EP2002987B1 - Verfahren zur Behandlung einer Lithografiedruckplatte - Google Patents

Verfahren zur Behandlung einer Lithografiedruckplatte Download PDF

Info

Publication number
EP2002987B1
EP2002987B1 EP07110156.2A EP07110156A EP2002987B1 EP 2002987 B1 EP2002987 B1 EP 2002987B1 EP 07110156 A EP07110156 A EP 07110156A EP 2002987 B1 EP2002987 B1 EP 2002987B1
Authority
EP
European Patent Office
Prior art keywords
group
polyglycerol
coating
optionally substituted
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07110156.2A
Other languages
English (en)
French (fr)
Other versions
EP2002987A1 (de
Inventor
Peter Agfa Graphics NV Maessen
Huub Agfa Graphics NV Van Aert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa NV
Original Assignee
Agfa Graphics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Graphics NV filed Critical Agfa Graphics NV
Priority to EP07110156.2A priority Critical patent/EP2002987B1/de
Priority to CN200880019376A priority patent/CN101678695A/zh
Priority to PCT/EP2008/057204 priority patent/WO2008152028A1/en
Priority to US12/598,608 priority patent/US8445179B2/en
Publication of EP2002987A1 publication Critical patent/EP2002987A1/de
Application granted granted Critical
Publication of EP2002987B1 publication Critical patent/EP2002987B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/06Preparing for use and conserving printing surfaces by use of detergents

