EP1745204A1 - Procede pour reguler la pression d'un systeme d'injection a accumulateur - Google Patents

Procede pour reguler la pression d'un systeme d'injection a accumulateur

Info

Publication number
EP1745204A1
EP1745204A1 EP05740728A EP05740728A EP1745204A1 EP 1745204 A1 EP1745204 A1 EP 1745204A1 EP 05740728 A EP05740728 A EP 05740728A EP 05740728 A EP05740728 A EP 05740728A EP 1745204 A1 EP1745204 A1 EP 1745204A1
Authority
EP
European Patent Office
Prior art keywords
pressure
calculated
rail pressure
component
ist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05740728A
Other languages
German (de)
English (en)
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1745204A1 publication Critical patent/EP1745204A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/208Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using a combination of controlling means as defined in G05D16/2013 and G05D16/2066
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method

Definitions

  • the invention relates to a method for pressure control of a storage injection system of an internal combustion engine according to the preamble of claim 1.
  • a high-pressure pump delivers the fuel from a fuel tank to a rail.
  • the inlet cross-section to the high-pressure pump is determined via a variable suction throttle.
  • injectors via which the fuel is injected into the combustion chambers of the internal combustion engine. Since the quality of the combustion depends crucially on the pressure level in the rail, this is regulated.
  • the high-pressure control circuit includes a high-pressure controller, the suction throttle with high-pressure pump and the rail as a control system, as well as a filter in the feedback branch.
  • the high pressure controller is designed as a PID controller or PIDTl controller, i. H.
  • this includes at least a proportional component (P component), an integral component (I component) and a differential component (D component).
  • P component proportional component
  • I component integral component
  • D component differential component
  • the pressure level in the rail corresponds to the controlled variable.
  • the measured pressure values of the rail are converted into an actual rail pressure via the filter and compared with a target rail pressure.
  • the resulting control deviation is converted into a control signal for the suction throttle via the high-pressure controller.
  • the control signal corresponds to z. B. a volume flow with the unit liter / minute.
  • the high pressure control circuit described above is known from the unpublished German patent application with the official file number DE 103 30 466.5.
  • a passive pressure relief valve is installed on the rail. With one too high pressure level opens the pressure relief valve, whereby the fuel is diverted from the rail into the fuel tank.
  • the engine speed increases immediately when a load is shed.
  • An increasing engine speed results in a speed control deviation that increases in amount at a constant target speed.
  • a speed controller responds to this by reducing the injection quantity as a manipulated variable.
  • a lower injection quantity in turn means that less fuel is drawn from the rail and therefore the pressure level in the rail increases rapidly.
  • the delivery rate of the high-pressure pump is speed-dependent.
  • An increasing engine speed means a higher delivery rate and thus causes an additional pressure increase in the rail. Since the high-pressure control has a long response time, the rail pressure can rise so far that the pressure relief valve opens, e.g. B. at 1950 bar. Then the rail pressure drops z. B. to a value of 800 bar.
  • the object of the invention is to improve the safety of the pressure control.
  • the object is solved by the features of claim 1.
  • the configurations are shown in the subclaims.
  • the invention provides that a second actual rail pressure is determined from the measured rail pressure via a second filter and the second actual rail pressure is set as decisive for the calculation of the regulator components of the high pressure regulator.
  • Controller components are to be understood as the P component, I component, D component and DTl component.
  • the second filter has a smaller time constant and a smaller phase delay than the first filter in the feedback branch.
  • the central idea of the invention is therefore to increase the dynamics of the high-pressure control loop by introducing a second “fast” filter.
  • a first proportional coefficient for determining the P component and a first retention time for determining the D component of the high-pressure regulator are each calculated using a characteristic curve as a function of the second actual rail pressure.
