EP2002089A2 - Kolbendampfmaschine mit interner flash-verdampfung des arbeitsmediums - Google Patents
Kolbendampfmaschine mit interner flash-verdampfung des arbeitsmediumsInfo
- Publication number
- EP2002089A2 EP2002089A2 EP07723993A EP07723993A EP2002089A2 EP 2002089 A2 EP2002089 A2 EP 2002089A2 EP 07723993 A EP07723993 A EP 07723993A EP 07723993 A EP07723993 A EP 07723993A EP 2002089 A2 EP2002089 A2 EP 2002089A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- working
- piston
- steam engine
- engine according
- working medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/26—Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K21/00—Steam engine plants not otherwise provided for
- F01K21/02—Steam engine plants not otherwise provided for with steam-generation in engine-cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B5/00—Reciprocating-piston machines or engines with cylinder axes arranged substantially tangentially to a circle centred on main shaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B27/00—Instantaneous or flash steam boilers
- F22B27/16—Instantaneous or flash steam boilers involving spray nozzles for sprinkling or injecting water particles on to or into hot heat-exchange elements, e.g. into tubes
Definitions
- the steam generators required for a piston steam engine usually consist of a heat exchanger in which the working medium, such as water, is vaporized at the desired working pressure.
- the heat required for the evaporation process is thereby provided by a heat transfer medium, such as flue gases.
- the heat transfer medium in the steam generator is cooled to a temperature in the range of the evaporation temperature of the working medium.
- the compression ratio or the expansion ratio also referred to below as the volume ratio, is approximately 4 to a maximum of 8 in a screw machine
- volume ratios of large 100 can be achieved.
- the convective heat exchange hiss the working medium and the walls of the screw machine is very large, since there is a fully developed two-phase flow and, incidentally, the warm non-wearing surface is very large.
- the volumetric efficiency of a screw machine is due to design relatively poor, the leakage losses can not be reduced by a piston or piston rings as in a Kolbendampfmaschme.
- the heat transfer medium of the heat source should be cooled down to ambient temperature in as reversible a process as possible.
- the heat transfer medium of the heat source only cools down to a temperature close to the evaporation or condensation temperature.
- the heat transfer medium is cooled, for example, only from 200 ° C to 140 0 C and not to the ambient temperature.
- this relatively high end temperature of the heat transfer medium of the heat source and the associated low exergetic efficiency have a particular effect unfavorable to the performance and economy of the heat engine.
- the invention is based on the object to provide a heat engine, which at least partially overcomes the above-mentioned disadvantages of the known from the prior art heat engines.
- the highest possible proportion of the available heat is based on the object to provide a heat engine, which at least partially overcomes the above-mentioned disadvantages of the known from the prior art heat engines.
- Piston steam engine is introduced when the piston is in the range of a top dead center (TDC).
- TDC top dead center
- At least one pre-chamber is provided, which is in communication with the working space, wherein the working medium is preferably introduced into the pre-chamber and particularly preferably on a circular path in the antechamber.
- the circular path of the liquid phase causes centrifugal forces which greatly accelerate the liquid phase radially outward due to the high density.
- the resulting in the flash evaporation of the working medium vapor has a significantly lower density than the liquid phase and can flow into the cylinder chamber, since the connection between the antechamber and the working chamber in the center of the prechamber opens into this.
- the radial acceleration causes the liquid phase can not escape from the antechamber. This achieves a very simple and at the same time effective phase separation.
- the volume of the prechamber should be as small as possible.
- a plurality of pre-chambers and / or a plurality of injectors per cylinder are provided, which are all connected to the working space.
- This makes it possible to introduce the working fluid at different temperatures as a function of the pressure prevailing in the working space during the working cycle and / or the prevailing temperature in the working space and / or the position of the piston in the atria and / or the working space.
- This allows working media with different Temperatures without Exergielope be coupled due to mixing operations in the piston steam engine according to the invention.
- liquid working medium can be atomized during the injection process and distributed in the form of small drops within the working space and, if available, and the antechamber.
