembly includes two closed pressure containers, both of which are filled with a gas or gas mixture, and both of which have an upper injection opening for hot and cold water. The assembly is provided with a short-circuit pipe between the two pressure containers and the short circuit pipe includes at least one controllable valve for equalizing the closed pressure containers, after the gas or gas mixture has performed its work.

Description

Anordnung von Gasausdehnungselementen und Verfahren zum Betreiben der Anordnung. Arrangement of gas expansion elements and method for operating the arrangement.
Beschreibungdescription
Die Erfindung bezieht sich auf eine Anordnung von Gasausdehnungselementen für eine Einrichtung zum Umwandeln von thermischer in motorische Energie, insbesondere für einen Warmwassermotor, die zwei mit einem Gas oder Gasgemisch gefüllte geschlossene Druckbehälter umfasst, die mit der Einrichtung wirksam verbunden sind und eine obere Einspritzöffnung für Warm- und Kaltwasser aufweisen, und ein Verfahren zum Betreiben der Anordnung.The invention relates to an arrangement of gas expansion elements for a device for converting thermal into motor energy, in particular for a hot water engine, which comprises two closed pressure vessels filled with a gas or gas mixture, which are effectively connected to the device and an upper injection opening for warm - And have cold water, and a method for operating the arrangement.
Gase wandeln relativ viel Wärme bei Erhitzung und Ausdehnung in Arbeit um, wobei in schnellen Prozessen, wie etwa dem Stirlingprozess große Einbußen durch Dissipation, ungünstige Kolbensteuerung, Wärme- und Pendelverluste, Totraumeffekte, großen Regeneratorwiderstand und hohe Geschwindigkeiten entstehen.Gases convert a relatively large amount of heat during heating and expansion into work, with rapid processes, such as the Stirling process, causing major losses due to dissipation, unfavorable piston control, heat and pendulum losses, dead space effects, large regenerator resistance and high speeds.
Aus der US-A-4 283 915 ist eine Anordnung zum Umwandeln von thermischer in motorische Energie bekannt, die jeweils eine Einspeisung für Warmwasser und eine für Kaltwasser umfasst, wobei eine bestimmte Temperaturdifferenz zwischen dem Warm- und dem Kaltwasser herrscht. Das Warm- und das Kaltwasser werden alternierend durch Rohre eines Wärmetauschers geleitet, um e ne Arbeitsflussigkeit zu expandieren und zu kon- trakt eren. Der Arbeitszyklus w rd oberhalb eines Siedepunktes der Arbeitsflussigkeit durchgeführt. Mittels Rückschlagventilen w rd ein relativ hoher Druck zur Betätigung der Anordnung sichergestellt. Hierbei erweist sich die Verwendung des Wärmetauschers als nachteilig, da ein solcher Rohr- Warmetauscher bei einem großen technischen Aufwand lediglich einen stark begrenzten Wirkungsgrad aufweist und in Abhängigkeit von der Beschaffenheit der ihn durch- und umströmenden Medien relativ störanfällig ist.From US-A-4 283 915 an arrangement for converting thermal into motor energy is known, each comprising a feed for hot water and one for cold water, a certain temperature difference between the hot and the cold water prevails. The hot and cold water are alternately passed through pipes of a heat exchanger in order to expand and contract a work flow. The working cycle is carried out above a boiling point of the working fluid. A relatively high pressure for actuating the arrangement is ensured by means of check valves. Here, the use of the heat exchanger proves to be disadvantageous, since such a tube heat exchanger only has a very limited degree of efficiency with a great technical outlay and is relatively susceptible to failure depending on the nature of the media flowing through and around it.
Darüber hinaus offenbart die DE 197 19 190 C2 eine Anordnung zum Umwandeln von thermischer in elektrische Energie, die aus einem Arbeitskreislauf mit einem Arbeitsfluid zum Antrieb einer Stromungsmaschine und aus einer Vielzahl von abwechselnd von einem kalten und warmen Medium durchströmten Wärmetauschern besteht. In den Wärmetauschern ist jeweils ein sich in Abhängigkeit von der Temperatur des Mediums ausdehnendes und zusammenziehendes Ausdehnungselement angeordnet, dessen temperaturbedingten Ausdehnungen und Kontraktionen über einen Puffer-Speicher dem Arbeits-Kreislauf zugeführt werden. Zur Speicherung einer Kraft ist jedem Wärmetauscher ein als Feder ausgebildeter Puffer-Speicher zugeordnet, wobei jede Feder mit dem Kolben eines Druckzylinders verbunden ist, dessen Arbeitsraum jeweils über steuerbare Ventile über Saug- und Druckleitungen mit einem Arbeits-Olkreislauf verbunden ist, der e ne Turbine m t einem Generator antreibt. Diese Anordnung weist einen relativ komplexen Aufbau, insbesondere durch die als Federn ausgeführten Puffer-Speicher, auf und umfasst die zuvor erläuterten Nachteile eines Wärmetauschers.In addition, DE 197 19 190 C2 discloses an arrangement for converting thermal into electrical energy, which consists of a working circuit with