EP1996797A2 - Luftzuführung zu dem luftgekühlten kondensator eines kraftwerkes - Google Patents

Luftzuführung zu dem luftgekühlten kondensator eines kraftwerkes

Info

Publication number
EP1996797A2
EP1996797A2 EP07711229A EP07711229A EP1996797A2 EP 1996797 A2 EP1996797 A2 EP 1996797A2 EP 07711229 A EP07711229 A EP 07711229A EP 07711229 A EP07711229 A EP 07711229A EP 1996797 A2 EP1996797 A2 EP 1996797A2
Authority
EP
European Patent Office
Prior art keywords
condensation
wind
power plant
plant
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07711229A
Other languages
English (en)
French (fr)
Other versions
EP1996797B1 (de
Inventor
Heinrich Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Energietchnik GmbH
Original Assignee
GEA Energietchnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Energietchnik GmbH filed Critical GEA Energietchnik GmbH
Publication of EP1996797A2 publication Critical patent/EP1996797A2/de
Application granted granted Critical
Publication of EP1996797B1 publication Critical patent/EP1996797B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements

Definitions

  • the invention relates to a power plant with a condensation plant according to the features in the preamble of patent claim 1.
  • Condensing systems are used for cooling turbine or process steams and have been used in energy engineering in very large dimensions for many years.
  • the efficiency of a power plant depends not inconsiderably on the condensation capacity of the condensation plant, the local climatic conditions and the related wind speeds and wind directions have a significant impact on the condensation performance.
  • Present-day types of condensation plants therefore have windbreak walls which surround the heat exchanger elements in their entirety in order to prevent recirculation of the heated cooling air.
  • condensation plant It is also important that all fans of the condensation plant are flown as evenly as possible. Higher natural wind speeds can lead to a local pressure drop below the fans. The fans concerned can not supply enough cooling air, which reduces the condensation capacity and may have to reduce the capacity of a turbine connected to the steam circuit.
  • the condensation plant may be in the lee of building structures, especially in the lee of the boiler house and the turbine house of a power plant.
  • a condensation plant as close as possible, that is built in the immediate vicinity of the turbine house, to keep the conduction paths short and to condense the water vapor as quickly as possible. Nevertheless, in order to ensure an optimal flow, condensation plants are already elevated relatively high, so that a substantially unimpeded flow from all sides, that is independent of the wind direction is possible.
  • the present invention seeks to show a power plant with a condensation system for the condensation of water vapor according to the features in the preamble of claim 1, wherein the warm air recirculation is reduced.
  • wind doors are provided for changing the flow area of the wind passages.
  • the width of the wind passages is often dictated by structural necessities. Often these distances will hardly change.
  • it can be controlled relatively accurately by wind gates, which air flow should be guided through the wind passages.
  • the wind doors are completely open in order to allow unimpeded passage of the incoming air.
  • it is also possible to close the wind gates at least partially when the wind speed is too high or when the wind direction has changed.
  • the wind gates can be coupled with means by which the flow area can be controlled as a function of the wind direction. For example, it could be a disadvantage if not the condensation plant, but the boiler and turbine houses are in the lee.
  • the condensation plant can "breathe", ie that it flows independently of the wind direction cooling air in a manner that prevents hot air recirculation.
  • FIG. 1 and 2 are two perspective views of a power plant model according to the prior art
  • 3 and 4 show two perspective views of a power plant model according to the solution according to the invention
  • Figure 5 is a model showing the flow conditions in a power plant according to the prior art.
  • Figure 6 is a model showing the flow conditions in a power plant according to the invention.
  • FIG. 1 shows a calculation model of a power plant 1 with a condensation plant 2 for the condensation of water vapor, which is supplied to the condensation plant 2 from a turbine house 3.
  • the turbine house 3 is preceded by a boiler house 4.
  • the turbine house 3 and the boiler house 4 are referred to in their entirety as building structures of the power plant.
  • the wind direction W is symbolized by the arrow.
  • the wind speed is for example 7 m / s.
  • the temperature profile of the exiting from the heat exchanger elements 5, heated cooling air can be seen, in particular, the circled area is of interest.
  • hot air recirculation is not limited to the circled corner region of the illustrated th condensation system occurs, but also in the area of the wind shadow behind the boiler and turbine houses 3, 4.
  • the reason for this can be seen in Figure 5.
  • the drawn arrows in Figure 5 illustrate the local wind direction.
  • the length of the arrows is a measure of the local wind speed.
  • the flowed in from the right in the image plane power plant 1 has a condensation plant 2, which lies in the lee of the building structure of a power plant, ie the boiler house 4 and in particular of the turbine house 3.
  • the condensation plant 2 is elevated high, the spatial proximity to the turbine house 3 means that the wind flowing in from the right in the image plane has to be sucked through a relatively narrow area under the heat exchanger elements 5 of the condensation plant 2.
  • the high number and density of the individual arrows in this area makes it clear that relatively high wind speeds prevail there. In turn, these high wind speeds lead to hot air also being discharged from the heat exchanger elements 5 at the edge of the condensation plant 2 and flowing back under the condensation plant 2.
  • FIG. 3 shows that the turbine house no longer represents a barrier to the cooling air flowing between the boiler houses 4, but instead delimits a wind passage 6, which is fluidically connected via a wind gate 7, which is only hinted at, to the suction space below the condensation installation 2.
  • the wind passage 6 is guided as a kind of tunnel through the turbine house 3.
  • FIG. 4 shows that the wind passages 6 open below the heat exchanger elements 5 of the condensation plant 2 arranged on a support structure 8 so that the air emerging from the wind passages 6 does not have to be completely sucked in over the roofs of the turbine houses 3 and boiler houses 4 can also be supplied directly via the wind passages 6 of the condensation plant 2.