  • the characteristic curves have a static and a dynamic range. In the dynamic range, an increasing second actual rail pressure is assigned a likewise increasing proportional coefficient or an increasing lead time via the characteristic curves.
  • a second control deviation is calculated from the target rail pressure and the second actual rail pressure, and the P component, D component and DTI component of the high-pressure regulator are determined as a function of the second control deviation ,
  • the proportional coefficient for the P component, the retention time for the D component and the DTI component are calculated using the corresponding characteristic curves.
  • Fig. 4 shows a second characteristic
  • Fig. 6 is a block diagram, proportional coefficient
  • Fig. 8 is a block diagram, volume flow
  • Fig. 9 is a block diagram, DTl portion.
  • Figure 1 shows a system diagram.
  • the fuel is injected via a storage injection system (common rail).
  • This comprises the following components: a high-pressure pump 3 with a suction throttle for delivering the fuel from a fuel tank 2, a rail 6 for storing the fuel and injectors 7 for injecting the fuel from the rail 6 into the combustion chambers of the internal combustion engine 1.
  • the operating mode of the internal combustion engine 1 is regulated by an electronic control unit (ADEC) 4.
  • the electronic control unit 4 contains the usual components of a microcomputer system, for example a microprocessor, I / O modules, buffers and memory modules (EEPROM, RAM).
  • the memory modules are used for the operation of the combustion engine 1 relevant operating data applied in maps / characteristic curves.
  • the electronic control unit 4 uses this to calculate the output variables from the input variables.
  • the following input variables are shown by way of example in FIG. 1: a rail pressure pCR, which is measured by means of a rail pressure sensor 5, a speed signal nMOT of the internal combustion engine 1, a signal FP for power specification by the operator and an input variable E. Below the input variable For example, the charge air pressure of a turbocharger and the temperatures of the coolants / lubricants and the fuel are subsumed.
  • a signal ADV for controlling the suction throttle and an output variable A are shown as output variables of the electronic control unit 4.
  • the output variable A represents the other control signals for controlling and regulating the internal combustion engine 1, for example the start of injection SB and the duration of injection SD.
  • the ADV signal is designed as a pulse-width-modulated signal (PWM).
  • Such a memory injection system is at a maximum stationary rail pressure of z. B. operated 1800 bar.
  • a passive pressure relief valve 8 is provided to protect the system from an impermissibly high pressure level in the rail 6.
  • the fuel is discharged from the rail 6 into the fuel tank 2 via the pressure relief valve 8.
  • the pressure level in the rail 6 drops to a value of z. B. 800 bar.
  • FIG. 2 shows a high-pressure control circuit for regulating the rail pressure pCR in a first embodiment.
  • the input variable corresponds to the setpoint of the rail pressure pCR (SL).
  • the output quantity corresponds to the raw value of the Rail pressure pCR.
  • a first actual rail pressure pCRl (IST) is determined from the raw values of the rail pressure pCR via a first filter 13. This is compared with the setpoint pCR (SL) at a summation point A, which results in a first control deviation dRl.
  • a manipulated variable is calculated from the first control deviation dRI by means of a high-pressure controller 9.
  • the manipulated variable corresponds to a volume flow qV.
  • the physical unit of the volume flow can, for. B. liters / minute.
  • the volume flow qV corresponds to the input variable for a limitation 10.
  • the limitation 10 can be speed-dependent, input variable nMOT.
  • the output variable qV (SL) of the limitation 10 is then converted into a PWM signal in a function block 11. Fluctuations in the operating voltage and the fuel admission pressure are taken into account in the conversion, input variable E.
  • the PWM signal ADV is then applied to the solenoid of the suction throttle. As a result, the path of the magnetic core is changed, whereby the flow rate of the high-pressure pump 3 is freely influenced.
  • the high-pressure pump 3 with suction throttle and the rail 6 correspond to the controlled system 12.
  • a volume flow qV (VER) is discharged from the rail 6 via the injectors 7. This closes the control loop.
  • a second actual rail pressure pCR2 is calculated from the raw values of the rail pressure pCR via a second filter 14.