a working fluid for driving a flow machine and a multiplicity of heat exchangers alternately flowed through by a cold and warm medium. Arranged in the heat exchangers is an expansion element which expands and contracts depending on the temperature of the medium, the temperature-related expansions and contractions of which are fed to the working circuit via a buffer store. To store a force, each heat exchanger is assigned a buffer memory designed as a spring, with each spring being connected to the piston of a pressure cylinder, the work space of which is connected to a working oil circuit via controllable valves via suction and pressure lines, the e ne turbine with a generator. This arrangement has and comprises a relatively complex structure, in particular due to the buffer stores designed as springs the disadvantages of a heat exchanger explained above.
Im Weiteren ist aus der WO 00/53898 ein Gasausdehnungselement für eine Anordnung zum Umwandeln von thermischer in motorische Energie, insbesondere für einen Warmwassermotor, bestehend aus einem mit einem Gas oder Gasgemisch gefüllten geschlossenen Druckbehalter, der über einen verschiebbaren Kolben mit der Anordnung wirksam verbunden ist, bekannt. Der Druckbehalter weist eine obere Emspritzoffnung für Heiß- und Kaltwasser und eine untere Wasserablaufoffnung auf. Ein Warm- wassermotor umfasst jeweils Zweiergruppen von Druckbehaltern mit zugeordneten Flussigkolbenpumpen, die einen Arbeitskre s- lauf einer Wasserturbine beaufschlagen. Wahrend eines ersten Kreisprozesses ist in dem ersten Druckbehalter ein warmes, expandierendes Gas oder Gasgemisch vorhanden und der zweite Druckbehalter enthalt ein kaltes, kontraktierendes Gas oder Gasgemisch. Bei einem folgenden zweiten Kreisprozess wird das Gas oder Gasgemisch des ersten Druckbehalters durch Einspritzen von kaltem Wasser abgekühlt und das Gas oder Gasgemisch des zweiten Druckbehalters durch Einspritzen von Heißwasser erwärmt, damit sich die Gasvolumina entsprechend andern. Somit wird beispielsweise das gesamte noch Heißwasser enthaltende Gasgemisch in dem ersten Druckbehalter mit kaltem Wasser ausgespult, bis die Temperatur in diesem Druckbehalter auf eine Ausgangshohe zurückgeführt ist. Hierbei geht die noch vorhandene Wärmeenergie verloren.Furthermore, WO 00/53898 describes a gas expansion element for an arrangement for converting thermal energy into motor energy, in particular for a hot water engine, consisting of a closed pressure container filled with a gas or gas mixture, which is effectively connected to the arrangement via a displaceable piston , known. The pressure vessel has an upper injection opening for hot and cold water and a lower water drain opening. A hot water engine comprises two groups of pressure vessels with associated liquid piston pumps, which act on a working cycle of a water turbine. During a first cycle, a warm, expanding gas or gas mixture is present in the first pressure container and the second pressure container contains a cold, contracting gas or gas mixture. In a subsequent second cycle, the gas or gas mixture of the first pressure vessel is cooled by injecting cold water and the gas or gas mixture of the second pressure vessel is heated by injecting hot water, so that the gas volumes change accordingly. Thus, for example, the entire gas mixture still containing hot water is rinsed out with cold water in the first pressure vessel until the temperature in this pressure vessel is reduced to an initial level. The remaining thermal energy is lost.
Es ist Aufgabe der Erfindung, eine Anordnung von Gasausdehnungselementen der eingangs genannten Art sowie ein Verfahren zum Betreiben der Anordnung zu schaffen, mit dem sich bei ge¬ ringem technischen Aufwand eine relativ große Leistung erzie- len lasst .It is an object of the invention to provide an array of gas expansion elements of the aforementioned type and a method for operating the arrangement, to create, with which achieve on relatively large power at ge ¬ ringem technical outlay let's.
Erfmdungsgemaß wird die Aufgabe vorπchtungsgemaß dadurch gelost, dass zwischen den beiden Druckbehaltern eine Kurz- schlussrohrleitung mit mindestens einem steuerbaren Ventil zum Druckausgleich zwischen den Druckbehaltern nach dem Verrichten der Arbeit des Gases bzw. Gasgemischs vorgesehen ist.According to the invention, the object is achieved in such a way that a short-circuit pipeline with at least one controllable valve for pressure equalization between the pressure vessels after the work of the gas or gas mixture has been provided between the two pressure vessels.