Abstract

Kraftwerk mit einer Kondensationsanlage (2) zur Kondensation von Wasserdampf, wobei die Kondensationsanlage (2) auf einer Stützkonstruktion (8) angebracht und durch Kühlluft von unten angeströmte Wärmetauscherelemente (5) aufweist, wobei die Kondensationsanlage (2) mit ihrer einen Längsseite in unmittelbarer Nachbarschaft zu einer Gebäudestruktur des Kraftwerks (1) angeordnet ist. In einem Turbinenhaus (3) ist wenigstens eine Windpassage (6) angeordnet, durch welche Kühlluft unter die Wärmetauscherelemente (5) strömt und/oder gesaugt wird.

Description

Kraftwerk mit einer Kondensationsanlage zur Kondensation von
Wasserdampf
Die Erfindung betrifft ein Kraftwerk mit einer Kondensationsanlage gemäß den Merkmalen im Oberbegriff des Patentanspruchs 1.
Kondensationsanlagen werden zur Kühlung von Turbinen- oder Prozessabdämpfen verwendet und sind im energietechnischen Bereich in sehr großen Dimensionen seit vielen Jahren im Einsatz. Der Wirkungsgrad eines Kraftwerks hängt nicht unerheblich von der Kondensationsleistung der Kondensationsanlage ab, wobei die lokalen klimatischen Verhältnisse und die hiermit zusammenhängenden Windgeschwindigkeiten und Windrichtungen einen erheblichen Einfluss auf die Kondensationsleistung haben. Heutige Bauformen von Kondensationsanlagen weisen daher Windschutzwände auf, welche die Wärmetauscherelemente in ihrer Gesamtheit umgeben, um eine Rezirkulation der erwärmten Kühlluft zu verhindern.
Wichtig ist auch, dass alle Ventilatoren der Kondensationsanlage möglichst gleichmäßig angeströmt werden. Höhere naturbedingte Windgeschwindigkeiten können zu einem lokalen Druckabfall unterhalb der Ventilatoren führen. Die betroffenen Ventilatoren können nicht genügend Kühlluft fördern, wodurch die Kondensationsleistung sinkt und eine an den Dampfkreislauf angeschlossene Turbine unter Umständen in ihrer Leistung zurückgefahren werden muss. Das andere Extrem ist, dass sich die Kondensationsanlage unter Umständen im Windschatten von Gebäudestrukturen, insbesondere im Windschatten des Kesselhauses und des Turbinenhauses eines Kraftwerks befindet. Üblicherweise wird eine Kondensationsanlage so nah wie möglich, d.h. in unmittelbarer Nachbarschaft zum Turbinenhaus errichtet, um die Leitungswege kurz zu halten und den Wasserdampf so schnell wie möglich zu kondensieren. Um dennoch eine optimale Anströmung zu gewährleisten, werden Kondensationsanlagen bereits relativ hoch aufgeständert, damit eine im Wesentlichen ungehinderte Anströmung von allen Seiten, d.h. unabhängig von der Windrichtung möglich ist. In der Praxis hat sich jedoch gezeigt, dass bei Kondensationsanlagen, deren Ansaugraum unterhalb der Ventilatoren im Windschatten von Gebäudstrukturen angeordnet ist, Warmluftrezirkulationen auftreten und zwar dort, wo die anströmende Luft durch den verbleibenden Freiraum zwischen Gebäudestruktur und der aufgeständerten Kondensationsanlage aufgrund der lokalen Querschnittsverengung mit relativ hoher Geschwindigkeit nach unten und unter die Wärmetauscherelemente strömt. Hierbei kann es zu dem unerwünschten Effekt kommen, dass trotz installierter Windschutzwände erwärmte Kühlluft von der zuströmenden Kühlluft mitgerissen wird und unter die Wärmetauscherelemente befördert wird, d.h. es kommt zur Warmluftrezirkulation. Durch die Temperaturerhöhung der Kühlluft sinkt die Kondensationsleistung, was sich wiederum nachteilig auf den Kraftwerkwirkungsgrad auswirkt.
Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Kraftwerk mit einer Kondensationsanlage zur Kondensation von Wasserdampf gemäß den Merkmalen im Oberbegriff des Patentanspruchs 1 aufzuzeigen, bei welchem die Warmluftrezirkulation vermindert ist.
Die Lösung wird in einem Kraftwerk mit den Merkmalen des Patentanspruchs 1 gesehen. Vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand der Unteransprüche. Umfangreiche Untersuchungen haben gezeigt, dass das angesprochene Problem der Warmluftrezirkulation besonders kostengünstig dadurch gelöst werden kann, wenn Gebäudestrukturen, die benachbart der Kondensationsanlage platziert sind, tunnelartige Windpassagen aufweisen, durch welche Kühlluft unter die Wärmetauscherelemente strömt und/oder gesaugt wird. Die Windpassagen sind insbesondere in Turbinenhäusern vorgesehen und erfordern keine separat zu errichtenden Strukturen. Wichtig ist, dass die unter Umständen ohnehin zwischen Kesselhäusern vorhandenen, unbebauten Freiräumen zur Kondensationsanlage hin geöffnet werden, so dass anströmende Luft bodennah zwischen den Kesselhäusern hindurch in die Windpassagen des Turbinenhauses strömen kann und damit nicht ausschließlich den längeren und rezirkulationsgefährdeten Weg über die Dächer der Kessel- und Turbinenhäuser hinweg nehmen muss, sondern unmittelbar von unten in den Ansaugraum der Kondensationsanlage gelangt. Die Auslegung, das heißt insbesondere die Größe der Windpassagen erfolgt anforderungsgerecht und unter Berücksichtigung der lokal vorherrschenden Windverhältnisse, der klimatischen Bedingungen sowie weiterer Einflussgrößen, so dass sichergestellt werden kann, dass die Kondensationsanlage bis zu bestimmten Windgeschwindigkeiten rezirkulationsfrei arbeitet, selbst wenn die Kondensationsanlage im Windschatten von Gebäudestrukturen des Kraftwerks steht. Mit der erfindungsgemäßen Lösung ist es möglich, Garantiezusagen besser einzuhalten, z.B. wenn von dem Betreiber des Kraftwerks gefordert wird, dass die Kondensationsanlage bei Windgeschwindigkeiten über 3 m/s rezirkulationsfrei arbeiten soll. Die Auslegung der Kondensationsanlage kann aufgrund der komplexen Strömungsverhältnisse nicht auf analytischem Wege erfolgen, sondern nur über numerische Berechnungsmethoden. Mit Hilfe von CFD-Verfahren (Computational Fluid Dynamics) ist es möglich, verschiedene Formgebungen und Anordnungen der Gebäudestrukturen zu vergleichen und auf diese Weise lokale Strömungserscheinungen zu analysieren, die mit Messungen nur schwer oder überhaupt nicht zu erfassen sind. Aufgrund der Vielzahl der Parameter und der Größe heutiger Kraftwerksneubauten ergeben sind ausgesprochen komplexe Berechnungsmodelle, durch welche sich das be- kannte Problem der Warmluftrezirkulation oftmals überhaupt erst lokalisieren lässt.
Selbstverständlich ist es immer möglich, sehr hohe Windschutzwände randsei- tig der Wärmetauscherelemente anzuordnen, so dass die erwärmte Kühlluft keinesfalls mit der angesaugten Kühlluft vermischt wird. Allerdings sind die Investitionskosten bei der Errichtung moderner Kraftwerke erheblich, so dass nach kostengünstigen Alternativen und unterstützenden Maßnahmen gesucht werden muss. Durch das Vorsehen von Windpassagen in bislang geschlossenen Gebäudestrukturen eröffnen sich nicht nur neue Stromlinien für die Zuführung von Kühlluft, sondern zudem effektive Möglichkeiten, den Einfluss des Windes auf den Kraftwerkwirkungsgrad bei gleichzeitig geringen Investitionen zu vermindern.
