EP2006521B1 - Procédé de réglage de la pression du rail lors d'un processus de démarrage - Google Patents

Procédé de réglage de la pression du rail lors d'un processus de démarrage Download PDF

Info

Publication number
EP2006521B1
EP2006521B1 EP08010497A EP08010497A EP2006521B1 EP 2006521 B1 EP2006521 B1 EP 2006521B1 EP 08010497 A EP08010497 A EP 08010497A EP 08010497 A EP08010497 A EP 08010497A EP 2006521 B1 EP2006521 B1 EP 2006521B1
Authority
EP
European Patent Office
Prior art keywords
adaptation
der
pcr
rail pressure
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP08010497A
Other languages
German (de)
English (en)
Other versions
EP2006521A1 (fr
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2006521A1 publication Critical patent/EP2006521A1/fr
Application granted granted Critical
Publication of EP2006521B1 publication Critical patent/EP2006521B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control

Definitions

  • the invention relates to a method for regulating the rail pressure in an internal combustion engine with a common rail system during the starting process according to the preamble of claim 1.
  • a corresponding control circuit is from the DE 103 30 466 B3 in which the actual rail pressure is calculated from the measured raw values of the rail pressure and compared with the desired rail pressure, the reference variable. From the resulting control deviation calculated by a pressure regulator as a manipulated variable a volume flow, which is then limited and converted into a PWM signal. With the PWM signal, the solenoid of a suction throttle is then applied. About the suction throttle, the flow is influenced by a low pressure to a high pressure pump, the latter promotes the fuel in the rail under pressure increase.
  • the invention is based on the object, with little additional effort to make sure the starting process.
  • the adaptation-triggering event is a detected negative control deviation with subsequent positive control deviation of the rail pressure, that is, the is-rail pressure initially swings beyond the desired rail pressure and then subverts the again Set rail pressure.
  • the adaptation is activated, via which the manipulated variable is temporarily changed in the sense of a larger flow rate. This is done by either changing the manipulated variable indirectly via the change in the controller components or directly the desired electrical current or the PWM signal.
  • the controller components are changed via a proportional coefficient to determine a P component and / or a reset time to determine an I component of the pressure regulator. For the calculation, adaptation characteristics for the proportional coefficient, the integral time, the nominal current and the PWM signal are provided. To increase the reliability, the adaptation is deactivated and locked until the restart of the internal combustion engine when the control deviation is less than a limit.
  • the adaptation compensates for the temperature dependence of the suction throttle resistance without additional sensors.
  • the high pressure control is thus more robust against temperature fluctuations. In practice, a shutdown of the internal combustion engine at engine start no longer occurs.
  • the FIG. 1 shows a system diagram of an internal combustion engine 1 with common rail system.
  • the common rail system has the following components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable intake throttle 4 for influencing the fuel volume flow flowing through, a high-pressure pump 5 for conveying the fuel with pressure increase, a rail 6, (optional) individual storage 7 for storing the fuel and injectors 8 for injecting the fuel into the combustion chambers of the internal combustion engine. 1
  • the operation of the internal combustion engine 1 is determined by an electronic control unit (ADEC) 10.
  • the electronic control unit 10 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 10 from the input variables, the output variables.
  • the following input variables are exemplarily shown: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal START for activating the internal combustion engine 1 by the operator and an input quantity EIN.
  • the input variable ON summarizes the charge air pressure of the turbocharger and the temperatures of the coolant / lubricant and of the fuel.
  • output variables of the electronic control unit 10 is a signal PWM for controlling the suction throttle 4, a signal ve for controlling the injectors 8 and an output variable OFF.
  • the output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1, for example for a control signal for activating a second exhaust gas turbocharger in a register charging.
  • FIG. 2 a pressure control loop is shown.
  • the input variables are a nominal rail pressure pCR (SL) as a reference variable, the engine speed nMOT and input variables E1 to E3.
  • the output quantity corresponds to the raw value of the rail pressure pCR, which represents the controlled variable.
  • an actual rail pressure pCR (IST) is determined by means of a filter 17. This is compared with the set point pCR (SL) at a summation point, resulting in a control deviation ep.
