EP1983277B1 - Appareil de circuit de réfrigération - Google Patents
Appareil de circuit de réfrigération Download PDFInfo
- Publication number
- EP1983277B1 EP1983277B1 EP08153996.7A EP08153996A EP1983277B1 EP 1983277 B1 EP1983277 B1 EP 1983277B1 EP 08153996 A EP08153996 A EP 08153996A EP 1983277 B1 EP1983277 B1 EP 1983277B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- evaporator
- discharge gas
- discharge
- refrigerant
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000005057 refrigeration Methods 0.000 title claims description 54
- 239000003507 refrigerant Substances 0.000 claims description 112
- 238000010257 thawing Methods 0.000 claims description 64
- 238000010438 heat treatment Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 13
- 238000001704 evaporation Methods 0.000 claims description 10
- 230000008020 evaporation Effects 0.000 claims description 9
- 238000004904 shortening Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0315—Temperature sensors near the outdoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
Definitions
- the present invention relates to a refrigeration cycle apparatus including a bypass circuit for melting frost deposited on an evaporator, by means of the discharge gas refrigerant of a compressor.
- frost deposits on an evaporator and reduces the capability of the evaporator in some operational states.
- a discharge gas refrigerant compressed at a high temperature and pressure by a compressor flows into a condenser through a four-way valve and the refrigerant is condensed by heat exchange.
- the condensed refrigerant is decompressed by a throttling device, flows into the evaporator in a gas-liquid two phase state, is evaporated by heat exchange, and is sucked back into the compressor through the four-way valve.
- frost gradually deposits on the evaporator and the capability of the evaporator decreases with an increasing amount of deposited frost.
- an operation for melting frost deposited on the evaporator is performed as needed.
- a method of melting frost the actions of heat exchangers are reversed by switching a four-way valve to perform a reverse cycle operation.
- this method reduces a temperature on a condenser.
- a discharge pipe for flowing a refrigerant discharged from a compressor is provided with a branch pipe which flows a part of the refrigerant into a condenser and the other part of the refrigerant into an evaporator through a refrigerant controller such as a solenoid valve to melt frost deposited on the evaporator (e.g., see Japanese Utility Model Laid-Open No. 60-10178 ).
- FIG. 3 shows the refrigeration cycle apparatus of a conventional air conditioner described in the publication.
- a solid line arrow indicates a heating cycle and a broken line arrow indicates a defrosting cycle.
- a refrigeration cycle during a heating operation is made up of an outdoor unit B including a compressor 1, a four-way valve 11, a throttling device 3, and an evaporator 4, and an indoor unit A including a condenser 2.
- a discharge gas bypass 30 is formed from a discharge pipe la to a pipe line between the throttling device 3 and the evaporator 4, through a branch pipe 5 and a solenoid valve 6. In this configuration, frost deposits on the evaporator 4 after a continuous heating operation.
- a defrosting operation is performed such that the actions of the heat exchangers of the condenser 2 and the evaporator 4 are kept as in the heating operation and the solenoid valve 6 of the discharge gas bypass 30 is opened in this state to directly flow a discharge gas refrigerant into the evaporator 4, so that the evaporator 4 is defrosted.
- the evaporator 4 can be defrosted during the heating operation.
- the branch pipe is generally provided in a direction in which the main stream of the refrigerant discharged from the compressor flows through the condenser, a larger amount of refrigerant basically flows into the condenser as compared with the discharge gas bypass, and the amount of discharge gas refrigerant flowing into the evaporator while bypassing the condenser further decreases when the discharge pressure is low, so that the effect of the discharge gas bypass diminishes and the defrosting time increases.
- a refrigerant controller such as a solenoid valve provided on the discharge gas bypass has to have a quite low path resistance, thereby increasing the cost.
- An object of the present invention is to provide a refrigeration cycle apparatus which can shorten a defrosting time, can improve the flexibility of design by expanding the scope of selection of a refrigerant controller such as a solenoid valve provided on a discharge gas bypass, and can reduce the cost, and a refrigeration cycle apparatus usable for an air conditioner for improving comfort with the refrigeration cycle apparatus during a heating operation.