Am Ende der Arbeitsphase herrscht zwischen den beiden Druckbehaltern eine Druckdifferenz. Aufgrund der vorhandenen Druckdifferenz zwischen dem warmen Gasgemisch des einen Druckbehalters und dem kalten Gasgemisch des anderen Druckbehalters findet nach dem Offnen des gesteuerten Ventils ein Druckausgleich zwischen den beiden Druckbehaltern statt, bei dem aufgrund der Warmestromung die m dem einen Druckbehalter noch vorhandene Wärmeenergie zur Erwärmung des Gasgemisches des anderen Druckbehalters bis zur Ausgleichstemperatur ausgenutzt wird. Gleichzeitig steigt die Gasmenge m dem Druckbehalter mit dem expandierenden Gas bzw. Gasgemisch, womit eine Steigerung der Druckdifferenz zwischen den beiden Druckbehaltern und damit eine eistungserhohung einhergeht. Das Ventil wird nach dem Verrichten der Arbeit des Gasgemischs durch entsprechendes Expandieren bzw. Kontraktieren und dem damit verbundenen Antreiben eines verschiebbaren Kolbens des Warmwassermotors geöffnet, wobei der Kolben als Flussigkol- benpumpe ausgebildet sein kann. Da das in einem ersten Kreisprozess erwärmte Gasgemisch in einem darauffolgenden zweiten Kreisprozess abgekühlt wird, st es erforderlιch( die Temperatur des Gasgemischs dieses Behalters unterhalb der Ausgleichstemperatur abzusenken, wobei d e vorhandene Restwarme des Gasgemischs zur Erwärmung des abgekühlten und nunmehr zu erwärmenden Gasgemischs verwendet wird. Die Restwarme geht somit nicht ungenutzt verloren, weshalb mit einem relativ geringen technischen Aufwand eine relativ große Leistung erzielt wird. Die Restwarme gelangt auch nicht in den Arbeits- kreislauf des Warmwassermotors, dem sie wieder entzogen werden musste. Darüber hinaus befindet sich in dem jeweils zu erwärmenden Druckbehalter eine größere Menge des Gasgemischs, das letztendlich die Arbeit zum Antrieb des Warmwassermotors durch seine Expansion verrichtet, und gleichzeitig ist die Menge des abzukühlenden Gasgemischs in dem anderen Druckbehalter geringer und die Absenkung des Ausgangsdruckes gegenüber einer konventionellen Anordnung großer, was zu einer Verschiebung eines entsprechenden p-V Diagramms in die gewünschte Richtung fuhrt.At the end of the work phase, there is a pressure difference between the two pressure vessels. Due to the existing pressure difference between the warm gas mixture of one pressure vessel and the cold gas mixture of the other pressure vessel, a pressure equalization takes place between the two pressure vessels after the controlled valve is opened, in which, due to the heat flow, the thermal energy still available to one pressure vessel for heating the gas mixture of the other pressure vessel is used up to the compensation temperature. At the same time, the amount of gas in the pressure vessel increases with the expanding gas or gas mixture, which is accompanied by an increase in the pressure difference between the two pressure vessels and thus an increase in output. After the work of the gas mixture has been carried out, the valve is opened by appropriate expansion or contracting and the associated driving of a displaceable piston of the hot water engine, the piston being able to be designed as a liquid piston pump. Since the gas mixture heated in a first cycle is cooled in a subsequent second cycle, it is necessary (to lower the temperature of the gas mixture of this container below the equilibrium temperature, the remaining heat of the gas mixture being used to heat the cooled and now to heating gas mixture is used. The residual heat is therefore not lost unused, which is why a relatively large output is achieved with a relatively low technical outlay. The residual heat also does not get into the working circuit of the hot water motor, from which it had to be extracted. In addition, there is a larger amount of the gas mixture in the respective pressure vessel to be heated, which ultimately does the work for driving the hot water motor through its expansion, and at the same time the amount of the gas mixture to be cooled is less in the other pressure vessel and the outlet pressure is lower than that of a conventional one Large arrangement, which leads to a shift of a corresponding pV diagram in the desired direction.
Nach einer vorteilhaften Ausgestaltung der Erfindung ist die Kurzschlussrohrleitung im oberen Bereich der Druckbehalter angeordnet. In diesem Bereich der Druckbehalter, in dem sich ein Flansch oder ein Deckel befindet, ist weder Warm- noch Kaltwasser vorhanden, weshalb das Gasgemisch ungestört durch das geöffnete Ventil in die Kurzschlussrohrleitung gelangen kann. Im Weiteren befindet sich das Gasgemisch mit der höchsten Temperatur annähernd in diesem Bereich.According to an advantageous embodiment of the invention, the short-circuit pipeline is arranged in the upper region of the pressure vessel. In this area of the pressure vessel, in which there is a flange or a cover, there is neither hot nor cold water, which is why the gas mixture can get into the short-circuit pipeline undisturbed through the open valve. Furthermore, the gas mixture with the highest temperature is approximately in this range.
Um große Totraume in den Druckbehaltern zu vermeiden, ist bevorzugt jeweils ein steuerbares Ventil im unmittelbar an den zugeordneten Druckbehalter anschließenden Bereich in der Kurzschlussrohrleitung angeordnet .In order to avoid large dead spaces in the pressure vessels, a controllable valve is preferably arranged in the area in the short-circuit pipeline directly adjacent to the associated pressure vessel.