  • a manipulated variable is calculated by means of a pressure regulator 11.
  • the pressure regulator 11 is designed as a PIDT1 controller.
  • the manipulated variable corresponds to a volume flow VR.
  • the physical unit of the volume flow is liters / minute.
  • the calculated nominal consumption is added to the volume flow VR.
  • the volume flow VR corresponds to the input variable for a limit 12.
  • the limit 12 can be speed-dependent, input variable nMOT.
  • the output of the boundary 12 corresponds to a desired volume flow VSL, which via a pump curve 13 a electrical target current iSL is assigned.
  • the target current iSL is multiplied by the input E1.
  • the input value E1 stands for the ohmic resistance of the suction throttle coil and the cable.
  • This calculated voltage value is converted via a function block calculation PWM signal 14 into a PWM signal PWM. During conversion, fluctuations in the operating voltage are taken into account as input quantity E2.
  • the controlled system 15 is acted upon.
  • This consists of the suction throttle with high-pressure pump, reference numeral 16, and the rail 6 with the (optional) individual memories.
  • the path of the magnetic core of the intake throttle is changed via the PWM signal, whereby the delivery flow of the high-pressure pump is influenced freely.
  • the Saudrossel is controlled in negative logic, that is, this is completely open when de-energized.
  • the input quantity E3 is representative of the engine speed nMOT and the form provided by the low-pressure pump 3. From the rail 6 and the individual memories 7, a consumption volume flow V3 is discharged via the injectors 8. This closes the control loop.
  • the invention now provides that the control loop is supplemented by a function block 18 for calculating the indirect adaptation or a calculation 21 for determining the current adaptation value di or a calculation 22 for determining a PWM adaptation value dPWM.
  • a function block 18 for calculating the indirect adaptation or a calculation 21 for determining the current adaptation value di or a calculation 22 for determining a PWM adaptation value dPWM.
  • the controller shares and thus the manipulated variable are changed indirectly.
  • the manipulated variable is changed directly via the calculation 21 or calculation 22.
  • a calculation 19 for determining a proportional adaptation value dkp and a calculation 20 for determining an adjustment time adaptation value dTn are combined in the function block 18.
  • the two calculations 19 and 20 may alternatively or together be arranged in the function block 18.
  • the proportional adaptation value dkp is determined via the calculation 19 as a function of the control deviation ep and an input quantity E4 via a characteristic curve ADAP1, which is shown in FIG. 3 is shown.
  • the input quantity E4 includes the engine speed nMOT, two limit values of the system deviation and one sampling time.
  • the proportional adaptation value dkp is added with a constant value K1. The result corresponds to the proportional coefficient kp.
  • the P component of the pressure regulator 11 is then calculated from the proportional coefficient kp and the control deviation ep.
  • the input quantity E5 includes the engine speed nMOT, two limit values of the control deviation and the sampling time.
  • the reset time adaptation value dTn is added with a constant value K2. The result corresponds to the reset time Tn.
  • the current adaptation value di is determined as a function of the control deviation ep and an input variable E6 via the characteristic curve ADAP2 FIG. 4 , calculated.
  • the input quantity E6 includes the engine speed nMOT, two limit values of the control deviation and the sampling time.
  • the desired current iSL calculated via the pump characteristic 13 and the current adaptation value di are added.
  • the sum at the point A is multiplied by the input quantity E1, that is to say the ohmic resistance.
  • the PWM adaptation value dPWM as a function of the control deviation ep and an input variable E7 via the characteristic curve ADAP2, see FIG FIG. 4 , calculated.
  • the input quantity E7 includes the engine speed nMOT, two limit values of the control deviation and the sampling time.
  • the PWM value determined via the PWM calculation 14 and the PWM adaptation value dPWM are added.
  • the functionality of FIG. 2 is that after an adaptation-triggering event has been detected, the manipulated variable for acting on the intake throttle is changed either directly or indirectly in the sense of a larger allowable delivery.
  • the indirect change takes place via the proportional coefficient kp and / or the readjustment time Tn.
  • the immediate change takes place via the current adaptation value di or the PWM adaptation value dPWM.
  • the adaptation-triggering event occurs when, after the engine has started, the actual rail pressure pCR (IST) oscillates beyond the desired rail pressure pCR (SL) and then undershoots the latter.