Es wird als vorteilhaft angesehen, wenn Windtore zum Verändern der Durchströmfläche der Windpassagen vorgesehen sind. Die Breite der Windpassagen ist häufig durch bauliche Notwendigkeiten vorgegeben. Diese Abstände werden sich oftmals kaum verändern lassen. Allerdings kann durch Windtore relativ genau gesteuert werden, welche Luftmenge durch die Windpassagen geführt werden soll. Die Windtore sind im Regelfall vollständig geöffnet, um einen ungehinderten Durchtritt der anströmenden Luft zu ermöglichen. Umgekehrt ist es auch möglich, die Windtore zumindest teilweise zu schließen, wenn die Windgeschwindigkeit zu hoch ist oder wenn sich die Windrichtung geändert hat. Insbesondere können die Windtore mit Mitteln gekoppelt sein, über welche die Durchströmfläche in Abhängigkeit von der Windrichtung steuerbar ist. Beispielsweise könnte es von Nachteil sein, wenn nicht die Kondensationsanlage, sondern die Kessel- und Turbinenhäuser im Windschatten stehen. In diesem Fall ist es zweckmäßiger, die Windtore geschlossen zu halten, damit sich unterhalb der Wärmetauscherelemente ein gewisser Staudruck ausbildet, der durch das Schließen der Windtore erhöht werden kann. Entscheidend ist letztlich, dass die Kondensationsanlage "atmen" kann, d.h., dass ihr unabhängig von der Windrichtung Kühlluft in einer Art und Weise zuströmt, die eine Warmluftrezirkulation verhindert. Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Figuren
1 und 2 zwei perspektivische Darstellungen eines Kraftwerksmodells gemäß dem Stand der Technik;
Figuren
3 und 4 zwei perspektivische Darstellungen eines Kraftwerksmodells gemäß der erfindungsgemäßen Lösung;
Figur 5 ein Modell, das die Strömungsverhältnisse bei einem Kraftwerk gemäß dem Stand der Technik zeigt und
Figur 6 ein Modell, das die Strömungsverhältnisse bei einem lösungsgemäßen Kraftwerk zeigt.
Figur 1 zeigt ein Berechnungsmodell eines Kraftwerks 1 mit einer Kondensationsanlage 2 zur Kondensation von Wasserdampf, welcher der Kondensationsanlage 2 aus einem Turbinenhaus 3 zugeführt wird. Dem Turbinenhaus 3 ist ein Kesselhaus 4 vorgelagert. Das Turbinenhaus 3 und das Kesselhaus 4 werden in ihrer Gesamtheit als Gebäudestrukturen des Kraftwerks bezeichnet. Die Windrichung W wird durch den eingezeichneten Pfeil symbolisiert. Die Windgeschwindigkeit beträgt zum Beispiel 7 m/s. Anhand der unterschiedlichen Grauschattierungen ist der Temperaturverlauf der aus den Wärmetauscherelementen 5 austretenden, erwärmten Kühlluft zu erkennen, wobei insbesondere der eingekreiste Bereich von Interesse ist. Dort ist zu erkennen, dass offensichtlich im Bereich der dem Turbinenhaus 3 und dem Kesselhaus 4 benachbarten Längsseite der Kondensationsanlage 2 ein Teil der erwärmten Kühlluft wieder von unten in die Wärmetauscherelemente 5 eintritt. Dies ist an dem dargestellten Temperaturgefälle der Kühlluft zu erkennen. Hier kommt es trotz vorhandener Windschutzwände zu Warmluftrezirkulationen.