Definitions

  • the present invention relates to a method for treating a lithographic printing plate.
  • Lithographic printing presses use a so-called printing master such as a printing plate which is mounted on a cylinder of the printing press.
  • the master carries a lithographic image on its surface and a print is obtained by applying ink to said image and then transferring the ink from the master onto a receiver material, which is typically paper.
  • ink as well as an aqueous fountain solution (also called dampening liquid) are supplied to the lithographic image which consists of oleophilic (or hydrophobic, i.e. ink-accepting, water-repelling) areas as well as hydrophilic (or oleophobic, i.e. water-accepting, ink-repelling) areas.
  • driographic printing the lithographic image consists of ink-accepting and ink-abhesive (ink-repelling) areas and during driographic printing, only ink is supplied to the master.
  • Printing masters are generally obtained by the image-wise exposure and processing of an imaging material called plate precursor.
  • plate precursor an imaging material
  • heat-sensitive printing plate precursors have become very popular in the late 1990s.
  • thermal materials offer the advantage of daylight stability and are especially used in the so-called computer-to-plate method wherein the plate precursor is directly exposed, i.e. without the use of a film mask.
  • the material is exposed to heat or to infrared light and the generated heat triggers a (physico-)chemical process, such as ablation, polymerization, insolubilization by cross linking of a polymer, heat-induced solubilization or particle coagulation of a thermoplastic polymer latex.
  • a (physico-)chemical process such as ablation, polymerization, insolubilization by cross linking of a polymer, heat-induced solubilization or particle coagulation of a thermoplastic polymer latex.
  • the most popular thermal plates form an image by a heat-induced solubility difference in an alkaline developer between exposed and non-exposed areas of the coating.
  • the coating typically comprises an oleophilic binder, e.g. a phenolic resin, of which the rate of dissolution in the developer is either reduced (negative working) or increased (positive working) by the image-wise exposure.
  • the solubility differential leads to the removal of the non-image (non-printing) areas of the coating, thereby revealing the hydrophilic support, while the image (printing) areas of the coating remain on the support.
  • Typical examples of such plates are described in e.g.
  • Negative working plate precursors which do not require a pre-heat step may contain an image-recording layer that works by heat-induced particle coalescence of a thermoplastic polymer particle (latex), as described in e.g. EP-As 770 494 , 770 495 , 770 496 and 770 497 .
  • EP-As 770 494 , 770 495 , 770 496 and 770 497 disclose a method for making a lithographic printing plate comprising the steps of (1) image-wise exposing an imaging element comprising hydrophobic thermoplastic polymer particles dispersed in a hydrophilic binder and a compound capable of converting light into heat, (2) and developing the image-wise exposed element by applying fountain and/or ink.
  • Some of these thermal processes enable plate making without wet processing and are for example based on ablation of one or more layers of the coating. At the exposed areas the surface of an underlying layer is revealed which has a different affinity towards ink or fountain than the surface of the unexposed coating.
  • thermal processes which enable plate making without wet processing are for example processes based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that at exposed areas a different affinity towards ink or fountain is created than at the surface of the unexposed coating.
  • US 4,576,743 discloses a plate cleaner comprising an aqueous solution containing a silicate and at least one surface active agent selected from a cationic or an amphoteric surface active agent.
  • EP 620 125 discloses a printing assistant for lithographic printing plates comprising a water-soluble hemicellulose compound derived from soyabean.
  • EP 1 356 949 provides a correction fluid for lithographic printing plates comprising a carbonic acid ester, a specified amide compound and compounds consisting of fluorocarboxylic acids, hydrogen fluoride alkaline compounds, fluoroalkaline compounds, and hydrofluoric acids of a metal belonging to Group 4 of Periodic Table.
  • EP 985 546 discloses a plate surface protective agent and a fountain solution composition for a lithographic printing plate each comprising a polyoxyethylene polyoxypropylene block copolymer.
  • a lithographic printing plate is in general treated with various liquids for improving the lithographic properties of the image and non-image areas.
  • Such liquids are applied for example to improve the hydrophilic properties of the non-image areas and to protect, restore or even enhance the hydrophobicity of the image areas.
  • plate treating liquids do not deteriorate the image and/or the non-image areas throughout and well after their application.
  • the image areas become thinner and that the aluminium substrate underneath even becomes visible.
  • the lithographic quality of a printing plate is determined by lithographic properties such as for example hydrophilicity of non-image areas, hydrophobicity of image areas, lithographic latitude, staining and/or scumming resistance. Areas having hydrophilic properties means that these areas have a higher affinity for an aqueous solution than for an oleophilic ink; areas having hydrophobic properties means that these areas have a higher affinity for an oleophilic ink than for an aqueous solution.
  • the liquid used in the present invention comprises a surfactant which includes at least one hydrophilic segment which contains polyglycerol, and at least one hydrophobic (or oleophilic) segment as defined in claim 1.
  • hydrophilic segments is meant that these segments have a higher affinity for an aqueous liquid or phase than for an oleophilic liquid or phase
  • hydrophobic segments is meant that these segments have a higher affinity for an oleophilic liquid or phase than for an aqueous liquid or phase.
  • Polyglycerol is defined herein as a polymer containing at least two units independently selected from the two chemical structures I and II given below. Thus, polyglycerol may contain two units I, two units II, one unit I and one unit II, and any further combination of these structures with units I and/or II.
  • Polyglycerol is a branched polymer and can be produced by for example ringopening polymerisation of glycidol (see structure III below) with an alcohol, whereby two hydroxyl end groups are generated which can each subsequently react with additional glycidol molecules and/or with oxiranes such as for example ethylene oxide, propylene oxide, butylene oxide, styrene oxide, cyclopentene oxide, cyclohexene oxide, carbon dioxide, 1,3-dioxolane (IV), allyl glycidyl ether (V), (2,2-dimethyl-1,3-dioxolan-4-yl)methyl acetate (VI), 3-ethyl-3-oxetanemethanol (VII), ⁇ ,2,2-trimethyl-1,3-dioxane-5-acetic acid (VIII), 1,3,5-trioxepane(IX) and 4-oxiranyl-benzoic acid (X).
  • the degree of branching and/or the microstructure of the hydrophilic segment containing polyglycerol can be modified.
  • Synthetic methods for the production of polyglycerol are known in the art such as for example in the following references: Synthesis of hydroxypolyethers via ring opening polymerization; Vandenberg E.J. et al.; Polymer Preprints (1984), 25(1), 253-4 and Cationic polymerization of glycidol; Tokar R. et al.; Macromolecules (1994), 2(2),320-2 .
  • Polyglycerol can optionally be substituted with for example an alkyl group, a cycloalkyl group, -COOH, -CH 2 -COOH, -SO 3 H, -SO 4 H, -PO 3 H 2 , -CO-alkyl, -CO-aryl, -CO-heteroaryl, a phenyl group, a benzyl group and/or or a salts and/or combinations thereof.
  • the substituents may be present at the end of the polyglycerol segment and/or within the polyglycerol segment. Upon phosphatation of the polyglycerol, mono-esters, di-esters and/or mixtures of both may be formed.
  • Polyglycerol containing two, three or more of the glycerol units I and/or II can be represented by many structural formulae. The more glycerol units the polyglycerol contains, the more structural formulae become possible.
  • polyglycerol containing two glycerol units - i.e. a diglycerol such as diglycerol lauryl ether - can be represented by two structural formulae (see structures COM-IV (1) and COM-IV (2) below), whereas polyglycerol containing three glycerol units - i.e. a triglycerol such as triglycerol lauryl ether - may be represented by five structural formulae (see structures COM-V (1) to COM-V (5) below).
  • hydrophilic segment containing polyglycerol may, depending on the reaction conditions and/or specific preparation mode, be substituted with one hydrophobic segment (mono-substituted polyglycerol surfactant) or with more than one hydrophobic segment (multi-substituted polyglycerol surfactant).
  • triglycerol for example, is a polyglycerol with three units I and/or II and has multiple OH-groups on to which a reaction can occur. The degree of reaction depends on the weight ratio of the reagentia - i.e.
  • triglycerol and hydrophobic segment containing product if for example an excess of two equivalents of hydrophobic segment containing product is added to triglycerol, a mixture of products - i.e. unsubstituted polyglycerol, mono-substituted polyglycerol, polyglycerol substituted with two hydrophobic groups, polyglycerol substituted with three hydrophobic groups, and/or polyglycerol substituted with more than three hydrophobic groups are formed.
  • triglycerol is a mixture of 6 different isomers - i.e.
  • Mono-substituted polyglycerol surfactants such as di-block copolymers and multi-substituted polyglycerol surfactants such as tri-block copolymers and multi-block copolymers can be represented by the following schematic structures:
  • Multi-substituted polyglycerol also includes graft-copolymers, star-branched copolymers and multi-arm star copolymers and may be represented by many schematic structures.
  • An example of a graft and star-branced copolymer is given below - the eliptical shape and the straight lines can represent either the polyglycerol segment or the hydrophobic segment:
  • the hydrophobic segment included in the surfactant is selected from an optionally substituted straight or branched alkylene group, which has a number of carbon atoms preferably ranging from 4 to 50, more preferably ranging from 8 to 30 and most preferably 10 to 25; or a polymer selected from an optionally substituted polyester, an optionally substituted polyether, an optionally substituted polycarbosilane, an optionally substituted polyurethane, an optionally substituted polysiloxane such as phenylalkylsiloxanes and dialkylsiloxanes, e.g.
  • phenylmethylsiloxanes and dimethylsiloxanes an optionally substituted polymer comprising a perfluoroalkyl group, an alkyl or aryl substituted poly(meth)acrylate and/or an optionally substituted polystyrene.
  • the alkyl group present on the alkyl substituted poly(meth)acrylates is preferably selected from methyl, ethyl, propyl, isopropyl, butyl, tertiair butyl, etc..
  • the aryl group is preferably selected from a phenyl, tolyl, xylyl group, etc..
  • the optional substituents present on the straight, or branched alkylene group represent a halogen such as a chlorine or bromine atom, a hydroxyl group, an amino group, an optionally substituted aryl or heteroaryl group, a (di)alkylamino group, an alkoxy group and a carboxyl group.
  • a halogen such as a chlorine or bromine atom, a hydroxyl group, an amino group, an optionally substituted aryl or heteroaryl group, a (di)alkylamino group, an alkoxy group and a carboxyl group.
  • the optional substituents on the polyester, polyether, polycarbosilane, polyurethane, polysiloxane, polystyrene and polymer comprising a perfluoroalkyl group may be selected from an alkyl group, a halogen such as a chlorine or bromine atom, a hydroxyl group, an amino group, a (di)alkylamino group, an alkoxy group or a carboxyl group.
  • hydrophobic segments include butyryl, caproyl, caprylyl, capryl, lauryl, myristyl, palmityl, stearyl, isosteraryl, nonyl phenol and polyhydroxy polyester.
  • the hydrophilic segment is coupled with the hydrophobic segment via a spacer group.
  • This spacer group is selected from an ester, ether, urethane, amide, carbonate, sulfonamide, amine and a thioether linking group.
  • the linking group is an ether or an ester group.
  • the liquid according to the present invention contains mono-alkyl or multi-alkyl substituted polyglycerol ethers.
  • These surfactants can for example be prepared by reaction of an aliphatic or aromatic alcohol with glycidol (structure III above).
  • glycidol structure III above.
  • Various modes of synthesis of polyglycerol alkyl ethers are described in detail in the art and can for example be found in the following references: JP 1 131 504 3 , JP 2001 114 720 , WO 9 309 214 and DE 2 425 681 .
  • Specific modes of synthesis for polyglycerol alkyl ethers include for example:
  • the treating liquid used in the present invention contains polyglycerol ester surfactants.
  • polyglycerol ester surfactants examples include DE 10 251 984 , US 4,950,441 , DE 3 818 293 , JP 07 206 767 , DE 4 420 516 , JP 4 178 316 , DE 102005019548 , EP 1 502 644 , DE 19 524 210 and WO 2002/036534 .
  • Polyglycerol esters can for example be obtained by an esterification reaction of one or more fatty acid molecules with polyglycerol.
  • mono- or multi-functional carboxylates can react with polyglycerol generating segmented block or multi-block copolymers.
  • Multi-functional carboxylates include for example carboxylates containing more than one carboxylic acid group such as for example bis carboxy terminated polyesters and/or carboxylates containing besides one or more carboxylate groups other functional groups such as for example a hydroxyl group.
  • the carboxylic acid end groups of hydroxy terminated polyesters can react with the hydroxyl groups of polyglycerol yielding di-block or star-branched segmented copolymers.
  • the hydroxy end group can react with glycidol generating di-block copolymers.
  • segmented copolymers based on polyglycerol and polyester can be prepared.
  • Polyglycerol esters and polyglycerol ethers are preferred surfactants and more specificly, alkyl polyglycerol esters and alkyl polyglycerol ethers are highly preferred.
  • Other suitable polymeric polyglycerol esters are the products disclosed in the following references: Amphiphilic hyperbranched-hyperbranched block copolymers based on polycarbosilane and polyglycerol: Schuele, Hanna; Nieberle, Joerg; Frey, Holger, PMSE Preprints (2007), 96 252-253 ; Preparation of star-shaped ABC copolymers of polystyrene-poly(ethylene oxide)-polyglycidol using ethoxyethyl glycidyl ether as the cap molecule: Wang, Guowei; Huang, Junlian,The Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, State Education Ministry of China, Fudan University, Shanghai, Peop.
  • Multi-arm star polyglycerol-block-poly(tert-butyl acrylate) and the respective multi-arm poly(acrylic acid) stars Shen, Zhong; Chen, Yu; Barriau, Emilie; Frey, Holger, Institut fuer Organische Chemie, Johannes Gutenberg-Universitaet, Mainz, Germany, Macromolecular Chemistry and Physics (2006), 207(1), 57-64 ; Linear-hyperbranched amphiphilic AB diblock copolymers based on polystyrene and hyperbranched polyglycerol: Barriau, Emilie; Marcos, Alejandra Garcia; Kautz, Holger; Frey, Holger, Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany; Macromolecular Rapid Communications (2005), 26(11), 862-867 ; Linear-hyperbranched nonionic
  • the surfactant can be prepared by ringopening copolymerisation of glycidol with a hydrophobic modified oxirane selected from 2-methyl-2-undecyl-4-hydroxymethyl-1,3-dioxolane (XI), 2-decyl- oxirane (XII), 3-(2,2,2-trifluoroethoxymethyl)-3-methyloxetane (XIII), 3-methyl-3-[[(3,3,4,4,5,5,6,6,6-nonafluorohexyl)oxy]methyl]-oxetane (XIV), 3-methyl-3-(2,2,3,3,3-pentafluoropropoxymethyl)oxetane (XV).
  • a hydrophobic modified oxirane selected from 2-methyl-2-undecyl-4-hydroxymethyl-1,3-dioxolane (XI), 2-decyl- oxirane (XII), 3-(2,2,2-trifluoroethoxymethyl)-3-methylo
  • Suitable surfactants for the present invention are for example the following structures:
  • the liquids used in the method of the present invention are applied to a printing plate and are herein also referred to as plate treating liquids.
  • the plate treating liquids may be applied before, after and during the printing step.
  • the use of the plate treating liquids does not include the use as a fountain solution which is, in wet lithographic printing, supplied to the printing plate during the printing step.
  • the plate treating liquids of the present invention include, depending on their specific mode of action, cleaning liquids, gumming liquids, protecting liquids, correcting liquids and conditioning liquids.
  • Cleaning liquids such as plate cleaners are generally used to remove ink and debris from the plate, to desensitize the non-image areas and to restore the hydrophilic properties of the non-image areas, which upon time may become less able to repel ink and may tend to retain some ink - known in the art as scumming.
  • An efficient plate cleaner removes ink, dirt, oxidation spots, smudge and/or other imperfections without scratching or abrading the plate.
  • the liquid can also be used to remove staining formed at any stage from plate-making through printing.
  • a gum solution or gumming liquid is typically an aqueous liquid, which is capable of protecting the lithographic image of a printing plate against contamination, environmental influences or damage and has preferably a pH from 1 to 11, more preferably from 4 to 10, most preferably from 5 to 8.
  • Gumming liquids also referred to as protecting liquids, ensure the hydrophilic characteristics of the non-image areas and/or the hydrophobic characteristics of the image areas of a printing plate during storage and/or protect these areas against contamination by deposits, flaw formation, oxidation and atmospheric attack.
  • the so-called "wash-out gums" have the same properties as gumming liquids and are additionally capable of removing ink from the plate and cleaning the image and non-image areas as described in the former paragraph.
  • Correcting fluids are typically used to remove scratches, smudge and/or oxidation spots which may be present on the surface of the plate. These fluids are also used in the form of addition or deletion pens and/or gels to either add or remove image parts.
  • the treating liquid used in the present invention can be an aqueous solution, an emulsion with an aqueous phase and a solvent phase, or can be solvent-based.
  • the emulsion can be a macro or a micro-emulsion and a water-in-oil emulsion or an oil-in-water emulsion.
  • the treating liquids comprise an aqueous phase and a solvent phase.
  • the solvent phase in the emulsion preferably ranges from 0-90 %wt, more preferably from 10-65 %wt.
  • the solvent phase typically comprises one or more hydrophobic organic solvents such as for example aliphatic and/or aromatic hydrocarbons, a solvent-soluble surfactant and/or a vegetal oil and/or an ester thereof.
  • the aqueous phase may optionally comprise a hydrophiliser such as sorbitol or glycerol, a chelating agent, a compound comprising at least one acid group such as for example phosphoric acid, citric acid, gluconic acid, glycolic acid or polyvinylphosphonic acid, a biocide, a corrosion inhibitor, an antifoaming agent, a desensitizing agent such as a nitrate salt and/or a water-soluble polymer with an excellent film forming ability such as polyvinyl alcohol, polyvinylpyrrolidone, partially hydrolyzed polyvinyl acetates, gelatin, gum arabic, various starches, carbohydrates or cellulose derivatives such as carboxymethyl cellulose, methyl or ethyl cellulose, hemicellulose, hydroxyethyl cellulose.
  • a hydrophiliser such as sorbitol or glycerol
  • a chelating agent such as a compound comprising at least one acid group such as
  • suitable additives may be present in the treating fluids and include for example buffers, pH adjusters like mineral acids, organic acids or inorganic salts, preservatives such as phenol and derivatives thereof, protective agents, dyes, colorants, thickening agents etc..