- the friction between the droplets and the gaseous phase of the working medium avoids direct contact between the droplets and the surfaces of the piston steam engine. As a result, the unwanted heat transfer between the drops and the surfaces of the piston steam engine is greatly reduced.
- injectors may serve injectors, as used in fuel injection systems of conventional gasoline or diesel internal combustion engines. Of course, it may be necessary to adapt these commercially available injectors to the specific conditions of use, in particular the sometimes very high temperatures and the corrosive working media.
- the heat transfer medium has a temperature of about 200 c C to 350 ° C, water has proved to be particularly suitable.
- R134a has been found to be particularly suitable.
- the internal thermal insulation is of particular importance to prevent the cooling liquid working fluid from the cyclone wall or other surfaces of the
- This warmedammende coating disposed on the work space or cyclone inner wall may be for example made of Teflon, enamel or ceramic.
- the surfaces of the piston steam engine which come into contact with the working medium can be heated in order to effectively prevent the condensation of the working medium on these surfaces.
- the components of the machine which are accessible to the gaseous phase must have a temperature which is greater than the condensation temperature of the working medium at the gas pressure currently being applied. If the surfaces of the components were cold, some of the resulting gaseous phase would abruptly condense on these surfaces and the condensed phase would no longer be available to drive the piston and the performance and efficiency of the machine would decrease.
- FIGS. 1 and 2 exemplary embodiments of piston steam engines according to the invention with cyclone
- Figure 3 An antechamber of a piston steam engine according to the invention.
- Figure 4 an embodiment of an inventive
- Piston steam engines with an injector injecting into the working space.
- Figure 1 shows an example of the structure of a first embodiment of a piston steam engine according to the invention with an antechamber 13, a piston 3, a cylinder 5, a connecting rod 7 and a crankshaft 9, which may be coupled to a generator, not shown.
- the piston 3 and the cylinder 5 define a working space 11.
- An antechamber 13 is connected to the working space 11.
- In the antechamber 13 open a supply line 15 and a discharge line 17 for the working medium.
- the discharge 17 for the working medium can also open directly into the working space 11 (not shown).
- a switchable inlet valve 19 is arranged in the supply line 15 for the liquid working medium.
- this inlet valve which can be designed as an injector, liquid working fluid can be injected into the pre-chamber 13 become. This injection is preferably carried out when the piston 3 is in the region of the top dead center OT.
- a switchable outlet valve 21 located in the outlet 17 for the working medium is opened and the piston 3 pushes the remaining liquid phase and the working medium which has become vaporous during its subsequent movement in the direction TDC the work space 11 from.
- the discharge line 17 serves to discharge the liquid phase remaining in the pre-chamber 13. About the derivative 17 and the vaporized working medium can be removed. Alternatively, it is also possible in the working space 11 to provide an additional steam valve 22, which takes over the removal of the vaporized working medium.
- the steam valve 22 may be formed as a poppet valve and (not shown) by a camshaft, similar to a gas exchange valve of an internal combustion engine and be actuated.
- the discharge line 17.1 for the working medium flows into a condenser 23.
- the working medium discharged through the steam valve 22 can be led into the condenser 23 through a discharge line 17.3.
- Figure 2 shows the structure of a piston steam engine according to the invention with two prechambers 13.1 and 13.2, two supply lines 15.1 and 15.2 for the working fluid.
- the supply lines 15.1 and 15.2 are two switchable intake valves
- the remaining components of the piston steam engine and its periphery can be designed as in the first exemplary embodiment according to FIG. 1, to which reference is hereby made.
- the working medium contained in the first supply line 15.1 has a higher temperature than that in the second supply line
- the two Temperature levels is available.
- the waste heat of an internal combustion engine can be used optimally, since in an internal combustion engine, the exhaust gases at a temperature greater 200 0 C incurred while the Kuhlschwarme and the oil have a temperature of about 120 0 C.