Zur Reduzierung der Warmeverluste ist zweckmaßigerweise die Kurzschlussrohrleitung mit den Ventilen warmeisoliert . Die Aufgabe wird erfmdungsgemaß be einem Verfahren zum Betreiben einer Anordnung nach Anspruch 1, bei der in die Druckbehalter abwechselnd Warm- und Kaltwasser eingespritzt wird, dadurch gelost, dass nach der Übertragung der Arbeit des Gases oder Gasgemischs eines der Druckbehalter das Gas oder Gasgemisch durch Offnen des steuerbaren Ventils über die Kurzschlussrohrleitung in den jeweils anderen Druckbehalter geleitet w rd.To reduce the heat losses, the short-circuit pipeline with the valves is expediently thermally insulated. The object is achieved according to the invention in a method for operating an arrangement according to claim 1, in which hot and cold water is alternately injected into the pressure vessels, in that after the transfer of the work of the gas or gas mixture one of the pressure vessels has opened the gas or gas mixture of the controllable valve via the short-circuit pipeline into the other pressure vessel.
Nachdem das Gasgemisch aufgrund seiner durch Warme- oder Kal- tebeaufschlagung erfolgenden Expansion oder Kontraktion den verschiebbaren, als Flussigkolbenpumpe ausgebildeten Kolben des Warmwassermotors in e ne vorbestimmte Lage gebracht hat, wird das Ventil in der Kurzschlussrohrleitung zum Druckausgleich zwischen den beiden Druckbehaltern geöffnet und durch die herrschende Konvektion des warmen Gasgemischs stellt sich zwischen beiden Druckbehaltern eine Ausgleichstemperatur ein. Damit ergibt sich eine wesentliche Steigerung der Leistung der nach dem der erfmdungsgemaßen Verfahren betriebenen Anordnung, da der vorhandene Restdruck und die vorhandene Rest- warmeenergie des Gasgemischs des einen Druckbehalters zur Druckerhohung und zur Erwärmung des Gasgemischs des anderen Druckbehalters genutzt wird.After the gas mixture has brought the displaceable piston, designed as a liquid piston pump, of the hot water engine into a predetermined position due to its expansion or contraction due to the application of heat or cold, the valve in the short-circuit pipeline is opened for pressure equalization between the two pressure vessels and by the prevailing one Convection of the warm gas mixture creates an equalizing temperature between the two pressure vessels. This results in a significant increase in the performance of the arrangement operated according to the method according to the invention, since the existing residual pressure and the existing residual heat energy of the gas mixture of one pressure vessel is used to increase the pressure and to heat the gas mixture of the other pressure vessel.
Nach einer vorteilhaften Ausgestaltung der Erfindung wird nach der Übertragung der nutzbaren Expansionsarbeit des Gases oder Gasgemischs eines Druckbehalters ein Teil des Gases oder Gasgemischs in den anderen Druckbehalter geleitet. Da eine wirtschaftlich sinnvolle Arbeitsphase des Gasgemischs nicht der gesamten Expansionsdauer des Gasgemischs entspricht, wird durch das Offnen des Ventils die Arbeitsphase, also die nutzbare Expansionsarbeit des Gasgemischs, beendet und dessen Restenergie zur Druckerhohung und zur Erwärmung des Gasgemischs des anderen Druckbehalters verwendet.According to an advantageous embodiment of the invention, after the usable expansion work of the gas or gas mixture of one pressure vessel has been transferred, part of the gas or gas mixture is passed into the other pressure vessel. Since an economically sensible working phase of the gas mixture does not correspond to the entire expansion time of the gas mixture, by opening the valve, the work phase, i.e. the usable expansion work of the gas mixture, is ended and its residual energy is used to increase the pressure and to heat the gas mixture of the other pressure vessel.
Zweckmaßigerweise werden zwei steuerbare Ventile der Kurzschlussrohrleitung annähernd gleichzeitig geöffnet und geschlossen. Somit kann der Druckausgleich, der eine Warmestro- mung von dem einen zu dem anderen Druckbehalter zur Folge hat, gezielt gesteuert werden und der Totraum in der Kurzschlussrohrleitung ist minimiert.Two controllable valves of the short-circuit pipeline are expediently opened and closed almost simultaneously. The pressure equalization, which results in a heat flow from one to the other pressure vessel, can thus be controlled in a targeted manner and the dead space in the short-circuit pipeline is minimized.
Es versteht sich, dass d e vorstehend genannten und nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It goes without saying that the features mentioned above and still to be explained below can be used not only in the respectively specified combination but also in other combinations without departing from the scope of the present invention.
Die Erfindung wird im folgenden anhand eines Ausfuhrungsbei- spieles unter Bezugnahme auf die zugehörigen Zeichnungen naher erläutert. Es zeigen:The invention is explained in more detail below on the basis of an exemplary embodiment with reference to the associated drawings. Show it:
Fig.l eine schematische Darstellung einer erfmdungsgemaßen Anordnung,1 shows a schematic illustration of an arrangement according to the invention,
Fig.2 eine Darstellung eines Diagramms zur Repräsentation eines Kreisprozesses der Anordnung und2 shows a diagram for representing a cycle of the arrangement and
Fig.3 e ne Darstellung eines Druck-Zeit-Diagramms zur Repräsentation des Kreisprozesses der Anordnung.Fig.3 e ne representation of a pressure-time diagram to represent the cycle of the arrangement.
Die Anordnung umfasst einen Vorratsbehalter 1 für Wasser mit einer Fullstandsanzeige 2, der über Rohrleitungen 3 mit einer Kühl- 4 und einer Heizeinrichtung 5 verbunden ist. Von der Kühl- 4 und der Heizeinrichtung 5 fuhrt jeweils ein Rohr 6 zu einer gesteuerten Emspritzoffnung 7, 8 eines Druckbehalters 9, 10. Die geschlossenen Druckbehalter 9, 10 sind mit einem Gasgemisch gefüllt. Zwischen den beiden Druckbehaltern 9, 10 ist eine Kurzschlussrohrleitung 11 angeordnet, die im Bereich jedes Druckbehalters 9, 10 ein steuerbares Ventil 12, 13 aufweist. Am unteren Ende jedes Druckbehalters 9, 10 ist eine Auslaufoffnung 14, 15 vorgesehen, die mit einem Arbeitskreislauf 16, der zwei Flussigkolbenpumpen 17, 18 eines Warmwas- sermotors und eine Turbine 19 mit Generator umfasst, gekoppelt ist. Im Weiteren ist in den mit dem Vorratsbehalter 1 über eine Leitung 20 m Verbindung stehenden Arbeitskreislauf 16 eine Pumpe 21 eingesetzt.The arrangement comprises a storage container 1 for water with a full level indicator 2, which is connected to a pipe 3 Cooling 4 and a heating device 5 is connected. A pipe 6 leads from the cooling device 4 and the heating device 5 to a controlled injection opening 7, 8 of a pressure container 9, 10. The closed pressure containers 9, 10 are filled with a gas mixture. A short-circuit pipeline 11 is arranged between the two pressure vessels 9, 10 and has a controllable valve 12, 13 in the region of each pressure vessel 9, 10. At the lower end of each pressure vessel 9, 10 there is an outlet opening 14, 15 which is coupled to a working circuit 16 which comprises two liquid piston pumps 17, 18 of a hot water engine and a turbine 19 with generator. Furthermore, a pump 21 is inserted in the working circuit 16 connected to the storage container 1 via a line 20 m.
Zum Betreiben der Anordnung wird in der Heizeinrichtung 5 Warmwasser aufbereitet, das über die erste Emspritzoffnung 7 in den ersten Druckbehalter 9 gelangt. Beim E nspruhen des Warmwassers in den ersten Druckbehalter 9 expandiert das Gasgemisch und verrichtet über einen verschiebbaren Kolben 22 der ersten Flussigkolbenpumpe 17 Arbeit, die über den Arbeitskreislauf 16 der Turbine 19 zur Umwandlung thermischer Energie zugeführt wird. Nach dem Druckanstieg und dem nach der Kolbendisplazierung der ersten Flussigkolbenpumpe 17 entsprechenden Druckabfall im ersten Druckbehalter 9 fallt das Wasser aus, das über die zugeordneten Auslaufoffnung 14 abgelassen w rd. Gleichzeitig wird in der Kuhleinrichtung 4 Kaltwasser aufbereitet, das über die zweite Emspritzoffnung 8 in den zweiten Druckbehalter 10 gelangt. Beim Einspruhen des Kaltwassers in den zweiten Druckbehalter 10 kontraktiert das Gasgemisch und verrichtet ebenfalls über den verschiebbaren Kolben 22 der zweiten Flussigkolbenpumpe 18 Arbeit. Nach der Übertragung der nutzbaren Expansions- bzw. Kontraktionsarbeit des Gasgemischs werden die beiden Ventile 12, 13 der Kurzschlussrohrleitung 11 geöffnet und aufgrund des Druckausgleichs wird ein Temperaturausgleich bis zu einer Ausgleichstemperatur zwischen dem ersten Druckbehälter 9 und dem zweiten Druckbehälter 10 bewirkt. Anschließend wird in den zweiten Druckbehalter 10 Warmwasser und in den ersten Druckbehalter 9 Kaltwasser eingespruht. Dadurch, dass sich die Gasgemische beider Druckbehalter 9, 10 auf der Ausgleichstemperatur befinden, ist ein unnötiges Erwarmen bzw. Kuhlen des jeweiligen Gasgemischs nicht erforderlich, wodurch die Anordnung eine relativ große Leistung aufweist.To operate the arrangement, hot water is prepared in the heating device 5, which reaches the first pressure vessel 9 via the first injection opening 7. When the hot water is sprayed into the first pressure vessel 9, the gas mixture expands and does work via a displaceable piston 22 of the first liquid piston pump 17, which is supplied to the turbine 19 for converting thermal energy via the working circuit 16. After the pressure rises and the pressure drop in the first pressure vessel 9 corresponding to the piston displacement of the first liquid piston pump 17, the water fails, which is drained off via the associated outlet opening 14. At the same time, cold water is prepared in the cow device 4 and reaches the second pressure vessel 10 via the second injection opening 8. When the cold water is sprayed into the second pressure vessel 10, the gas mixture contracts and also performs via the displaceable one Piston 22 of the second liquid piston pump 18 work. After the usable expansion or contraction work of the gas mixture has been transferred, the two valves 12, 13 of the short-circuit pipeline 11 are opened and, due to the pressure compensation, a temperature compensation up to a compensation temperature between the first pressure container 9 and the second pressure container 10 is effected. Subsequently, hot water is sprayed into the second pressure vessel 10 and cold water into the first pressure vessel 9. Because the gas mixtures of both pressure vessels 9, 10 are at the compensation temperature, unnecessary heating or cooling of the respective gas mixture is not necessary, as a result of which the arrangement has a relatively high output.