  • the treating liquids may be applied by for example wiping the printing plate with e.g. a cotton pad or sponge soaked with the treating liquid before and/or after mounting the plate on the press and also during and/or after the print run.
  • the wiping may be combined with mechanical rubbing, e.g. by using a (rotating) brush.
  • the treating liquid may be applied by spraying, dipping or coating it on to the printing plate.
  • Various coating techniques such as dip coating, spray coating, slot coating, reverse roll coating or electrochemical coating may be employed; most preferred is dip and spray coating.
  • single pass processes are preferred since they facilitate the avoidance of contamination which could otherwise occur as a consequence of re-circulation of the liquid.
  • the lithographic printing plate used in the present invention comprises a support which has a hydrophilic surface or which is provided with a hydrophilic layer.
  • the support may be a sheet-like material such as a plate or it may be a cylindrical element such as a sleeve which can be slid around a print cylinder of a printing press.
  • the support is a metal support such as aluminum or stainless steel.
  • the support can also be a laminate comprising an aluminum foil and a plastic layer, e.g. polyester film.
  • a particularly preferred lithographic support is an electrochemically grained and anodized aluminum support.
  • the aluminum support has usually a thickness of about 0.1-0.6 mm. However, this thickness can be changed appropriately depending on the size of the printing plate used and/or the size of the plate-setters on which the printing plate precursors are exposed.
  • the aluminium is preferably grained by electrochemical graining, and anodized by means of anodizing techniques employing phosphoric acid or a sulphuric acid/phosphoric acid mixture. Methods of both graining and anodization of aluminum are very well known in the art.
  • the surface roughness is often expressed as arithmetical mean center-line roughness Ra (ISO 4287/1 or DIN 4762) and may vary between 0.05 and 1.5 ⁇ m.
  • the aluminum substrate of the current invention has preferably an Ra value below 0.45 ⁇ m, more preferably below 0.40 ⁇ m and most preferably below 0.30 ⁇ m.
  • the lower limit of the Ra value is preferably about 0.1 ⁇ m. More details concerning the preferred Ra values of the surface of the grained and anodized aluminum support are described in EP 1 356 926 .
  • the anodic weight (g/m 2 Al 2 O 3 formed on the aluminium surface) varies between 1 and 8 g/m 2 .
  • the anodic weight is preferably ⁇ 3 g/m 2 , more preferably ⁇ 3.5 g/m 2 and most preferably ⁇ 4.0 g/m 2 .
  • An optimal ratio between pore diameter of the surface of the aluminium support and the average particle size of hydrophobic thermoplastic particles which may be provided thereon, may enhance the press life of the printing plate and may improve the toning behavior of the prints.
  • This ratio of the average pore diameter of the surface of the aluminium support to the average particle size of the thermoplastic particles which may be present in the image-recording layer of the coating preferably ranges from 0.05:1 to 1.0:1, more preferably from 0.10:1 to 0.80:1 and most preferably from 0.15:1 to 0.65:1.
  • the grained and anodized aluminum support may be subject to a so-called post-anodic treatment to improve the hydrophilic properties of its surface.
  • the aluminum support may be silicated by treating its surface with a sodium silicate solution at elevated temperature, e.g. 95°C.
  • a phosphate treatment may be applied which involves treating the aluminum oxide surface with a phosphate solution that may further contain an inorganic fluoride.
  • the aluminum oxide surface may be rinsed with a citric acid or citrate solution. This treatment may be carried out at room temperature or may be carried out at a slightly elevated temperature of about 30 to 50°C.
  • a further interesting treatment involves rinsing the aluminum oxide surface with a bicarbonate solution.
  • the aluminum oxide surface may be treated with polyvinylphosphonic acid, polyvinylmethylphosphonic acid, phosphoric acid esters of polyvinyl alcohol, polyvinylsulphonic acid, polyvinylbenzenesulphonic acid, sulphuric acid esters of polyvinyl alcohol, and acetals of polyvinyl alcohols formed by reaction with a sulphonated aliphatic aldehyde.
  • Another useful post-anodic treatment may be carried out with a solution of polyacrylic acid or a polymer comprising at least 30 mol% of acrylic acid monomeric units, e.g. GLASCOL E15, a polyacrylic acid, commercially available from Ciba Speciality Chemicals.
  • the support can also be a flexible support, which may be provided with a hydrophilic layer, hereinafter called 'base layer'.
  • the flexible support is e.g. paper, plastic film or aluminum.
  • Preferred examples of plastic film are polyethylene terephthalate film, polyethylene naphthalate film, cellulose acetate film, polystyrene film, polycarbonate film, etc.
  • the plastic film support may be opaque or transparent.
  • the base layer is preferably a cross-linked hydrophilic layer obtained from a hydrophilic binder cross-linked with a hardening agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolyzed tetra-alkylorthosilicate.
  • a hardening agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolyzed tetra-alkylorthosilicate.
  • the thickness of the hydrophilic base layer may vary in the range of 0.2 to 25 ⁇ m and is preferably 1 to 10 ⁇ m. More details of preferred embodiments of the base layer can be found in e.g. EP-A 1 025 992 .
  • the lithographic printing plate used in the present invention is obtained by exposing and optionally developing a printing plate precursor comprising a heat and/or light-sensitive coating on a hydrophilic support.
  • the precursor can be negative or positive working, i.e. can form ink-accepting areas at exposed or at non-exposed areas respectively.
  • suitable examples of heat- and light-sensitive coatings are discussed in detail.
  • the imaging mechanism of thermal printing plate precursors can be triggered by direct exposure to heat, e.g. by means of a thermal head, or by the light absorption of one or more compounds in the coating that are capable of converting light, more preferably infrared light, into heat.
  • a first suitable example of a thermal printing plate precursor is a precursor based on heat-induced coalescence of hydrophobic thermoplastic polymer particles which are preferably dispersed in a hydrophilic binder, as described in e.g. EP 770 494 , EP 770 495 , EP 770 497 , EP 773 112 , EP 774 364 , EP 849 090 , EP 1 614 538 , EP 1 614 539 , EP 1 614 540 , EP 1 777 067 , EP 1 767 349 , WO 2006/037716 , WO 2006/133741 and WO 2007/045515 .
  • an image-recording layer comprises an organic compound, characterised in that said organic compound comprises at least one phosphonic acid group or at least one phosphoric acid group or a salt thereof, as described in WO 2007/04551.5 .
  • the image-recording layer comprises an organic compound as represented by formula XVI: or a salt thereof and wherein R' independently represent hydrogen, an optionally substituted straight, branched, cyclic or heterocyclic alkyl group or an optionally substituted aryl or (hetero)aryl group.
  • Compounds according to Formula XVI may be present in the image-recording layer in an amount between 0.05 and 15% by weight, preferably between 0.5 and 10% by weight, more preferably between 1 and 5 % by weight relative to the total weight of the ingredients of the image-recording layer.
  • the thermal printing plate precursor comprises a coating comprising an aryldiazosulfonate homo- or copolymer which is hydrophilic and soluble in the processing liquid before exposure to heat or UV light and rendered hydrophobic and less soluble after such exposure.
  • aryldiazosulfonate polymers are the compounds which can be prepared by homo- or copolymerization of aryldiazosulfonate monomers with other aryldiazosulfonate monomers and/or with vinyl monomers such as (meth)acrylic acid or esters thereof, (meth)acrylamide, acrylonitrile, vinylacetate, vinylchloride, vinylidene chloride, styrene, ⁇ -methyl styrene etc.
  • Suitable aryldiazosulfonate monomers are disclosed in EP-A 339393 , EP-A 507008 and EP-A 771645 and suitable aryldiazosulfonate polymers are disclosed in EP 507,008 , EP 960,729 , EP 960,730 and EP1,267,211 .
  • a further suitable thermal printing plate precursor is positive working and relies on heat-induced solubilization of an oleophilic resin.
  • the oleophilic resin is preferably a polymer that is soluble in an aqueous developer, more preferably an aqueous alkaline developing solution with a pH between 7.5 and 14.
  • Preferred polymers are phenolic resins e.g. novolac, resoles, polyvinyl phenols and carboxy substituted polymers. Typical examples of these polymers are described in DE-A-4007428 , DE-A-4027301 and DE-A-4445820 .
  • the amount of phenolic resin present in the first layer is preferably at least 50% by weight, preferably at least 80% by weight relative to the total weight of all the components present in the first layer.
  • the oleophilic resin is preferably a phenolic resin wherein the phenyl group or the hydroxy group is chemically modified with an organic substituent.
  • the phenolic resins which are chemically modified with an organic substituent may exhibit an increased chemical resistance against printing chemicals such as fountain solutions or plate treating liquids such as plate cleaners.
  • EP-A 0 934 822 examples include EP-A 1 072 432 , US 5 641 608 , EP-A 0 982 123 , WO 99/01795 , EP-A 02 102 446 , EP-A 02 102 444 , EP-A 02 102 445 , EP-A 02 102 443 , EP-A 03 102 522 .
  • the coating may comprise a second layer that comprises a polymer or copolymer (i.e. (co)polymer) comprising at least one monomeric unit that comprises at least one sulfonamide group.
  • This layer is located between the layer described above comprising the oleophilic resin and the hydrophilic support.
  • a (co)polymer comprising at least one monomeric unit that comprises at least one sulfonamide group' is also referred to as "a sulphonamide (co)polymer”.
  • the sulphonamide (co)polymer is preferably alkali soluble.
  • the sulphonamide group is preferably represented by -NR-SO 2 -, -SO 2 -NR- or -SO 2 -NRR' wherein R and R' each independently represent hydrogen or an organic substituent.