  • the second filter 14 has a smaller time constant and thus a smaller phase delay than the first filter 13. This means that the second actual rail pressure pCR2 (IST) is less time-delayed than the first actual rail pressure pCRl (IST).
  • the calculation of the controller components of the high-pressure controller 9 is significantly influenced by the second actual rail pressure pCR2 (IST).
  • the second actual rail pressure pCR2 (IST) is fed directly to the high-pressure regulator 9.
  • a first characteristic curve 15 is shown in FIG.
  • a first proportional coefficient kpl is determined via the first characteristic curve 15 for determining a P component of the high-pressure regulator 9.
  • the second actual rail pressure pCR2 (IST) is plotted in bar on the abscissa.
  • the first proportional coefficient kpl is plotted on the ordinate as the output variable.
  • the first characteristic curve 15 comprises a stationary area STAT and a dynamic area DYN.
  • the stationary area ends at a pressure value of 1800 bar. This corresponds to the maximum stationary rail pressure at full load.
  • the dynamic range DYN starts at a pressure value of 1820 bar.
  • a tolerance band TB is provided between the stationary and the dynamic range, e.g. B. 20 bar.
  • the first characteristic curve 15 is composed of an abscissa-parallel section with the points AB, an increasing section with the points BCD and an abscissa-parallel section with the points DE. If the internal combustion engine 1 z. B. operated at full load, a first proportional coefficient kpl of kpSTAT is assigned to the second actual rail pressure pCR2 (IST) of 1800 bar via the first characteristic curve 15. The second actual rail pressure pCR2 (IST) increases z. B. due to load shedding, an increased first proportional coefficient kpl of kpDYN is calculated in the dynamic range DYN over the first characteristic 15, point C.
  • a higher first proportional coefficient kpl causes an increase in the P component of the high-pressure regulator 9 and thus a reduction in the manipulated variable or reduction in the throttle cross section of the suction throttle.
  • a second characteristic curve 16 is shown in FIG.
  • a second lead time Tvl is assigned to the second actual rail pressure pCR2 (IST) via the second characteristic curve 16.
  • the second characteristic curve 16 corresponds to the course of the first characteristic curve 15.
  • the second actual rail pressure pCR2 (IST) is plotted in bar on the abscissa.
  • the first lead time Tvl is plotted on the ordinate as the output variable.
  • the second characteristic curve 16 comprises a stationary area STAT and a dynamic area DYN. The stationary area ends at a pressure value of 1800 bar.
  • the dynamic range DYN starts at a pressure value of 1820 bar.
  • a tolerance band TB of 20 bar is provided between the stationary and dynamic range.
  • the second characteristic curve 16 is composed of an abscissa-parallel section with the points AB, an increasing section with the points BCD and an abscissa-parallel section with the points DE. If the internal combustion engine 1 z. B. operated at full load, the second actual rail pressure pCR2 (IST) of 1800 bar is assigned a first lead time Tvl of TvSTAT via the second characteristic curve 16. The second actual rail pressure pCR2 (IST) increases z. B.
  • an increased first lead time Tvl of TvDYN is calculated in the dynamic range DYN over the second characteristic 16, point C.
  • a higher first lead time Tvl causes an increase in the D component of the high-pressure regulator 9 and thus a decrease the manipulated variable or reduction of the throttle cross section of the suction throttle.
  • FIG. 5 shows the high-pressure control circuit for controlling the rail pressure pCR in a second embodiment.
  • This embodiment differs from the illustration according to FIG. 2 in that the output variable of the second filter 14, here the second actual rail pressure pCR2 (IST), is at one Summation point B is subtracted from the target rail pressure pCR (SL). The result corresponds to a second control deviation dR2.
  • SL target rail pressure pCR
  • dR2 target rail pressure pCR
  • the high pressure regulator 9 the P, D and DTl portion of the high pressure regulator 9 is largely determined by the second actual rail pressure pCR2 (IST) via the second control deviation dR2.
  • Figures 6 to 9 correspond to this.
  • FIG. 6 shows a block diagram for calculating a proportional coefficient kp. 6 comprises as essential elements the first characteristic curve 15 for calculating the first proportional coefficient kpl and a third characteristic curve 17 for calculating a second proportional coefficient kp2.
  • the first proportional coefficient kpl is calculated in accordance with the description of FIG. 3.
  • the input variable of the third characteristic curve 17 corresponds to the second control deviation dR2.