Im p-V-Diagramm nach Fig. 2 ist der Kreisprozess einer konventionellen Anordnung dem einer erfindungsgemaßen Anordnung beispielhaft schematisch gegenübergestellt, wobei die Druck- Temperaturkurven einer konventionellen Anordnung mit durchgezogenen Linien und die der erfindungsgemaßen Anordnung mit gestrichelten Linien dargestellt sind. Demnach ist die durch eine konventionelle Anordnung geleistete Arbeit WΛ kleiner als die durch eine erf ndungsgemäße Anordnung geleistete Arbeit W.In the pV diagram according to FIG. 2, the cycle of a conventional arrangement is schematically compared to that of an arrangement according to the invention, the pressure-temperature curves of a conventional arrangement being shown with solid lines and those of the arrangement according to the invention with dashed lines. Accordingly, the work W Λ performed by a conventional arrangement is smaller than the work W performed by an arrangement according to the invention.
Das Druck-Zeit-Diagramm (p-t) gemäß Fig. 3 zeigt anfangs einen konventionellen Verlauf des Prozesses, bei dem der Druck P'max des ersten Druckbehälters 8 bis auf den Druck p' mm abfällt, wobei zum Zeitpunkt te kaltes Wasser eingespritzt wird und das Gasgemisch in der Zeitspanne Δta Arbeit verrichtet. Der Druck des zweiten Druckbehälters 10 steigt von dem Druck p' mm auf den Druck p'maχ an, wobei zum Zeitpunkt te Heißwasser in den zweiten Druckbehalter 10 eingespritzt wird und das Gasgemisch n der Zeitspanne Δta ebenfalls Arbeit zum Antreiben der Flussigkolbenpumpe 14 verrichtet. Wahrend der Zeitspanne Δti wird keine Arbeit verrichtet und der Restdruck in den Druckbehaltern 9, 10 geht für das System verloren. Nach der Kopplung des ersten Druckbehalters 9 mit dem zweiten Druckbehalter 10 mittels der Kurzschlussrohrleitung 11 werden zum Zeitpunkt tκ die Ventile 12, 13 geöffnet und es findet ein Druckausgleich zwischen dem ersten Druckbehalter 9 und dem zweiten Druckbehalter 10 statt. Sonach befindet sich in dem ersten Druckbehalter 9 mit dem nunmehr expandierenden Gasgemisch eine relativ große Menge des Gasgemischs und in dem zweiten Druckbehalter 10 eine demgegenüber reduzierte Menge des Gasgemischs . Gleichzeitig stellt sich in den Druckbehaltern 9, 10 aufgrund der Warmestromung annähernd eine Ausgleichstemperatur ein. Nach dem Druckausgleich durch den Kurzschluss der beiden Druckbehalter 9, 10 wird zum Zeitpunkt te Heiß- bzw. Kaltwasser eingespritzt, worauf aufgrund der unterschiendlichen Mengenverteilung des Gasgemischs der Druck pmax bzw. pmιn im entsprechenden Druckbehalter 9, 10 und somit die Druckdifferenz Δp gegenüber dem konventionellen Verlauf des Prozesses erzielt wird. The pressure-time diagram (pt) according to FIG. 3 initially shows a conventional course of the process, in which the pressure P'max of the first pressure vessel 8 drops to the pressure p 'mm, cold water being injected at the time t e and the gas mixture does work in the period Δt a . The pressure of the second pressure vessel 10 increases from the pressure p 'm m to the pressure p' ma χ, with hot water at the time t e is injected into the second pressure vessel 10 and the gas mixture n for the time period Δt a also does work for driving the liquid piston pump 14. No work is done during the time period Δti and the residual pressure in the pressure vessels 9, 10 is lost to the system. After the coupling of the first pressure vessel 9 to the second pressure vessel 10 by means of the short-circuit pipeline 11, the valves 12, 13 are opened at time t κ and pressure equalization takes place between the first pressure vessel 9 and the second pressure vessel 10. There is therefore a relatively large amount of the gas mixture in the first pressure container 9 with the gas mixture which is now expanding, and in the second pressure container 10 there is a reduced amount of the gas mixture. At the same time, an equalizing temperature is approximately established in the pressure vessels 9, 10 due to the heat flow. After the pressure equalization by the short circuit of the two pressure vessels 9, 10, hot or cold water is injected at time t e , whereupon the pressure p max or p min in the corresponding pressure vessel 9, 10 and thus the pressure difference Δp due to the different quantity distribution of the gas mixture compared to the conventional course of the process.