- a first heat exchanger (not shown), which is operated with the waste heat of the exhaust gases, and a second heat exchanger (not shown), which is heated with the waste heat of Kuhlwassers and the oil required ,
- the warmer working medium is injected at a temperature of 200 0 C. If this has cooled to 120 0 C, then some 120 0 C hot working medium is injected.
- the related to the heat of combustion efficiency of an internal combustion engine can be increased by about 10% with the Kolbendampfmaschme shown.
- the erfmdungsgeemployede Kolbendampfmaschme works on the two-stroke principle. Em intake stroke and a compression stroke omitted.
- the outlet valve or valves 21 are closed and then the working medium is injected through the inlet valve 19.
- the outlet valve 21 is opened.
- the remaining liquid phase and the resulting gaseous phase are discharged through the outlet valve 21. Liquid and gaseous phase can pass through the same outlet valve 21 or separate valves are provided.
- FIG. 3 shows the construction of an antechamber 13 for a piston steam engine according to the invention.
- the prechamber 13 is constructed similar to a cyclone separator.
- the supply line 15, the discharge line 17 and the valves 19 and 21 are indicated.
- the liquid working fluid is introduced into the prechamber 13 substantially tangentially and moves on a radially outer circular path. Due to its lower density, the steam produced in the flash evaporation is forced into the middle of the prechamber 13, so that a separation of liquid and vaporous working medium m of the prechamber 13 takes place.
- a compound 29 is arranged, which mouths in the working space 11. Via the connection 29, the vaporous working medium passes from the antechamber into the working space 11.
- the gravity supports the separation of liquid and vapor phase in addition.
- the affected surfaces of the piston 3, cylinder 5 and prechamber 13 must be heated and / or heat-sealed.
- two alternative measures can be taken.
- the pre-chamber 13 is geometrically designed such that the injected liquid phase of the working medium can move stably on a circular path.
- the pre-chamber 13 is referred to in this case as a cyclone.
- the centrifugal forces occurring on the circular path ensure that the resulting steam, on which act due to lower density of low centrifugal forces, can escape into the cylinder chamber of the piston steam engine and the liquid Heat transfer medium, act on the large density due to the large centrifugal forces, m the circular path remains. Experiments have shown that in this way a phase separation is achieved during the evaporation process.
- phase separation succeeds: the liquid phase remains in the cyclone during the flash evaporation, while the vapor phase escapes from the cylinder space.
- FIG. 4 shows a further exemplary embodiment of a piston steam engine according to the invention.
- the pre-chamber 13 is omitted and the liquid working medium is injected directly into the working space 11. This can be done with the aid of an injector known from the prior art.
- the working fluid is atomized during the injection process into small drops, similar to the injection of diesel fuel into the combustion chamber of an internal combustion engine.
- the drops are held in suspension by friction in the gas phase. In this way, the drops can touch the hot surfaces only to a small extent and the heat exchange between the liquid phase and the hot surfaces is kept low.
- piston steam engine With the piston steam engine according to the invention approximately twice the mechanical power can be obtained in an existing heat source compared to conventional machines in which an ORC or a Kalina process are realized.