  • the FIG. 3 shows the characteristic ADAP1, via which a control deviation ep is assigned a proportional adaptation value dkp.
  • the characteristic curve ADAP1 is composed of a first straight line section identical to the abscissa, a second straight leg section with a positive gradient and a third straight line section parallel to the abscissa.
  • the control deviation ep is assigned a proportional adaptation value dkp of zero via the first straight line section.
  • an increasing control deviation ep an increasing proportional adaptation value dkp, for example the control deviation ep1 via the point A, the positive value dkp1.
  • other mathematical functions parabola, hyperbola
  • the control deviation ep is always assigned the same maximum value MAX.
  • the FIG. 4 shows the characteristic ADAP2, via which a control deviation ep the reset time adaptation value dTn or the current adaptation value di or the PWM adaptation value dPWM is assigned.
  • the characteristic ADAP2 consists of a first straight line section identical to the abscissa, a second straight leg section with a negative slope and an abscissa-parallel third straight line section.
  • a control deviation ep1 is assigned the value MIN via the third straight line section, point B.
  • the characteristic ADAP2 for the different adaptation values (dTn, di, dPWM) can be implemented differently with respect to the limit values as well as the slope.
  • another mathematical function for example parabola or hyperbola, can also be provided.
  • FIG. 5 a start and a stop process are shown.
  • the FIG. 5 consists of the subfigures 5A to 5H. These show in each case over time: the engine speed nMOT ( FIG. 5A ), the rail pressure pCR ( FIG. 5B ), a status signal motor ON ( FIG. 5C ), a status signal of a first flag Mneg ( FIG. 5D ), a status signal of a second flag Mpos ( FIG. 5E ), a signal adaptation ( FIG. 5F ), the course of the proportional coefficient kp ( FIG. 5G ) and the course of the reset time Tn ( FIG. 5H ).
  • FIGS. 5A and 5B two case studies are shown.
  • the dashed line indicates a course according to the prior art.
  • the solid line indicates a course according to the invention.
  • a constant target rail pressure pCR (SL) of 600 bar is assumed, which is shown as a dot-dash line in FIG FIG. 5B is drawn.
  • FIG. 6 a program flow chart is shown. After the program start, the two markers, the adaptation and the motor AN are initialized with the value zero. At S1 it is checked whether the signal engine AN is equal to one, that is, whether the internal combustion engine is running. If this is not the case, the program path is traversed with the steps S13 and S14, otherwise the program part is traversed with the steps S2 to S11.
  • result S1 If the test at S1 indicates that the signal motor ON is not set, result S1: no, it is checked at S13 whether the engine speed nMOT is greater than / equal to a limit value GW, for example 80 rpm. If this is not the case, result S13: no, then this program part is finished. If, on the other hand, it is determined that the engine speed nMOT is greater than or equal to the limit value GW, result S13: yes, the signal motor ON is set at S14 and this program part is left. If the check at S1 indicates that the signal motor ON is set, result S1: yes, then S2 checks whether the adaptation is activated.
  • a limit value GW for example 80 rpm
  • result S2 no
  • a subroutine Check Adaptation is branched, which in the FIG. 7 is shown and explained in connection with this. If the check in S2 indicates that the adaptation has already been activated, result S2: yes, then the manipulated variable is indirectly changed in S3 via the proportional coefficient kp and / or the reset time Tn or directly via the nominal electrical current or the PWM signal.
  • the control deviation ep is smaller than a limit value ep3, for example -10 bar. If this is not the case, result S4: no, the program will continue at point A.
  • the adaptation is deactivated at S5 and then checked at S6 whether the engine speed nMOT is less than a limit value GW, for example 80 rpm. If this is not the case, result S6: no, a time step t is set to zero at S15 and the program is ended. If the check at S6 reveals that the engine speed nMOT is less than the limit value GW, result S6: yes, the time step t is incremented by a time dt at S7. Thereafter, their current status is checked at S8. If the time step t is smaller than a limit value GW, the program is ended.
  • a limit value GW for example 80 rpm
  • result S8 yes, the two flags Mpos, Mneg and the signal motor ON are set to zero at S9, S10 and S11. This completes the program run.
  • FIG. 7 a subroutine is shown, which checks whether the adaptation is activated.
  • the first flag Mneg is set. If this is not the case, result S1: no, then at S7 the control deviation ep is compared with a limit value ep1, for example -10 bar, and either this program part is left, result S7: no, or at S8 the first flag Mneg is set to one set and then to the main program of FIG. 6 , Point A returned. If the check at S1 indicates that the first flag Mneg is set, result S1: yes, the status of the second flag Mpos is checked at S2.