Aus Figur 2 wird anhand der eingezeichneten Strömungslinien deutlich, dass Warmluftrezirkulation nicht nur in dem eingekreisten Eckbereich der dargestell- ten Kondensationsanlage auftritt, sondern auch im Bereich des Windschattens hinter den Kessel- und Turbinenhäusern 3, 4. Der Grund hierfür ist in Figur 5 zu erkennen. Die eingezeichneten Pfeile in Figur 5 verdeutlichen die lokale Windrichtung. Die Länge der Pfeile ist ein Maß für die lokale Windgeschwindigkeit. Das in der Bildebene von rechts angeströmte Kraftwerk 1 weist eine Kondensationsanlage 2 auf, die im Windschatten der Gebäudestruktur eines Kraftwerks, d.h. des Kesselhauses 4 und insbesondere des Turbinenhauses 3 liegt. Obschon die Kondensationsanlage 2 hoch aufgeständert ist, führt die räumliche Nähe zum Turbinenhaus 3 dazu, dass der in der Bildebene von rechts anströmende Wind durch einen relativ schmalen Bereich unter die Wärmetauscherelemente 5 der Kondensationsanlage 2 gesaugt werden muss. Die hohe Anzahl und Dichte der einzelnen Pfeile in diesem Bereich verdeutlicht, dass dort relativ hohe Windgeschwindigkeiten vorherrschen. Diese hohen Windgeschwindigkeiten wiederum führen dazu, dass auch randseitig der Kondensationsanlage 2 in dem eingekreisten Bereich aus den Wärmetauscherelementen 5 austretende Warmluft mitgerissen wird und wieder unter die Kondensationsanlage 2 strömt.
Im Rahmen der Erfindung ist nun vorgesehen, dass die den Windschatten erzeugenden Gebäudestruktur, das heißt in diesem Fall das Turbinenhaus 3, tunnelartige Windpassagen 6 aufweist, durch welche Kühlluft unter die Wärmetauscherelemente 5 strömt und/oder gesaugt wird. Figur 3 zeigt, dass das Turbinenhaus keine Barriere mehr für die zwischen den Kesselhäusern 4 hindurchströmende Kühlluft darstellt, sondern vielmehr eine Windpassage 6 begrenzt, die über ein lediglich andeutungsweise eingezeichnetes Windtor 7 mit dem Ansaugraum unterhalb der Kondensationsanlage 2 strömungstechnisch verbunden ist. Die Windpassage 6 wird quasi als Tunnel durch das Turbinenhaus 3 geführt.
Theoretisch wäre es denkbar, das Turbinenhaus in einzelne Abschnitte zu unterteilen, so dass sich einzeln nebeneinander stehende Gebäude ergeben. Allerdings wird die gemeinsam genutzte Infrastruktur dann ebenfalls unter- brochen. Insbesondere im Hinblick auf die Nutzung eines Laufkranes stellt die Untertunnelung eine wirtschaftlich sinnvolle Lösung dar.
Die Darstellung der Figur 4 zeigt, dass die Windpassagen 6 unterhalb der auf einer Stützkonstruktion 8 angeordneten Wärmetauscherelemente 5 der Kondensationsanlage 2 münden, so dass die aus den Windpassagen 6 austretende Luft nicht vollständig über die Dächer der Turbinenhäuser 3 und Kesselhäuser 4 angesaugt werden muss, sondern auch unmittelbar über die Windpassagen 6 der Kondensationsanlage 2 zugeführt werden kann.
Anhand der Figur 6 ist zu erkennen, dass in einer Schnittebene durch die Windpassage 6 ein erheblicher Anteil der angesaugten bzw. anströmenden Kühlluft der Kondensationsanlage 2 durch die Windpassage 6 zugeführt wird. Der Anteil ist zumindest so groß, dass es in dem in Figur 5 dargestellten Bereich zu keiner Warmluftrezirkulation mehr kommt und damit zu keiner Beeinträchtigung des Kraftwerkswirkungsgrads.
Bezuqszeichen:
1 - Kraftwerk
2 - Kondensationsanlage
3 - Turbinenhaus
4 - Kesselhaus
5 - Wärmetauscherelement
6 - Windpassage
7 - Windtor
8 - Stützkonstruktion
W - Windrichtung