Claims

Patentansprüche claims
L. Anordnung von Gasausdehnungselementen für eine Einrichtung zum Umwandeln von thermischer in motorische Energie, insbesondere für einen Warmwassermotor, die zwei mit einem Gas oder Gasgemisch gefüllte geschlossene Druckbehalter (9, 10) umfasst, die mit der Einrichtung wirksam verbunden sind und eine obere Emspritzoffnung (7, 8) für Warm- und Kaltwasser aufweisen, dadurch ge ke nn ze i c hne t , dass zwischen den beiden Druckbehaltern (9, 10) eine Kurzschlussrohrleitung (11) mit mindestens einem steuerbaren Ventil (12, 13) zum Druckausgleich zwischen den Druckbehaltern (9, 10) nach dem Verrichten der Arbeit des Gases bzw. Gasgemischs vorgesehen ist.L. Arrangement of gas expansion elements for a device for converting thermal into motor energy, in particular for a hot water engine, which comprises two closed pressure containers (9, 10) filled with a gas or gas mixture, which are effectively connected to the device and an upper injection opening ( 7, 8) for hot and cold water, characterized by the fact that between the two pressure vessels (9, 10) there is a short-circuit pipe (11) with at least one controllable valve (12, 13) for pressure equalization between the pressure vessels (9, 10) is provided after performing the work of the gas or gas mixture.
2. Anordnung nach Anspruch 1, dadurch ge kenn z e i chne t , dass die Kurzschlussrohrleitung (11) im oberen Bereich der Druckbehalter (9, 10) angeordnet ist.2. Arrangement according to claim 1, characterized in that the short-circuit pipeline (11) is arranged in the upper region of the pressure vessel (9, 10).
3. Anordnung nach Anspruch 1, dadurch ge kennze i chnet , dass jeweils ein steuerbares Ventil (12, 13) im unmittelbar an den zugeordneten Druckbehalter (9, 10) anschließenden Bereich in der Kurzschlussrohrleitung (11) angeordnet ist.3. Arrangement according to claim 1, characterized in that a controllable valve (12, 13) is arranged in the area immediately adjacent to the associated pressure vessel (9, 10) in the short-circuit pipeline (11).
4. Anordnung nach einem der Ansprüche 1 bis 4, dadurch ge kennze i chne t , dass die Kurzschlussrohrleitung (11) mit den Ventilen (12, 13) warmeisoliert ist.4. Arrangement according to one of claims 1 to 4, characterized ge i mark that the short-circuit pipe (11) with the valves (12, 13) is thermally insulated.
5. Verfahren zum Betreiben einer Anordnung nach Anspruch 1, bei der in die Druckbehälter (9, 10) abwechselnd Warmund Kaltwasser eingespritzt wird, dadurch geke n n ze ichnet , dass nach der Übertragung der Arbeit des Gases oder Gasgemischs eines der Druckbehalter5. A method of operating an arrangement according to claim 1, in which hot and cold water is alternately injected into the pressure vessels (9, 10), thereby one of the pressure vessels being transferred after the work of the gas or gas mixture has been transferred
(9, 10) das Gas oder Gasgemisch durch Offnen des steuerbaren Ventils (12, 13) über die Kurzschlussrohrleitung(9, 10) the gas or gas mixture by opening the controllable valve (12, 13) via the short-circuit pipeline
(11) in den jeweils anderen Druckbehälter (9, 10) geleitet wird.(11) in the other pressure vessel (9, 10) is passed.
6. Verfahren nach Anspruch 5, dadurch ge kennz e i c hn e t , dass nach der Übertragung der nutzbaren Expansionsarbeit des Gases oder Gasgemischs eines Druckbehalters (9, 10) ein Teil des Gases oder Gasgemischs n den anderen Druckbehalter (9, 10) geleitet wird.6. The method according to claim 5, characterized in that after the transfer of the usable expansion work of the gas or gas mixture of a pressure vessel (9, 10), part of the gas or gas mixture is passed to the other pressure vessel (9, 10).
7. Anordnung nach Anspruch 5 oder 6, dadurch ge ke n n z e ichnet , dass zwei steuerbare Ventile (12, 13) der Kurzschlussrohrleitung (11) annähernd gleichzeitig geöffnet und geschlossen werden. 7. Arrangement according to claim 5 or 6, characterized ge ke n n z e ichnet that two controllable valves (12, 13) of the short-circuit pipeline (11) are opened and closed almost simultaneously.
EP02754307A 2001-07-07 2002-07-03 Assembly of gas expansion elements and a method for operating said assembly Expired - Lifetime EP1404948B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10133153 2001-07-07
DE10133153A DE10133153C1 (en) 2001-07-07 2001-07-07 Gas expansion units, to convert thermal energy into motor energy as a hot water motor, has closed pressure vessels with injection openings for hot and cold water, and a short circuit pipe between them for pressure compensation
PCT/DE2002/002416 WO2003004835A1 (en) 2001-07-07 2002-07-03 Assembly of gas expansion elements and a method for operating said assembly

Publications (2)

Publication Number Publication Date
EP1404948A1 true EP1404948A1 (en) 2004-04-07
EP1404948B1 EP1404948B1 (en) 2009-02-11

Family

ID=7691075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754307A Expired - Lifetime EP1404948B1 (en) 2001-07-07 2002-07-03 Assembly of gas expansion elements and a method for operating said assembly

Country Status (11)