  • Sulfonamide (co)polymers are preferably high molecular weight compounds prepared by homopolymerization of monomeric units containing at least one sulfonamide group or by copolymerization of such monomeric units and other polymerizable monomeric units.
  • Examples of monomeric units containing at least one sulfonamide group include monomeric units further containing at least one polymerizable unsaturated bond such as an acryloyl, allyl or vinyloxy group. Suitable examples are disclosed in U.S. 5,141,838 , EP 1545878 , EP 909,657 , EP 0 894 622 and EP 1,120,246 .
  • Examples of monomeric units copolymerized with the monomeric units containing at least one sulfonamide group include monomeric units as disclosed in EP 1,262,318 , EP 1,275,498 , EP 909,657 , EP 1,120,246 , EP 0 894 622 and EP 1,400,351 .
  • EP-A 933 682 Suitable examples of sulfonamide (co)polymers and/or their method of preparation are disclosed in EP-A 933 682 , EP-A 982 123 , EP-A 1 072 432 , WO 99/63407 and EP 1,400,351 .
  • a highly preferred example of a sulfonamide (co)polymer is a homopolymer or copolymer comprising a structural unit represented by the following general formula (XVII) : wherein:
  • the structural unit represented by the general formula (XVII) has preferably the following groups:
  • sulphonamide (co)polymers are polymers comprising N-(p-aminosulfonylphenyl) (meth)acrylamide, N-(m-aminosulfonylphenyl) (meth)acrylamide and/or N-(o-aminosulfonylphenyl) (meth)acrylamide.
  • a particularly preferred sulphonamide (co)polymer is a polymer comprising N-(p-aminosulphonylphenyl) methacrylamide wherein the sulphonamide group comprises an optionally substituted straight, branched, cyclic or heterocyclic alkyl group, an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • the layer comprising the sulphonamide (co)polymer may further comprise additional hydrophobic binders such as a phenolic resin (e.g. novolac, resoles or polyvinyl phenols), a chemically modified phenolic resin or a polymer containing a carboxyl group, a nitrile group or a maleimide group.
  • additional hydrophobic binders such as a phenolic resin (e.g. novolac, resoles or polyvinyl phenols), a chemically modified phenolic resin or a polymer containing a carboxyl group, a nitrile group or a maleimide group.
  • the dissolution behavior of the coating of the latter embodiment in the developer can be fine-tuned by optional solubility regulating components. More particularly, development accelerators and development inhibitors can be used. In the embodiment where the coating comprises more than one layer, these ingredients can be added to the first layer, to the second layer and/or to an optional other layer of the coating.
  • Development accelerators are compounds which act as dissolution promoters because they are capable of increasing the dissolution rate of the coating.
  • cyclic acid anhydrides, phenols or organic acids can be used in order to improve the aqueous developability.
  • the cyclic acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 3,6-endoxy-4-tetrahydro-phthalic anhydride, tetrachlorophthalic anhydride, maleic anhydride, chloromaleic anhydride, alpha -phenylmaleic anhydride, succinic anhydride, and pyromellitic anhydride, as described in U.S. Patent No.
  • Examples of the phenols include bisphenol A, p-nitrophenol, p-ethoxyphenol, 2,4,4'-trihydroxybenzophenone, 2,3,4-trihydroxy-benzophenone, 4-hydroxybenzophenone, 4,4',4"-trihydroxy-triphenylmethane, and 4,4',3",4"-tetrahydroxy-3,5,3',5'-tetramethyltriphenyl-methane, and the like.
  • Examples of the organic acids include sulphonic acids, sulfinic acids, alkylsulfuric acids, phosphonic acids, phosphates, and carboxylic acids, as described in, for example, JP-A Nos. 60-88,942 and 2-96,755 .
  • organic acids include p-toluenesulphonic acid, dodecylbenzenesulphonic acid, p-toluenesulfinic acid, ethylsulfuric acid, phenylphosphonic acid, phenylphosphinic acid, phenyl phosphate, diphenyl phosphate, benzoic acid, isophthalic acid, adipic acid, p-toluic acid, 3,4-dimethoxybenzoic acid, 3,4,5-trimethoxybenzoic acid, 3,4,5-trimethoxycinnamic acid, phthalic acid, terephthalic acid, 4-cyclohexene-1,2-dicarboxylic acid, erucic acid, lauric acid, n-undecanoic acid, and ascorbic acid.
  • the amount of the cyclic acid anhydride, phenol, or organic acid contained in the coating is preferably in the range of 0.05 to 20% by weight, relative to the coating as a whole.
  • Polymeric development accelerators such as phenolic-formaldehyde resins comprising at least 70 mol% meta-cresol as recurring monomeric units are also suitable development accelerators.
  • the coating also contains developer resistance means, also called development inhibitors, i.e. one or more ingredients which are capable of delaying the dissolution of the unexposed areas during processing.
  • developer resistance means also called development inhibitors
  • the dissolution inhibiting effect is preferably reversed by heating, so that the dissolution of the exposed areas is not substantially delayed and a large dissolution differential between exposed and unexposed areas can thereby be obtained.
  • the compounds described in e.g. EP-A 823 327 and WO97/39894 are believed to act as dissolution inhibitors due to interaction, e.g. by hydrogen bridge formation, with the alkali-soluble resin(s) in the coating.
  • Inhibitors of this type typically comprise at least one hydrogen bridge forming group such as nitrogen atoms, onium groups, carbonyl (-CO-), sulfinyl (-SO-) or sulfonyl (-SO 2 -) groups and a large hydrophobic moiety such as one or more aromatic rings.
  • hydrogen bridge forming group such as nitrogen atoms, onium groups, carbonyl (-CO-), sulfinyl (-SO-) or sulfonyl (-SO 2 -) groups and a large hydrophobic moiety such as one or more aromatic rings.
  • Suitable inhibitors improve the developer resistance because they delay the penetration of the aqueous alkaline developer into the coating.
  • Such compounds can be present in the first layer and/or, if present, in the second layer as described in e.g. EP-A 950 518 , and/or in a development barrier layer on top of said layer, as described in e.g. EP-A 864 420 , EP-A 950 517 , WO 99/21725 and WO 01/45958 .
  • the solubility of the barrier layer in the developer or the penetrability of the barrier layer by the developer can be increased by exposure to heat or infrared light.
  • inhibitors which delay the penetration of the aqueous alkaline developer into the coating include the following:
  • the above mentioned inhibitor of type (b) and (c) tends to position itself, due to its bifunctional structure, at the interface between the coating and air and thereby forms a separate top layer even when applied as an ingredient of the coating solution of the first and/or of the optional second layer.
  • the surfactants also act as a spreading agent which improves the coating quality.
  • the separate top layer thus formed seems to be capable of acting as the above mentioned barrier layer which delays the penetration of the developer into the coating.
  • the inhibitor of type (a) to (c) can be applied in a separate solution, coated on top of the first, optional second and/or other layers of the coating.
  • a solvent in the separate solution that is not capable of dissolving the ingredients present in the other layers so that a highly concentrated water-repellent or hydrophobic phase is obtained at the top of the coating which is capable of acting as the above mentioned development barrier layer.
  • first or optional second layer and/or other layer may comprise polymers that further improve the run length and/or the chemical resistance of the plate.
  • examples thereof are polymers comprising imido (-CO-NR-CO-) pendant groups, wherein R is hydrogen, optionally substituted alkyl or optionally substituted aryl, such as the polymers described in EP-A 894 622 , EP-A 901 902 , EP-A 933 682 and WO 99/63407 .
  • the coating of the heat-sensitive printing plate precursors described above preferably also contains an infrared light absorbing dye or pigment which, in the embodiment where the coating comprises more than one layer, may be present in the first layer, and/or in the second layer, and/or in an optional other layer.
  • Preferred IR absorbing dyes are cyanine dyes, merocyanine dyes, indoaniline dyes, oxonol dyes, pyrilium dyes and squarilium dyes. Examples of suitable IR dyes are described in e.g. EP-As 823327 , 978376 , 1029667 , 1053868 , 1093934 ; WO 97/39894 and 00/29214 .
  • Preferred compounds are the following cyanine dyes:
  • the concentration of the IR-dye in the coating is preferably between 0.25 and 15.0 %wt, more preferably between 0.5 and 10.0 %wt, most preferably between 1.0 and 7.5 %wt relative to the coating as a whole.
  • the coating may further comprise one or more colorant(s) such as dyes or pigments which provide a visible color to the coating and which remain in the coating at the image areas which are not removed during the processing step. Thereby a visible image is formed and examination of the lithographic image on the developed printing plate becomes feasible.
  • dyes are often called contrast dyes or indicator dyes.
  • the dye has a blue color and an absorption maximum in the wavelength range between 600 nm and 750 nm.
  • Typical examples of such contrast dyes are the amino-substituted tri- or diarylmethane dyes, e.g. crystal violet, methyl violet, victoria pure blue, flexoblau 630, basonylblau 640, auramine and malachite green.
  • dyes which are discussed in depth in EP-A 400,706 are suitable contrast dyes. Dyes which, combined with specific additives, only slightly color the coating but which become intensively colored after exposure, as described in for example WO2006/005688 may also be used as colorants.
  • the heat-sensitive plate precursor can be image-wise exposed directly with heat, e.g. by means of a thermal head, or indirectly by infrared light, preferably near infrared light.
  • the infrared light is preferably converted into heat by an IR light absorbing compound as discussed above.
  • the heat-sensitive lithographic printing plate precursor is preferably not sensitive to visible light, i.e. no substantial effect on the dissolution rate of the coating in the developer is induced by exposure to visible light. Most preferably, the coating is not sensitive to ambient daylight.