Claims

Patentansprüche
1. Kraftwerk mit einer Kondensationsanlage zur Kondensation von Wasserdampf, wobei die Kondensationsanlage (2) auf einer Stützkonstruktion (8) angebrachte und durch Kühlluft von unten angeströmte Wärmetauscherelemente (5) aufweist, wobei die Kondensationsanlage (2) mit ihrer einen Längsseite in unmittelbarer Nachbarschaft zu einer Gebäudestruktur des Kraftwerks (1) angeordnet ist, dadurch gekennzeichnet, dass die Gebäudestruktur (3) wenigstens eine tunnelartige Windpassage (6) aufweist, durch welche Kühlluft unter die Wärmetauscherelemente (5) strömt und/oder gesaugt wird.
2. Kraftwerk nach Anspruch 1 , dadurch gekennzeichnet, dass die Windpassage (6) ein Turbinenhaus (3) durchsetzt.
3. Kraftwerk nach Anspruch 1 , dadurch gekennzeichnet, dass Windtore (7) zum Verändern der Durchströmfläche der Windpassagen (6) vorgesehen sind.
4. Kraftwerk nach Anspruch 3, dadurch gekennzeichnet, dass die Windtore (7) mit Mitteln gekoppelt sind, über welche die Durchströmfläche in Abhängigkeit von der Windrichtung (W) steuerbar ist.
EP07711229A 2006-03-23 2007-03-13 Luftzuführung zu dem luftgekühlten kondensator eines kraftwerkes Expired - Fee Related EP1996797B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013864A DE102006013864B3 (de) 2006-03-23 2006-03-23 Kraftwerk mit einer Kondensationsanlage zur Kondensation von Wasserdampf
PCT/DE2007/000450 WO2007107141A2 (de) 2006-03-23 2007-03-13 Luftzuführung zu dem luftgekühlten kondensator eines kraftwerkes

Publications (2)

Publication Number Publication Date
EP1996797A2 true EP1996797A2 (de) 2008-12-03
EP1996797B1 EP1996797B1 (de) 2009-09-09

Family

ID=37989785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07711229A Expired - Fee Related EP1996797B1 (de) 2006-03-23 2007-03-13 Luftzuführung zu dem luftgekühlten kondensator eines kraftwerkes

Country Status (13)