- a safe working fluid such as water, can be used compared to ORC processes and quay processes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006015754 | 2006-04-04 | ||
PCT/EP2007/003052 WO2007115769A2 (de) | 2006-04-04 | 2007-04-04 | Kolbendampfmaschine mit interner flash-verdampfung des arbeitsmediums |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2002089A2 true EP2002089A2 (de) | 2008-12-17 |
EP2002089B1 EP2002089B1 (de) | 2016-03-23 |
Family
ID=38581444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07723993.7A Not-in-force EP2002089B1 (de) | 2006-04-04 | 2007-04-04 | Kolbendampfmaschine mit interner flash-verdampfung des arbeitsmediums |
Country Status (8)
Country | Link |
---|---|
US (1) | US8061133B2 (de) |
EP (1) | EP2002089B1 (de) |
JP (1) | JP5145326B2 (de) |
KR (1) | KR101417143B1 (de) |
CN (1) | CN101454542A (de) |
CA (1) | CA2650541C (de) |
IL (1) | IL194523A (de) |
WO (1) | WO2007115769A2 (de) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8065876B2 (en) * | 2005-09-21 | 2011-11-29 | Solartrec Inc. | Heat engine improvements |
DE102008013673B3 (de) * | 2008-03-11 | 2009-09-17 | Richard Engelmann | Kolbendampfmaschine für einen solar betriebenen Rankine-Kreislauf |
DE102008041939A1 (de) * | 2008-09-10 | 2010-03-11 | Ago Ag Energie + Anlagen | Verfahren zum Betreiben einer Wärmepumpe oder Kältemaschine bzw. einer Kraftmaschine sowie Wärmepumpe oder Kältemaschine und Kraftmaschine |
JP5169984B2 (ja) * | 2009-05-11 | 2013-03-27 | 株式会社デンソー | 熱機関 |
WO2010132924A1 (en) * | 2009-05-18 | 2010-11-25 | Martin De Silva | System, method and components for steam power |
DE102010027347B4 (de) * | 2010-07-16 | 2021-08-12 | Josef Birner | Vorrichtung zur Durchführung eines thermodynamischen Kreisprozesses |
WO2012097215A1 (en) | 2011-01-13 | 2012-07-19 | General Compression, Inc. | Systems, methods and devices for the management of heat removal within a compression and/or expansion device or system |
CN102230404B (zh) * | 2011-07-06 | 2013-10-16 | 浙江大学 | 智能热能回收转换系统及其使用方法 |
JP5804555B2 (ja) * | 2011-09-14 | 2015-11-04 | 定見 ▲吉▼山 | 蒸気機関 |
EP2751391A4 (de) * | 2011-10-18 | 2015-04-22 | Lightsail Energy Inc | Druckluftenergiespeichersystem |
CN102434257B (zh) * | 2011-11-17 | 2013-08-14 | 徐明奇 | 车、船发动机废热发电装置 |
US9574765B2 (en) * | 2011-12-13 | 2017-02-21 | Richard E. Aho | Generation of steam by impact heating |
DE102013007337A1 (de) * | 2013-04-27 | 2014-10-30 | Manfred Carlguth | Wärmekraftmaschine mit hohem thermischen Wirkungsgrad |
DE112014006400A5 (de) | 2014-02-25 | 2016-12-22 | Manfred Carlguth | Wärmekraftmaschine mit hohem thermischen Wirkungsgrad |
CN104806297A (zh) * | 2015-03-11 | 2015-07-29 | 郭富强 | 一种余热利用的方法 |
CN107614832B (zh) * | 2015-05-18 | 2020-04-14 | 理查德·E·阿霍 | 空化引擎 |
JP5826962B1 (ja) * | 2015-05-25 | 2015-12-02 | ライトブレインラボ合同会社 | 凝縮室付き熱機関 |
DE102015109174B3 (de) * | 2015-06-10 | 2016-03-31 | En3 Gmbh | Verfahren zur Energieanreicherung eines Arbeitsmediums bei einer Entspannungsverdampfung und Vorrichtung zur Durchführung des Verfahrens |
WO2017025700A1 (en) * | 2015-08-13 | 2017-02-16 | Gas Expansion Motors Limited | Thermodynamic engine |
DE102015013896B3 (de) * | 2015-10-27 | 2017-01-12 | JuB-Creative Product GmbH | Niedertemperaturwärmekraftanlage |
DE102015013895B4 (de) * | 2015-10-27 | 2020-06-18 | JuB-Creative Product GmbH | Gebäudetechnische Hybridanlage |
CN108533328A (zh) * | 2018-04-28 | 2018-09-14 | 曹连国 | 一种基于空调原理逆向应用的新型低温蒸汽机 |
CN113803114A (zh) * | 2020-06-16 | 2021-12-17 | 机械科学研究院浙江分院有限公司 | 活塞式甲醇蒸汽机及其系统,以及蒸汽机循环做功方法 |