  • the output variable corresponds to the second proportional coefficient kp2.
  • Values of the second control deviation dR2 in the positive / negative direction are plotted on the abscissa of the third characteristic curve 17.
  • the ordinate corresponds to the second proportional coefficient kp2.
  • a first limit value GW1 and a second limit value GW2 are shown on the abscissa. If the second control deviation dR2 is very large, kp2 is limited to a value GW3. A negative control deviation is present when the second actual rail pressure pCR2 (IST) becomes greater than the target rail pressure pCR (SL). In the case of very large positive second control deviations dR2, the second proportional coefficient kp2 is limited to the value GW4. In the range between the first limit value GW1 and the second limit value GW2, the second proportional coefficient kp2 is set to the value zero.
  • the second proportional coefficient kp2 has the value zero.
  • the third proportional coefficient kp3 can either be constant or can be calculated as a function of a target torque and / or the engine speed nMOT. The sum of the three proportional coefficients corresponds to the proportional coefficient kp.
  • FIG. 7 shows a block diagram for calculating the lead time Tv.
  • FIG. 7 comprises the second characteristic curve 16 for calculating the first retention time Tvl as a function of the second actual rail pressure pCR2 (IST) and a fourth characteristic curve 18 for calculating a second retention time Tv2.
  • the first derivative time Tvl is calculated analogously to the description of FIG. 4.
  • the input variable of the fourth characteristic curve 18 is the second control deviation dR2.
  • the output variable of the characteristic curve 18 corresponds to the second lead time Tv2. Values of the second control deviation dR2 in the positive / negative direction are plotted on the abscissa. The ordinate corresponds to the second lead time Tv2.
  • a first limit value GW1 and a second limit value GW2 are shown on the abscissa.
  • the second lead time Tv2 is limited to a value GW3.
  • the second lead time Tv2 is limited to the value GW4.
  • the second lead time Tv2 is set to the value zero. From the fourth characteristic curve 18 it is clear that in a steady state, i.e. H. the second control deviation dR2 is almost zero, the second derivative time Tv2 has the value zero.
  • the first lead time Tvl the second lead time Tv2 and a third lead time Tv3 are added.
  • the third lead time Tv3 can either be constant or depending on a target torque and / or the engine speed nMOT can be calculated. The result corresponds to the output variable Tv.
  • FIG. 8 shows a block circuit diagram for calculating the volume flow qV, that is to say the manipulated variable of the high-pressure controller 9.
  • the internal structure of the high-pressure controller 9 is shown here. This contains three function blocks for calculating the controller shares. These are a P component 20, an I component 21 and a DTI component 22.
  • a proportional component qV (P) of the volume flow qV is calculated via the P component 20 as a function of the first control deviation dRl and second control deviation dR2.
  • An integrating component qV (I) of the volume flow qV is calculated via the I component 21 as a function of the first control deviation dRI.
  • the DTl component qV (DTl) of the volume flow qV is calculated via the DTl component 22.
  • the volume flow qV is determined via a summation 23 from the summands of the P, I and DTl component.
  • the second control deviation dR2 is only used to calculate the derivative action time Tv, corresponding to FIG. 7.
  • the input variable of the DTI algorithm is the first control deviation dRl.
  • the input variable of the DT1 algorithm is also determined from the second control deviation dR2.
  • FIG. 9 shows a diagram 19 of the DTI component qV (DTl) in the case of a sudden change in the input variable dR2. Time t is plotted on the abscissa.
  • the ordinate corresponds to the DTI component qV (DTl).
  • Two limit values GW1 and GW2 are shown in the diagram.
  • the DTl component is deactivated when the second control deviation dR2 becomes smaller than the first limit value GWl, ie the signal qV (DTl) then has a value of zero.
  • the DTI component is activated when the second control deviation dR2 becomes larger than the second limit value GW2.
  • the limit value GW2 has the effect that, in the event of dynamic changes in state, that is to say a large positive or negative second control deviation dR2, the DTl component is used to calculate the volume flow qV mitein together. In the case of stationary states, ie the second control deviation dR2 is almost zero, the volume flow qV is determined exclusively from the P component 20 and the I component 21.