  • the printing plate precursor can be exposed to infrared light by means of e.g. LEDs or a laser.
  • the light used for the exposure is a laser emitting near infrared light having a wavelength in the range from about 750 to about 1500 nm, more preferably 750 to 1100 nm, such as a semiconductor laser diode, a Nd:YAG or a Nd:YLF laser.
  • the required laser power depends on the sensitivity of the plate precursor, the pixel dwell time of the laser beam, which is determined by the spot diameter (typical value of modern plate-setters at 1/e 2 of maximum intensity : 5-25 ⁇ m), the scan speed and the resolution of the exposure apparatus (i.e. the number of addressable pixels per unit of linear distance, often expressed in dots per inch or dpi; typical value : 1000-4000 dpi).
  • ITD plate-setters for thermal plates are typically characterized by a very high scan speed up to 500 m/sec and may require a laser power of several Watts.
  • An XTD platesetter equipped with one or more laserdiodes emitting in the wavelength range between 750 and 850 nm is an especially preferred embodiment for the method of the present invention.
  • the known plate-setters can be used as an off-press exposure apparatus, which offers the benefit of reduced press down-time.
  • XTD plate-setter configurations can also be used for on-press exposure, offering the benefit of immediate registration in a multi-color press. More technical details of on-press exposure apparatuses are described in e.g. US 5,174,205 and US 5,163,368 .
  • the precursor can be developed by means of a suitable processing liquid, such as an aqueous alkaline solution, whereby the non-image areas of the coating are removed; the development step may be combined with mechanical rubbing, e.g. by using a rotating brush. During development, any water-soluble protective layer present is also removed.
  • a suitable processing liquid such as an aqueous alkaline solution
  • any water-soluble protective layer present is also removed.
  • the heat-sensitive printing plate precursors based on latex coalescence can also be developed using plain water or aqueous solutions, e.g. a gumming solution as described in EP 1,342,568 .
  • such printing plate precursors can after exposure directly be mounted on a printing press and be developed on-press by supplying ink and/or fountain to the precursor.
  • EP 1614538 More details concerning the development step can be found in for example EP 1614538 , EP 1614539 , EP 1614540 and WO/2004071767 .
  • UV-sensitive coatings can be used.
  • Typical examples of such plates are the UV-sensitive "PS" plates and the so-called photopolymer plates which contain a photopolymerizable composition that hardens upon exposure to light.
  • a conventional, UV-sensitive "PS" plate precursor is used.
  • Positive and negative working compositions are typically used in "PS" plate precursors.
  • the positive working imaging layer preferably comprises an o-naphtoquinonediazide compound (NQD) and an alkali soluble resin.
  • NQD o-naphtoquinonediazide compound
  • Particularly preferred are o-naphthoquinone-diazidosulphonic acid esters or o-naphthoquinone diazidocarboxylic acid esters of various hydroxyl compounds and o-naphthoquinone-diazidosulphonic acid amides or o-naphthoquinone-diazidocarboxylic acid amides of various aromatic amine compounds.
  • Two variants of NQD systems can be used: one-component systems and two-component systems.
  • Such light-sensitive printing plates have been widely disclosed in the prior art, for example in U.S. 3,635,709 , J.P. KOKAI No. 55-76346 , J.P. KOKAI No. Sho 50-117503 , J.P. KOKAI No. Sho 50-113305 , U.S. 3,859,099 ; U.S. 3,759,711 ; GB-A 739654 , US 4,266,001 and J.P. KOKAI No. 55-57841 .
  • the negative working layer of a "PS" plate preferably comprises a diazonium salt, a diazonium resin or an aryldiazosulfonate homo- or copolymer.
  • Suitable examples of low-molecular weight diazonium salts include: benzidine tetrazoniumchloride, 3,3'-dimethylbenzidine tetrazoniumchloride, 3,3'-dimethoxybenzidine tetrazoniumchloride, 4,4'-diaminodiphenylamine tetrazoniumchloride, 3,3'-diethylbenzidine tetrazoniumsulfate, 4-aminodiphenylamine diazoniumsulfate, 4-aminodiphenylamine diazoniumchloride, 4-piperidino aniline diazoniumsulfate, 4-diethylamino aniline diazoniumsulfate and oligomeric condensation products of diazodiphenylamine and formaldeh
  • diazo resins examples include condensation products of an aromatic diazonium salt as the light-sensitive substance. Such condensation products are described, for example, in DE-P-1 214 086 .
  • the light- or heat-sensitive layer preferably also contains a binder e.g. polyvinyl alcohol.
  • the diazo resins or diazonium salts Upon exposure the diazo resins or diazonium salts are converted from water soluble to water insoluble (due to the destruction of the diazonium groups) and additionally the photolysis products of the diazo may increase the level of crosslinking of the polymeric binder or diazo resin, thereby selectively converting the coating, in an image pattern, from water soluble to water insoluble.
  • the unexposed areas remain unchanged, i.e. water-soluble.
  • Such printing plate precursors can be developed using an aqueous alkaline solution as described above.
  • the light sensitive printing plate precursor is based on a photo-polymerisation reaction and contains a coating comprising a photocurable composition comprising a free radical initiator (as disclosed in for example US 5,955,238 ; US 6,037,098 ; US 5,629,354 ; US 6,232,038 ; US 6,218,076 ; US 5,955,238 ; US 6,037,098 ; US 6,010,824 ; US 5,629,354 ; DE 1,470,154 ; EP 024,629 ; EP 107,792 ; US 4,410,621 ; EP 215,453 ; DE 3,211,312 and EP A 1,091,247 ) a polymerizable compound (as disclosed in EP1,161,4541 , EP 1349006 , WO2005/109103 and unpublished European patent applications EP 5,111,012.0 , EP 5,111,025.2 , EP 5110918.9 and EP 5, 110,961.9 ) and
  • These printing plate precursors can be sensitized with blue, green or red light (i.e. wavelength range between 450 and 750 nm), with violet light (i.e. wavelength range between 350 and 450 nm) or with infrared light (i.e. wavelength range between 750 and 1500 nm) using for example an Ar laser (488 nm) or a FD-YAG laser (532 nm), a semiconductor laser InGaN (350 to 450 nm), an infrared laser diode (830 nm) or a Nd-YAG laser (1064 nm).
  • blue, green or red light i.e. wavelength range between 450 and 750 nm
  • violet light i.e. wavelength range between 350 and 450 nm
  • infrared light i.e. wavelength range between 750 and 1500 nm
  • a photopolymer plate precursor is processed in alkaline developer having a pH > 10 (see above) and subsequently gummed.
  • the exposed photopolymer plate precursor can also be developed by applying a gum solution to the coating whereby the non-exposed areas are removed. Suitable gumming solutions are described in WO/2005/111727 .
  • the imaged precursor can also be directly mounted on a press and processed on-press by applying ink and/or fountain solution.
  • the protective layer generally comprises at least one water-soluble binder, such as polyvinyl alcohol, polyvinylpyrrolidone, partially hydrolyzed polyvinyl acetates, gelatin, carbohydrates or hydroxyethylcellulose, and can be produced in any known manner such as from an aqueous solution or dispersion which may, if required, contain small amounts - i.e. less than 5% by weight based on the total weight of the coating solvents for the protective layer - of organic solvents.
  • the thickness of the protective layer can suitably be any amount, advantageously up to 5.0 ⁇ m, preferably from 0.1 to 3.0 ⁇ m, particularly preferably from 0.15 to 1.0 ⁇ m.
  • the coating may further contain additional ingredients such as surfactants, especially perfluoro surfactants, silicon or titanium dioxide particles or polymers particles such as matting agents and spacers.
  • surfactants especially perfluoro surfactants, silicon or titanium dioxide particles or polymers particles such as matting agents and spacers.
  • any coating method can be used for applying two or more coating solutions to the hydrophilic surface of the support.
  • the multi-layer coating can be applied by coating/drying each layer consecutively or by the simultaneous coating of several coating solutions at once.
  • the volatile solvents are removed from the coating until the coating is self-supporting and dry to the touch.
  • the residual solvent content may be regarded as an additional composition variable by means of which the composition may be optimized. Drying is typically carried out by blowing hot air onto the coating, typically at a temperature of at least 70°C, suitably 80-150°C and especially 90-140°C. Also infrared lamps can be used.
  • the drying time may typically be 15-600 seconds.
  • a heat treatment and subsequent cooling may provide additional benefits, as described in WO99/21715 , EP-A 1074386 , EP-A 1074889 , WO00/29214 , and WO/04030923 , WO/04030924 , WO/04030925 .
  • the heat and/or light sensitive printing plates can be treated with the treating liquid used in the present invention. Than, they can be used for conventional, so-called wet offset printing, in which ink and an aqueous dampening liquid are supplied to the plate.
  • Another suitable printing method uses so-called single-fluid ink without a dampening liquid. Suitable single-fluid inks have been described in US 4,045,232 ; US 4,981,517 and US 6,140,392 .
  • the single-fluid ink comprises an ink phase, also called the hydrophobic or oleophilic phase, and a polyol phase as described in WO 00/32705 .
  • the treating liquid of the present invention can be applied to the printing plates.
  • the surfactants listed in Table 1 were added to demineralized water and to Exxol D60 (trademark of Exxon) at a concentration of 4 %wt. The mixtures were stirred for 5 minutes. Subsequently, an Agfa Thermostar P970 plate (novolak-based printing plate precursor, commercially available from Agfa-Graphics NV) was developed in an Autolith TP85 processor (trademark of Agfa-Graphics NV) filled with Energy Developer (trademark of Agfa-Graphics NV) at 25°C and with a dwell time in the developer section of 22 seconds, and then gummed with RC795 finisher (trademark of Agfa-Graphics NV).