CN112343662A (zh) * | 2020-12-14 | 2021-02-09 | 王新跃 | 一种以水为能源的发动机 |
DE102021102803B4 (de) | 2021-02-07 | 2024-06-13 | Kristian Roßberg | Vorrichtung und Verfahren zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie |
DE102021108558B4 (de) | 2021-04-06 | 2023-04-27 | Kristian Roßberg | Verfahren und Vorrichtung zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie |
WO2023232672A1 (de) * | 2022-05-31 | 2023-12-07 | Manfred Rapp | Luft-dampf-motor und dessen verwendung |
EP4306775B1 (de) | 2022-07-11 | 2024-08-14 | Kristian Roßberg | Verfahren und vorrichtung zur umwandlung von niedertemperaturwärme in technisch nutzbare mechanische energie |
WO2024016076A1 (en) * | 2022-07-20 | 2024-01-25 | Hydrograph Clean Power Inc. | Actuator comprising electrically conductive porous material |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB171291A (en) * | 1920-10-18 | 1921-11-17 | Walter Irving Hoover | Improvements in combined steam generators and engines |
DE689961C (de) * | 1937-08-06 | 1940-04-10 | Kloeckner Humboldt Deutz Akt G | Dampfkraftmaschine mit Dampfbildung im Zylinder |
US3720188A (en) * | 1971-01-11 | 1973-03-13 | G Mead | Compact steam generator and system |
US3720186A (en) * | 1971-10-14 | 1973-03-13 | Rourke W O | Dispensing apparatus |
DE2419688A1 (de) * | 1974-01-21 | 1975-08-07 | Boehler & Co Ag Geb | Dampfturbinenprozess mit organischen medien |
US4149383A (en) * | 1977-07-29 | 1979-04-17 | Spalding Wesley H | Internal vaporization engine |
JPS5638507A (en) * | 1979-09-03 | 1981-04-13 | Toshimi Negishi | Prime mover |
US4301655A (en) * | 1979-12-14 | 1981-11-24 | Thomas Luther B | Combination internal combustion and steam engine |
GB2082683B (en) * | 1980-08-18 | 1984-03-07 | Thermal Systems Ltd | External combustion reciprocating heat engine |
US4416113A (en) * | 1980-12-15 | 1983-11-22 | Francisco Portillo | Internal expansion engine |
JPS58140410A (ja) * | 1981-07-23 | 1983-08-20 | ジアンニ・アブラモ・ドツト | 往復機関 |
US4599859A (en) * | 1985-02-01 | 1986-07-15 | Urso Charles L | Combined steam generator and engine |
JPH06117256A (ja) * | 1992-09-30 | 1994-04-26 | Isuzu Motors Ltd | 直接噴射式ディーゼル機関の燃焼室 |
FI101738B (fi) * | 1996-01-30 | 1998-08-14 | Waertsilae Nsd Oy Ab | Ruiskutusventtiilijärjestely |
DE10000082A1 (de) * | 1999-11-12 | 2001-05-17 | Guenter Frank | Dampfmotor und Verfahren zum Betreiben von Dampfmotoren |
DE10062835A1 (de) * | 2000-12-17 | 2002-06-20 | Erich Schneider | Kolbenverbrennungsmotor mit sequentieller Dampfeinspritzung |
-
2007
- 2007-04-04 KR KR1020087026893A patent/KR101417143B1/ko not_active IP Right Cessation
- 2007-04-04 CN CNA2007800181113A patent/CN101454542A/zh active Pending
- 2007-04-04 JP JP2009503486A patent/JP5145326B2/ja not_active Expired - Fee Related
- 2007-04-04 CA CA2650541A patent/CA2650541C/en not_active Expired - Fee Related
- 2007-04-04 WO PCT/EP2007/003052 patent/WO2007115769A2/de active Application Filing
- 2007-04-04 EP EP07723993.7A patent/EP2002089B1/de not_active Not-in-force
-
2008
- 2008-10-05 IL IL194523A patent/IL194523A/en not_active IP Right Cessation
- 2008-10-06 US US12/246,269 patent/US8061133B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2007115769A2 * |
Also Published As
Publication number | Publication date |
---|---|
US20090100832A1 (en) | 2009-04-23 |
JP5145326B2 (ja) | 2013-02-13 |
US8061133B2 (en) | 2011-11-22 |
WO2007115769A2 (de) | 2007-10-18 |
WO2007115769A3 (de) | 2008-07-10 |
IL194523A0 (en) | 2009-08-03 |
EP2002089B1 (de) | 2016-03-23 |
KR101417143B1 (ko) | 2014-07-08 |