Abstract

L'invention concerne un procédé de régulation de pression destiné à un moteur à combustion interne (1) équipé d'un système d'injection à accumulateur. Selon ce procédé, une première pression réelle d'accumulateur est déterminée par l'intermédiaire d'un premier filtre à partir de la pression (pCR) mesurée dans l'accumulateur; un premier écart est calculé à partir de la comparaison entre la pression d'accumulateur prescrite et la pression d'accumulateur réelle; et un débit volumétrique est déterminé en tant que grandeur de régulation à partir du premier écart par l'intermédiaire d'un régulateur haute pression. Selon l'invention, une deuxième pression réelle d'accumulateur est déterminée à partir de la pression (pCR) mesurée dans l'accumulateur par l'intermédiaire d'un deuxième filtre, cette deuxième pression réelle d'accumulateur servant de valeur de référence pour le calcul des composantes du régulateur haute pression.
EP05740728A 2004-05-12 2005-05-10 Procede pour reguler la pression d'un systeme d'injection a accumulateur Withdrawn EP1745204A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004023365A DE102004023365B4 (de) 2004-05-12 2004-05-12 Verfahren zur Druck-Regelung eines Speichereinspritzsystems
PCT/EP2005/005017 WO2005111402A1 (fr) 2004-05-12 2005-05-10 Procede pour reguler la pression d'un systeme d'injection a accumulateur

Publications (1)

Publication Number Publication Date
EP1745204A1 true EP1745204A1 (fr) 2007-01-24

Family

ID=34967165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05740728A Withdrawn EP1745204A1 (fr) 2004-05-12 2005-05-10 Procede pour reguler la pression d'un systeme d'injection a accumulateur

Country Status (4)

Country Link
US (1) US7270115B2 (fr)
EP (1) EP1745204A1 (fr)
DE (1) DE102004023365B4 (fr)
WO (1) WO2005111402A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029138B3 (de) 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
JP4475205B2 (ja) * 2005-09-01 2010-06-09 株式会社デンソー コモンレール式燃料噴射システムの制御装置
DE102006018164B3 (de) * 2006-04-19 2007-08-30 Siemens Ag Verfahren und Vorrichtung zur Steuerung einer Einspritzanlage für eine Brennkraftmaschine
DE102006040441B3 (de) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils
FR2914699B1 (fr) * 2007-04-04 2009-05-22 Renault Sas Systeme et procede d'alimentation en carburant pour moteur a combustion interne
DE102007028900B4 (de) * 2007-06-22 2013-06-27 Continental Automotive Gmbh Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
DE602007006173D1 (de) * 2007-07-05 2010-06-10 Magneti Marelli Spa Verfahren zur Steuerung des Überdrucks in einem Brennstoffversorgungssystem des Common-Rail-Typs
DE102007032484A1 (de) 2007-07-12 2009-01-22 Beckhoff Automation Gmbh Regelverfahren und Regelvorrichtung mit mehrkanaliger Rückführung
DE102008036299B3 (de) 2008-08-04 2009-12-03 Mtu Friedrichshafen Gmbh Verfahren zur Druckregelung
DE102008058721B4 (de) * 2008-11-24 2011-01-05 Mtu Friedrichshafen Gmbh Steuerungs- und Regelungsverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
JP5215831B2 (ja) 2008-12-08 2013-06-19 Ckd株式会社 圧力制御装置および流量制御装置
DE102009031528B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031527B3 (de) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031529B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
EP2295774A1 (fr) * 2009-08-18 2011-03-16 Delphi Technologies Holding S.à.r.l. Procédé et appareil de commande pour une pompe d'un système d'injection à rampe d'alimentation commune
DE102009050469B4 (de) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011103988A1 (de) * 2011-06-10 2012-12-13 Mtu Friedrichshafen Gmbh Verfahren zur Raildruckregelung
DE102011080986B4 (de) 2011-08-16 2014-02-13 Mtu Friedrichshafen Gmbh Steuereinrichtung für ein Einspritzsystem, Einspritzsystem mit einer Brennkraftmaschine und Notstromaggregat
DE102011082459B4 (de) * 2011-09-09 2013-11-07 Continental Automotive Gmbh Verfahren zur Analyse des Wirkungsgrades der Hochdruckpumpe eines Kraftstoffeinspritzsystems
CN102425503B (zh) * 2011-09-22 2013-10-09 中国汽车技术研究中心 基于硬件恒流控制的轨压预控制系统及控制方法
DE102013009147B4 (de) * 2013-05-31 2015-11-05 Mtu Friedrichshafen Gmbh Verfahren zum Regeln eines Drucks und Anordnung zum Regeln eines Drucks