Country Link
US (1) US20040237525A1 (en)
EP (1) EP1404948B1 (en)
JP (1) JP2004532953A (en)
KR (1) KR20040018424A (en)
AT (1) ATE422602T1 (en)
BR (1) BR0211238A (en)
CA (1) CA2453017A1 (en)
DE (2) DE10133153C1 (en)
MX (1) MXPA04000011A (en)
NO (1) NO20040036L (en)
WO (1) WO2003004835A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003694A1 (en) * 2004-01-24 2005-11-24 Gerhard Stock Arrangement for converting thermal into motor energy
US20060059912A1 (en) * 2004-09-17 2006-03-23 Pat Romanelli Vapor pump power system
SE537960C2 (en) * 2012-09-20 2015-12-08 Isa Wachtmeister Process and plant for local and small-scale production of electricity by combustion of renewable fuel
US9341165B2 (en) * 2012-12-20 2016-05-17 Howard G. Hoose, JR. Power generation system and method of use thereof
NO335230B1 (en) * 2013-02-19 2014-10-27 Viking Heat Engines As Device and method of operation and safety control of a heat power machine
CN105649699A (en) 2014-11-19 2016-06-08 郭颂玮 Supercritical high-efficiency power generation system
CN113865909A (en) * 2021-10-11 2021-12-31 江苏国富氢能技术装备股份有限公司 Performance testing device for refrigeration expander

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100965A (en) * 1959-09-29 1963-08-20 Charles M Blackburn Hydraulic power supply
US3901033A (en) * 1972-02-28 1975-08-26 Roy E Mcalister Vapor pressurized hydrostatic drive
US3803847A (en) * 1972-03-10 1974-04-16 Alister R Mc Energy conversion system
US4063417A (en) * 1976-02-04 1977-12-20 Carrier Corporation Power generating system employing geothermally heated fluid
US4283915A (en) * 1976-04-14 1981-08-18 David P. McConnell Hydraulic fluid generator
GB9522231D0 (en) * 1995-10-31 1996-01-03 Dantec Services Ltd Method and apparatus for driving a rotor
DE19719190C2 (en) * 1997-05-08 1999-02-25 Gerhard Stock Hot water motor for converting thermal into electrical energy
DE19909611C1 (en) * 1999-03-05 2000-04-06 Gerhard Stock Gas expander for hot water engine has container with sliding piston and hot and cold water injection nozzle in top

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03004835A1 *

Also Published As

Publication number Publication date
MXPA04000011A (en) 2005-06-06
WO2003004835A1 (en) 2003-01-16
NO20040036L (en) 2004-01-08
EP1404948B1 (en) 2009-02-11
BR0211238A (en) 2004-08-10
DE10133153C1 (en) 2002-07-11
US20040237525A1 (en) 2004-12-02
KR20040018424A (en) 2004-03-03
ATE422602T1 (en) 2009-02-15
JP2004532953A (en) 2004-10-28
CA2453017A1 (en) 2003-01-16
DE50213273D1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
AT502402B1 (en) METHOD FOR CONVERTING THERMAL ENERGY TO MECHANICAL WORK
DE4434831A1 (en) Combined energy generation plant for domestic installations
DE1170423B (en) Method and arrangement for regulating the steam temperatures in a once-through steam generator with two intermediate superheaters arranged in the flue gas duct
DE102010005232A1 (en) Arrangement for converting thermal into motor energy
EP2029878B1 (en) Method and device for converting thermal energy into mechanical work
WO2000053898A1 (en) Gas expansion element provided for a device used to convert thermal energy into motor energy, especially for a hot-water motor
EP1404948B1 (en) Assembly of gas expansion elements and a method for operating said assembly
WO1998050697A1 (en) Device for converting thermal energy to electrical energy
EP2291583A2 (en) Stirling engine
DE10126403A1 (en) Power station has carbon dioxide circuit, forward line with turbine(s) or piston engine(s), return line with pressure build-up device(s); forward and return lines form closed liquid circuit
DE1426698A1 (en) Device for starting up a circulation steam generator
EP0769122A1 (en) Process for utilising the exhaust gas heat in thermogenic and cryogenic machines
DE2122063A1 (en) Waste heat steam generator
DE4432464C2 (en) Process and installation for heating water using steam from the steam network of a district heating system
EP0817907B1 (en) Heat engine which operates on the stirling principle
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
DE102007062342B4 (en) Method and arrangement for increasing the temperature level in the circuit of solar thermal systems or combined heat and power plants
EP1025354B1 (en) Method and device for operating a heating and refrigerating machine which functions according to a regenerative gas circulation process
DE3619016A1 (en) Engine
DE19601179A1 (en) Device for heating circulating heating water and process water
DE2919824A1 (en) HEAT PUMP
DE1275905B (en) Plant for recycling the waste heat from a piston-type internal combustion engine with liquid cooling to drive ships
DE102013013104B4 (en) Heat engine
DE3744487A1 (en) METHOD AND DEVICE FOR CONVEYING BOILABLE LIQUIDS
DE4419553C2 (en) Steam-heated heat exchanger for air preheating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213273

Country of ref document: DE

Date of ref document: 20090326

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALDO ROEMPLER PATENTANWALT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090522

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

BERE Be: lapsed

Owner name: STOCK, GERHARD

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110725

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50213273

Country of ref document: DE

Representative=s name: JOCHEN MUELLER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50213273

Country of ref document: DE

Representative=s name: MUELLER, JOCHEN, DIPL.-ING., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120803

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120720

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130724

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130723

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 422602

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213273

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213273

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130703