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Claims (8)

  1. Verfahren zur Behandlung einer lithografischen Druckplatte, umfassend den Schritt, in dem eine tensidhaltige Flüssigkeit auf die Platte aufgebracht wird,
    dadurch gekennzeichnet, dass das Tensid mindestens ein Polyglycerin enthaltendes hydrophiles Segment und mindestens ein hydrophobes Segment aus der Gruppe bestehend aus einer gegebenenfalls substituierten Alkylengruppe, einem alkyl- oder arylsubstituierten Poly(meth)acrylat, einem gegebenenfalls substituierten Polyester, Polyether, Polyurethan, Polycarbosilan, Polysiloxan, Polystyrol und/oder einem eine Perfluoralkylgruppe enthaltenden Polymer enthält,
    mit der Maßgabe, dass die Flüssigkeit nicht als Feuchtmittellösung aufgetragen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Polyglycerin mindestens zwei, unabhängig voneinander aus folgender Gruppe gewählte Einheiten enthält :
    Figure imgb0044
    Figure imgb0045
  3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass das hydrophobe Segment eine gegebenenfalls substituierte Alkylengruppe bedeutet.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das hydrophile Segment und das hydrophobe Segment über eine Abstandshaltergruppe aus der Gruppe bestehend aus einer Estergruppe, einer Ethergruppe, einer Urethangruppe, einer Amidgruppe, einer Carbonatgruppe, einer Sulfonamidgruppe, einer Aminogruppe und einer Thioethergruppe aneinander gebunden sind.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Tensid ein gegebenenfalls substituierter Alkylpolyglycerinester oder ein gegebenenfalls substituierter Alkylpolyglycerinether ist.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Tensid aus der Gruppe bestehend aus Polyglycerinlaurylester, Polyglycerinlaurylether, Triglycerindiisostearat, Polyglycerindilaurylester und Polyglycerin-poly-12-hydroxystearinsäureester gewählt wird.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Druckplatte durch Belichtung und Entwicklung einer Druckplattenvorstufe, die eine Beschichtung mit einem oleophilen, in wässrig-alkalischem Entwickler lösbaren Harz umfasst, erhalten wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das oleophile Harz ein Phenolharz aus der Gruppe bestehend aus einem Novolakharz, einem Resolharz, einem Polyvinylphenol und einem carboxysubstituierten Polymer ist.
EP07110156.2A 2007-06-13 2007-06-13 Verfahren zur Behandlung einer Lithografiedruckplatte Not-in-force EP2002987B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07110156.2A EP2002987B1 (de) 2007-06-13 2007-06-13 Verfahren zur Behandlung einer Lithografiedruckplatte
CN200880019376A CN101678695A (zh) 2007-06-13 2008-06-10 平版印版的处理方法
PCT/EP2008/057204 WO2008152028A1 (en) 2007-06-13 2008-06-10 A method for treating a lithographic printing plate
US12/598,608 US8445179B2 (en) 2007-06-13 2008-06-10 Method for treating a lithographic printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07110156.2A EP2002987B1 (de) 2007-06-13 2007-06-13 Verfahren zur Behandlung einer Lithografiedruckplatte