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215959C2 (de) * 1991-05-15 1997-01-16 Toyoda Automatic Loom Works Verstärkungsfaktor-Einstelleinrichtung für PID-Regler
US5609136A (en) * 1994-06-28 1997-03-11 Cummins Engine Company, Inc. Model predictive control for HPI closed-loop fuel pressure control system
JPH08210209A (ja) * 1995-02-06 1996-08-20 Zexel Corp 高圧燃料噴射装置
DE19731995B4 (de) * 1997-07-25 2008-02-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE60045229D1 (de) * 1999-02-15 2010-12-30 Toyota Motor Co Ltd Krafstoffdrucksteuervorrichtung und Verfahren für ein Hochdruckkraftstoffeinspritzsystem
EP1280989B1 (fr) * 2000-05-03 2005-11-30 Robert Bosch Gmbh Procede et dispositif de surveillance d'un systeme de mesure de carburant dans un moteur a combustion interne
JP3786062B2 (ja) * 2001-11-06 2006-06-14 株式会社デンソー 蓄圧式燃料噴射装置
DE10206030B4 (de) * 2002-02-14 2005-11-24 Bayerische Motoren Werke Ag Verfahren zum Anpassen eines Einspritzparameters eines Verbrennungsmotors an instationäre bzw. dynamische Vorgänge
DE10245268A1 (de) * 2002-09-27 2004-04-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung einer Druckgröße einer Brennkraftmaschine
DE10253739B3 (de) * 2002-11-19 2004-05-06 Mtu Friedrichshafen Gmbh Verfahren zur Drehzahl-Regelung einer Brennkraftmaschine
JP2004353487A (ja) * 2003-05-27 2004-12-16 Mitsubishi Electric Corp 内燃機関の燃料供給装置
DE10330466B3 (de) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005111402A1 *

Also Published As

Publication number Publication date
US20070056561A1 (en) 2007-03-15
DE102004023365B4 (de) 2007-07-19
WO2005111402A1 (fr) 2005-11-24
DE102004023365A1 (de) 2005-12-15
US7270115B2 (en) 2007-09-18

Similar Documents

Publication Publication Date Title
EP1745204A1 (fr) Procede pour reguler la pression d'un systeme d'injection a accumulateur
EP1896712B1 (fr) Procede de commande et de regulation pour un moteur a combustion interne equipe d'un systeme common rail
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE19618932C2 (de) Vorrichtung und Verfahren zur Regelung des Kraftstoffdruckes in einem Hochdruckspeicher
EP2006521B1 (fr) Procédé de réglage de la pression du rail lors d'un processus de démarrage
DE102006040441B3 (de) Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils
DE102006049266B3 (de) Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
EP2449241B1 (fr) Procédé de réglage de la pression du rail dans un système d'injection à rail commun d'un moteur à combustion
EP1825125B1 (fr) Procede d'exploitation d'un systeme d'alimentation en carburant pour moteur a combustion interne
DE102007037037B3 (de) Verfahren zur Regelung einer Brennkraftmaschine
WO2011047833A1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne
DE19731994B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2494175B1 (fr) Procédé pour commander et réguler un moteur à combustion interne
DE19752025B4 (de) Verfahren und Vorrichtung zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
EP2491236B1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne
EP2449240A1 (fr) Procédé de régulation de la pression de rampe dans un système d'injection à rampe commune de moteur à combustion interne
EP1826385B1 (fr) Procédé destiné au fonctionnement d'un système d'injection d'un moteur à combustion interne
EP2358988B1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne équipé d'un système à rampe commune
WO2010012545A1 (fr) Procédé et dispositif servant à réguler la pression de carburant dans l'accumulateur de pression d'un système d'injection common rail
DE4333896B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19731201C2 (de) Verfahren zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
EP2358987B1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne équipé d'un système à rampe commune
DE10046570C2 (de) Stellschaltung für ein elektrisch ansteuerbares Ventil
WO2019011839A1 (fr) Procédé pour le réglage de pression dans un système d'injection à haute pression d'un moteur à combustion interne, et moteur à combustion interne pour l'exécution d'un tel procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOELKER, ARMIN

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20091006

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150331