Country Link
US (1) US20090094982A1 (de)
EP (1) EP1996797B1 (de)
CN (1) CN101405481A (de)
AP (1) AP2008004598A0 (de)
AU (1) AU2007229141A1 (de)
DE (1) DE102006013864B3 (de)
ES (1) ES2331665T3 (de)
MA (1) MA30350B1 (de)
MX (1) MX2008010785A (de)
RU (1) RU2008141899A (de)
TN (1) TNSN08324A1 (de)
WO (1) WO2007107141A2 (de)
ZA (1) ZA200808095B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031221B3 (de) * 2008-07-03 2009-08-13 Gea Energietechnik Gmbh Kondensationsanlage
WO2020240696A1 (ja) * 2019-05-28 2020-12-03 日揮グローバル株式会社 製造プラントの稼働解析方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB342517A (en) * 1929-04-22 1931-02-05 Otto Happel Improvements in or relating to the utilization of the heat of steam engine exhaust in hot-houses
DE1936137B2 (de) * 1969-07-16 1975-12-04 Kraftwerk Union Ag, 4330 Muelheim Dampfkraftanlage mit Luftkühlung
DE3105804C2 (de) * 1981-02-17 1986-08-14 Kraftwerk Union AG, 4330 Mülheim Kondensatoranordnung
DE3421200A1 (de) * 1983-07-12 1985-01-24 Balcke-Dürr AG, 4030 Ratingen Zwangsbelueftete kondensationsanlage
DE3325054A1 (de) * 1983-07-12 1985-01-24 Balcke-Dürr AG, 4030 Ratingen Zwangsbelueftete kondensationsanlage
HU205989B (en) * 1988-05-10 1992-07-28 Energiagazdalkodasi Intezet Cooling system for condensating the dead steam of stema-turbine works particularly power-plants
US20050120715A1 (en) * 1997-12-23 2005-06-09 Christion School Of Technology Charitable Foundation Trust Heat energy recapture and recycle and its new applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007107141A3 *

Also Published As

Publication number Publication date
DE102006013864B3 (de) 2007-05-24
AU2007229141A1 (en) 2007-09-27
MX2008010785A (es) 2008-11-28
US20090094982A1 (en) 2009-04-16
TNSN08324A1 (en) 2009-12-29
RU2008141899A (ru) 2010-04-27
EP1996797B1 (de) 2009-09-09
MA30350B1 (fr) 2009-04-01
AP2008004598A0 (en) 2008-10-31
CN101405481A (zh) 2009-04-08
ES2331665T3 (es) 2010-01-12
ZA200808095B (en) 2009-08-26
WO2007107141A3 (de) 2008-09-12
WO2007107141A2 (de) 2007-09-27

Similar Documents

Publication Publication Date Title
EP2279314B1 (de) Windkraftanlage mit verbesserter kühlluftführung
EP2815186B1 (de) Vorrichtung zur kühlung und/oder wärmerückgewinnung
EP1886084B1 (de) Kondensationsanlage
WO2010026049A1 (de) Schienenfahrzeug mit umschaltung zwischen winter- und sommerbetrieb
DE102013220031A1 (de) Wärmeübertrager
EP1996797B1 (de) Luftzuführung zu dem luftgekühlten kondensator eines kraftwerkes
EP2517771A1 (de) Waschturm
EP1883774B1 (de) Kondensationsanlage
DE1936137A1 (de) Dampfkraftanlage mit Luftkuehlung
EP1832492B1 (de) Schienenfahrzeug, ausgestattet mit einem Entwässerungssystem für einen Einstiegsbereich
EP2141429B1 (de) Hybridkühlturm
EP3370491B1 (de) Anordnung eines kühlsystems zur kühlung mindestens eines, in einem raum angeordneten serverschranks
EP3477212B1 (de) Luftverteilvorrichtung sowie verfahren zur belüftung eines raumes
DE3016948C2 (de) Querstrahlruder
WO2003058141A1 (de) Verdunstungskühler
EP3587943A2 (de) Vorrichtung zur belüftung und temperierung eines raums eines gebäudes
DE102009006198A1 (de) Vorrichtung zur großtechnischen Medienkonditionierung
DE3025441A1 (de) Aussenwandkasten fuer die verbrennungsluft- und abgaskanaele eines mit einem brennersystem arbeitenden geraetes
DE3105804C2 (de) Kondensatoranordnung
EP2476863A1 (de) Turbinenschaufel für eine Gasturbine
WO2009036719A2 (de) Luftbeaufschlagter trockenkühler
EP4151916A1 (de) Lüftungsvorrichtung und verfahren zum betrieb einer lüftungsvorrichtung
WO2013164198A1 (de) Zellenkühlturm
AT510207A1 (de) Windkraftanlage
DE202021105052U1 (de) Kühlvorrichtung zum Kühlen und/oder Kondensieren eines Kältemittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080802

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES GB IT TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2331665

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100326

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20100223

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110313

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110313