Publications (2)

Publication Number Publication Date
EP2002987A1 EP2002987A1 (de) 2008-12-17
EP2002987B1 true EP2002987B1 (de) 2014-04-23

Family

ID=38691940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07110156.2A Not-in-force EP2002987B1 (de) 2007-06-13 2007-06-13 Verfahren zur Behandlung einer Lithografiedruckplatte

Country Status (4)

Country Link
US (1) US8445179B2 (de)
EP (1) EP2002987B1 (de)
CN (1) CN101678695A (de)
WO (1) WO2008152028A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687862B2 (ja) * 2010-08-06 2015-03-25 東京応化工業株式会社 洗浄装置、洗浄方法及び組成物
JP5205483B2 (ja) * 2011-02-04 2013-06-05 富士フイルム株式会社 平版印刷版原版及び製版方法
JP5211187B2 (ja) * 2011-02-28 2013-06-12 富士フイルム株式会社 平版印刷版原版及び製版方法
US9962662B2 (en) 2014-06-30 2018-05-08 Pall Corporation Fluorinated polymer and use thereof in the preparation of hydrophilic membranes (vi)
US9303133B2 (en) * 2014-06-30 2016-04-05 Pall Corporation Hydrophilic membranes and method of preparation thereof (IV)
US9309367B2 (en) * 2014-06-30 2016-04-12 Pall Corporation Membranes comprising cellulosic material and hydrophilic block copolymer (V)
US9718924B2 (en) 2014-06-30 2017-08-01 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (II)
US9260569B2 (en) * 2014-06-30 2016-02-16 Pall Corporation Hydrophilic block copolymers and method of preparation thereof (III)
US9394407B2 (en) * 2014-06-30 2016-07-19 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (I)
JP6879765B2 (ja) * 2017-02-10 2021-06-02 株式会社ダイセル レジスト親水化処理剤
US11492573B2 (en) * 2018-08-29 2022-11-08 Rockline Industries, Inc. Rapid dispersing wet wipe
CN111439024A (zh) * 2020-04-07 2020-07-24 江苏悦达印刷有限公司 一种新型印刷保留版机
CN113501948A (zh) * 2021-07-26 2021-10-15 智谱纳米科技(上海)有限公司 一种聚酯疏水母粒及其制备方法和应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504406A (en) * 1983-02-22 1985-03-12 American Hoechst Corporation Cleansing agent for printing plates
JPS60147395A (ja) * 1984-01-12 1985-08-03 Fuji Photo Film Co Ltd 平版印刷版用版面洗浄剤
JPS6283194A (ja) * 1985-10-09 1987-04-16 Fuji Photo Film Co Ltd 平版印刷版用版面保護剤
JP2533793B2 (ja) * 1988-06-17 1996-09-11 富士写真フイルム株式会社 平版印刷版の製造方法
EP0620125B1 (de) * 1992-11-02 1999-03-17 Fuji Oil Company, Limited Lithographisches druckverfahren und verwendung von wasserlöslicher hemicellulose als druckereihilfsmittel für lithographische druckplatten
JP3086354B2 (ja) 1993-03-30 2000-09-11 富士写真フイルム株式会社 感光性平版印刷版用の現像液および現像補充液
US5340699A (en) 1993-05-19 1994-08-23 Eastman Kodak Company Radiation-sensitive composition containing a resole resin and a novolac resin and use thereof in lithographic printing plates
JP3215564B2 (ja) * 1993-11-12 2001-10-09 関西ペイント株式会社 水性塗料組成物
EP0770497B1 (de) 1995-10-24 2002-04-03 Agfa-Gevaert Verfahren zur Herstellung einer lithographischen Druckplatte mit Wasser als Entwickler
EP0770496B1 (de) 1995-10-24 2002-03-13 Agfa-Gevaert Vorrichtung zur Herstellung einer lithographischen Druckplatte mit auf der Druckpresse stattfindenden Entwicklung
EP0770495B1 (de) 1995-10-24 2002-06-19 Agfa-Gevaert Verfahren zur Herstellung einer lithographischen Druckplatte mit auf der Druckpresse stattfindenden Entwicklung
EP0770494B1 (de) 1995-10-24 2000-05-24 Agfa-Gevaert N.V. Verfahren zur Herstellung einer lithographische Druckplatte mit auf der Druckpresse stattfindenden Entwicklung
RU2153986C2 (ru) 1996-04-23 2000-08-10 Хорселл Грэфик Индастриз Лимитед Термочувствительная композиция и способ ее применения для изготовления литографической печатной формы
JP3814961B2 (ja) 1996-08-06 2006-08-30 三菱化学株式会社 ポジ型感光性印刷版
EP0864420B2 (de) 1997-03-11 2005-11-16 Agfa-Gevaert Wärmempfindliches Aufzeichnungselement zur Herstellung von positiv arbeitenden Flachdruckformen
JP3779444B2 (ja) 1997-07-28 2006-05-31 富士写真フイルム株式会社 赤外線レーザ用ポジ型感光性組成物
EP0901902A3 (de) 1997-09-12 1999-03-24 Fuji Photo Film Co., Ltd. Positiv arbeitende lichtempfindliche Zusammensetzung für Infrarot Bebilderung
US6294318B1 (en) * 1998-09-09 2001-09-25 Fuji Photo Film Co., Ltd. Plate surface protective agent for lithographic printing plate, and fountain solution composition for lithographic printing plate
US6716569B2 (en) * 2000-07-07 2004-04-06 Fuji Photo Film Co., Ltd. Preparation method for lithographic printing plate
CN1308774C (zh) * 2002-04-25 2007-04-04 富士胶片株式会社 平版印刷版用修版液
EP2618215B1 (de) * 2004-05-31 2017-07-05 Fujifilm Corporation Verfahren zur Herstellung einer Lithografiedruckplatte

Also Published As

Publication number Publication date
WO2008152028A1 (en) 2008-12-18
EP2002987A1 (de) 2008-12-17
US8445179B2 (en) 2013-05-21
CN101678695A (zh) 2010-03-24
US20100137180A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
EP2002987B1 (de) Verfahren zur Behandlung einer Lithografiedruckplatte
EP1826021B1 (de) Positiv arbeitende Lithografiedruckformen
EP2197678B1 (de) Lithographiedruckplattenvorläufer
EP1594696B1 (de) Wärmeempfindlicher lithographischer druckplattenvorläufer
EP1826022B1 (de) Verfahren zur Herstellung eines lithographischen Druckplattenträgers
EP2106924B1 (de) Verfahren zur Behandlung einer lithografischen Druckplatte
EP2062728B1 (de) Verfahren zur Herstellung einer Lithographiedruckform
EP2031448B1 (de) Verfahren zur Entwicklung einer wärmeempfindlichen Lithographiedruckplatte mit einer wässrigen alkalischen Entwicklerlösung
EP1972460B1 (de) Verfahren zur Herstellung eines lithographischen Druckplattenträgers
EP2065211B1 (de) Verfahren zur Behandlung einer Lithografiedruckplatte
EP3170662B1 (de) Flachdruckplattenvorläufer
EP2098376B1 (de) Verfahren zur Herstellung eines Lithographiedruckplattenträgers
JP2007152875A (ja) 平版印刷版材料、平版印刷版材料の製版方法および平版印刷方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090617

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20120322

RIC1 Information provided on ipc code assigned before grant

Ipc: B41N 3/06 20060101ALI20130830BHEP

Ipc: B41N 3/00 20060101AFI20130830BHEP

Ipc: B41N 3/08 20060101ALI20130830BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 663572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007036208

Country of ref document: DE

Effective date: 20140528

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 663572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140423

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140423

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140823

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007036208

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

26N No opposition filed

Effective date: 20150126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140613

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007036208

Country of ref document: DE

Effective date: 20150126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160425

Year of fee payment: 10

Ref country code: GB

Payment date: 20160425

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160425

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007036208

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170613

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630