Claims (8)

  1. Procédé de régulation de la pression de la rampe de distribution (pCR) d'un moteur à combustion interne (1) équipé d'un système d'une rampe de distribution commune pendant le processus de démarrage, selon lequel un écart de régulation (ep) est calculé à partir d'une pression de rampe de distribution de consigne (pCR(SL)) ainsi que d'une pression de rampe de distribution réelle (pCR(IST)), selon lequel une grandeur de commande destinée à être appliquée à une bobine d'aspiration (4) est calculée à partir de l'écart de régulation (ep) par le biais d'un régulateur de pression (11) et selon lequel la quantité de carburant transportée est déterminée par le biais de la bobine d'aspiration (4), caractérisé en ce qu'après le démarrage du moteur, en cas de détection d'un écart de régulation négatif suivi d'un écart de régulation positif de la pression de la rampe de distribution (pCR), une adaptation est activée par le biais de laquelle la grandeur de commande est temporairement modifiée dans le sens d'une quantité transportée plus grande.
  2. Procédé selon la revendication 1, caractérisé en ce que la grandeur de commande est modifiée indirectement en modifiant les parts de régulation (PI) ou directement.
  3. Procédé selon la revendication 2, caractérisé en ce que lorsque l'adaptation est activée, la part P du régulateur de pression (11) est modifiée par le biais d'un facteur de correction proportionnel (kp) et/ou la part I du régulateur de pression (11) est modifiée par le biais d'un temps de compensation (Tn).
  4. Procédé selon la revendication 3, caractérisé en ce que le facteur de correction proportionnel (kp) est calculé en fonction d'une valeur d'adaptation proportionnelle (dkP) et du temps de compensation (Tn) en fonction d'une valeur d'adaptation du temps de compensation (dTn).
  5. Procédé selon la revendication 2, caractérisé en ce que la grandeur de commande est modifiée directement en modifiant un courant électrique de consigne (iSL) ou un signal PWM (PWM).
  6. Procédé selon la revendication 5, caractérisé en ce que le courant électrique de consigne (iSL) est modifié par le biais d'une valeur d'adaptation du courant (di) et le signal PWM est modifié par le biais d'une valeur d'adaptation PWM (dPWM).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que la valeur d'adaptation proportionnelle (dkP), la valeur d'adaptation du temps de compensation (dTn), la valeur d'adaptation du courant (di) et la valeur d'adaptation PWM (dPWM) sont calculées par le biais d'une courbe caractéristique d'adaptation (ADAP1, ADAP2) en fonction de l'écart de régulation (ep).
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'adaptation est désactivée et verrouillée jusqu'au redémarrage du moteur à combustion interne lorsque l'écart de régulation (ep) est négatif.
EP08010497A 2007-06-18 2008-06-10 Procédé de réglage de la pression du rail lors d'un processus de démarrage Expired - Fee Related EP2006521B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007027943A DE102007027943B3 (de) 2007-06-18 2007-06-18 Verfahren zur Regelung des Raildrucks während eines Startvorgangs

Publications (2)

Publication Number Publication Date
EP2006521A1 EP2006521A1 (fr) 2008-12-24
EP2006521B1 true EP2006521B1 (fr) 2010-12-29

Family

ID=39744478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010497A Expired - Fee Related EP2006521B1 (fr) 2007-06-18 2008-06-10 Procédé de réglage de la pression du rail lors d'un processus de démarrage

Country Status (4)