IL194523A (en) | 2013-02-28 |
KR20080112362A (ko) | 2008-12-24 |
CN101454542A (zh) | 2009-06-10 |
CA2650541C (en) | 2014-12-09 |
CA2650541A1 (en) | 2007-10-18 |
JP2009532619A (ja) | 2009-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2002089B1 (de) | Kolbendampfmaschine mit interner flash-verdampfung des arbeitsmediums | |
EP1330592B1 (de) | Verfahren zum betreiben einer dampf-wärmekraftmaschine, insbesondere als fahrzeug-antriebsaggregat | |
DD156097A5 (de) | Drehkolbenmotor mit aeusserer verbrennung,verfahren zum betrieb dieses motors und bausatz aus teilen des motors | |
DD156096A5 (de) | Verbrennungsmotor mit hin-und hergehenden kolben und mit aeusserer verbrennung | |
DE3049124A1 (de) | "kolbenmotor, verfahren zu seinem betrieb und bausatz aus teilen des motors" | |
DE3049182A1 (de) | Drehkolbenmotor, verfahren zum betrieb des drehkolbenmotors und bausatz mit teilen des drehkolbenmotors | |
DE102007038073A1 (de) | Effiziente Energiewandlungsmaschine durch kombinierte Brennkraftmaschine mit Dampfprozess | |
DE4303692A1 (de) | Freikolben-Exergie-Verbrennungsmotor mit verringertem Brennstoffbedarf | |
DE19533249C1 (de) | Strömungsmaschine zur Erzeugung mechanischer Arbeit aus Wärmeenergie und ein Verfahren zur Erzeugung mechanischer Arbeit aus Wärmeenergie mit einer solchen Strömungsmaschine | |
DE10055524A1 (de) | Dampfmotor und Verfahren zum Betreiben von Dampfmotoren | |
DE102010027347B4 (de) | Vorrichtung zur Durchführung eines thermodynamischen Kreisprozesses | |
DE102018206073B3 (de) | System und Verfahren zur Verdichtung und Überführung von verflüssigtem Brennstoff in die Gasphase | |
DE10160593B4 (de) | Wärmekraftanlage | |
DE2240426A1 (de) | Verbrennungsmotor mit abwaermeverwertung | |
DE2743584A1 (de) | Waermekraftmaschine | |
DE19506186B4 (de) | Verfahren zum Betreiben einer Dampfkraftmaschinenanlage und Vorrichtung zur Durchführung des Verfahrens | |
CH699696A2 (de) | Verfahren zur Erhöhung des Wirkungsgrades eines Hubkolben-Verbrennungsmotors sowie Hubkolben-Verbrennungsmotor. | |
EP1700023A2 (de) | Heissgaskraftmaschine | |
DE102013013807A1 (de) | Verdampfungs-Hubkolbenmotor | |
DE332227C (de) | Vereinigte Viertaktexplosionskraft- und Dampfmaschine | |
DE531532C (de) | Vereinigte Brennkraft- und Dampfkraftanlage | |
DE3129178A1 (de) | "verbrennungsmotor" | |
DE2544015A1 (de) | Verzoegernd expandierende antriebsmaschine | |
DE102011052502B4 (de) | Verbrennungsmotor | |
DE2506040A1 (de) | Gasturbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081021 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20090323 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150929 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 783369 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007014653 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160723 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007014653 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160725 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161230 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160523 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160623 |
|
26N | No opposition filed |
Effective date: 20170102 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160623 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160404 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 783369 Country of ref document: AT Kind code of ref document: T Effective date: 20160404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160404 |