Country Link
US (1) US7606656B2 (fr)
EP (1) EP2006521B1 (fr)
CN (1) CN101328842B (fr)
DE (1) DE102007027943B3 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029138B3 (de) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
DE102009031527B3 (de) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102010043755B4 (de) 2010-11-11 2021-11-18 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät sowie Brennkraftmaschine
FR2975436B1 (fr) * 2011-05-20 2015-08-07 Continental Automotive France Systeme d'injection directe de carburant adaptatif
US8857412B2 (en) * 2011-07-06 2014-10-14 General Electric Company Methods and systems for common rail fuel system dynamic health assessment
DE102011080990B3 (de) * 2011-08-16 2013-01-24 Mtu Friedrichshafen Gmbh Common-Rail-System, Brennkraftmaschine sowie Einrichtung und Verfahren zur Steuerung und/oder Regelung einer Brennkraftmaschine
EP2839892A1 (fr) * 2013-08-23 2015-02-25 Siemens Aktiengesellschaft Procédé de traitement de produits laminés dans une chaîne de laminage et chaîne de laminage
DE102016200716A1 (de) * 2016-01-20 2017-07-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102016200715A1 (de) * 2016-01-20 2017-07-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumesssystems einer Brennkraftmaschine
CN112020602B (zh) 2018-04-10 2023-03-28 康明斯公司 自适应高压燃料泵系统和预测泵送质量的方法
CN112682199B (zh) * 2020-12-24 2023-01-06 潍柴动力股份有限公司 车辆的轨压控制方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59810332D1 (de) * 1998-01-13 2004-01-15 Siemens Ag Verfahren zur Vorgabe des Einspritzdruck-Sollwertes bei Speichereinspritzsystemen
DE19916100A1 (de) * 1999-04-09 2000-10-12 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6293251B1 (en) * 1999-07-20 2001-09-25 Cummins Engine, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine
JP2001159359A (ja) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp 筒内噴射エンジンの燃圧制御装置
DE10156637C1 (de) * 2001-11-17 2003-05-28 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung des Startbetriebs einer Brennkraftmaschine
DE10301236B4 (de) * 2003-01-15 2017-08-17 Robert Bosch Gmbh Verfahren zum Starten einer Brennkraftmaschine, insbesondere einer Brennkraftmaschine mit Direkteinspritzung
DE10330466B3 (de) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschine
DE10349628A1 (de) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine
DE102004057955A1 (de) * 2004-11-30 2006-06-01 Man B & W Diesel Ag Kraftstoffversorgungsanlage mit einer mittels Speicherdeckel verschlossenen Druckspeicherleitung
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
JP4333619B2 (ja) * 2005-04-08 2009-09-16 株式会社デンソー 筒内噴射式の内燃機関の始動制御装置
DE102006049266B3 (de) * 2006-10-19 2008-03-06 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
US7448361B1 (en) * 2007-10-23 2008-11-11 Ford Global Technologies, Llc Direct injection fuel system utilizing water hammer effect

Also Published As

Publication number Publication date
EP2006521A1 (fr) 2008-12-24
CN101328842A (zh) 2008-12-24
DE102007027943B3 (de) 2008-10-16
US7606656B2 (en) 2009-10-20
CN101328842B (zh) 2011-11-09
US20080312807A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
EP2006521B1 (fr) Procédé de réglage de la pression du rail lors d'un processus de démarrage
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE102006049266B3 (de) Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
EP2449241B1 (fr) Procédé de réglage de la pression du rail dans un système d'injection à rail commun d'un moteur à combustion
DE102006040441B3 (de) Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils
DE102009050467B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE10254464B4 (de) Kraftstoffeinspritzsystem mit gemeinsamer Leitung
EP1745204A1 (fr) Procede pour reguler la pression d'un systeme d'injection a accumulateur
WO2011000478A1 (fr) Procédé de commande et de régulation de la pression de carburant de la rampe commune d'un moteur à combustion interne
EP1896712A1 (fr) Procede de commande et de regulation pour un moteur a combustion interne equipe d'un systeme common rail
WO2011047833A1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne
DE10157641C2 (de) Verfahren zur Steuerung einer Brennkraftmaschine
EP2449240A1 (fr) Procédé de régulation de la pression de rampe dans un système d'injection à rampe commune de moteur à combustion interne
EP2491236A1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne
DE10141821C1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
DE10160311C2 (de) Verfahren, Computerprogramm, Steuer- und Regelgerät zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
EP1444431B1 (fr) Procede pour la commande et la regulation du fonctionnement au demarrage d'un moteur a combustion interne
DE19731201C2 (de) Verfahren zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE102017214001B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem, Einspritzsystem, eingerichtet zur Durchführung eines solchen Verfahrens, und Brennkraftmaschine mit einem solchen Einspritzsystem
DE19622776A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2358987B1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne équipé d'un système à rampe commune
DE102004039311B4 (de) Verfahren und Steuergerät zur Steuerung eines Enspritzdruckaufbaus bei einem Start eines Verbrennungsmotors
DE10303444B3 (de) Verfahren zum Ermitteln eines Grundsteuersignals zum Steuern einer Kraftstoffpumpe
DE10315466A1 (de) Sammel-Kraftstoffeinspritzsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160627

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200625

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210610