- a refrigerant controller such as a solenoid valve provided on a discharge gas bypass
- a refrigeration cycle apparatus is configured such that the discharge refrigerant of a compressor flows into a discharge gas bypass with a larger flow rate than the discharge refrigerant flowing into a four-way valve during defrosting. Since a larger amount of discharge refrigerant flows into the bypass, it is possible to increase the temperature of an evaporator, the degree of superheat of the compressor, and the temperature of the discharge refrigerant, thereby shortening the defrosting time of the evaporator while suppressing a reduction in the capability of a condenser.
- a refrigeration cycle apparatus according to the present invention is defined in claim 1.
- the discharge gas bypass has a lower path resistance than the condenser, so that the flow rate of the refrigerant flowing into the discharge gas bypass can be larger than the flow rate of the refrigerant flowing into the four-way valve on the side of the condenser.
- the ratio of the refrigerant diverted at the branch pipe to the discharge gas bypass is larger than the ratio of the refrigerant diverted to the four-way valve, thereby increasing the flow rate of the refrigerant to the discharge gas bypass.
- the path resistance of the discharge gas bypass can be smaller than the path resistance of the condenser, and the discharge refrigerant of the compressor can have the dynamic pressure component acting more greatly in the direction of the discharge gas bypass than in the direction of the four-way valve.
- the discharge refrigerant from the bypass flows in a straight line through a pipe tee, on a point where the exit of the discharge gas bypass joins with the pipe of a refrigeration cycle.
- the path resistance of the discharge gas bypass can be smaller than the path resistance of the condenser and the flow rate of the refrigerant to the bypass can be increased.
- each of the discharge gas bypasses to the evaporator pipe and the suction pipe is smaller in pipe length than the pipe of the condenser.
- the path resistance of the discharge gas bypass can be smaller than the path resistance of the condenser and the flow rate of the refrigerant to the bypass can be increased.
- the discharge gas bypasses are not smaller in pipe diameter than the pipe of the condenser.
- the path resistance of the discharge gas bypass can be smaller than the path resistance of the condenser and the flow rate of the refrigerant to the bypass can be increased.
- a method of operating a refrigeration cycle apparatus is defined in claim 8.
- 50% to 90% of the discharge refrigerant flows into the discharge gas bypasses.
- a larger amount of discharge refrigerant flows into the bypasses.
- the present invention is a refrigeration cycle apparatus further including a blower for the condenser and a blower for the evaporator, wherein the blower for the evaporator is operated during defrosting.
- the evaporator can exchange heat with the outside air, thereby further shortening the defrosting time of the evaporator and suppressing a reduction in the capability of the condenser.
- the present invention is a refrigeration cycle apparatus including an outside-air temperature detector for detecting the temperature of air passing through the evaporator, wherein the operation of the blower for the evaporator is controlled according to an air temperature detected by the outside-air temperature detector during defrosting.
- the present invention is a refrigeration cycle apparatus further including an evaporation temperature detector for detecting the temperature of the evaporator, wherein the operation of the blower for the evaporator is controlled according to a temperature detected by the evaporation temperature detector during defrosting.
- the present invention is a refrigeration cycle apparatus, in which the operation of the blower for the evaporator is controlled by time during defrosting.
- the detectors erroneously detect an outside air temperature or an evaporator temperature, it is possible to prevent the outdoor blower from being operated more than necessary and interfering with defrosting, thereby shortening the defrosting time of the evaporator while suppressing a reduction in the capability of the condenser.
- the devices can be more reliable.
- the present invention is a refrigeration cycle apparatus in which the operating time of the blower for the evaporator is controlled during defrosting by the operating time of the compressor in a normal operation.
- the present invention is a refrigeration cycle apparatus in which the operation of the blower for the evaporator is controlled during defrosting by a time when the evaporator has a temperature not higher than a predetermined temperature in a normal operation.
- the present invention is a refrigeration cycle apparatus used for an air conditioner made up of an indoor unit and an outdoor unit.
- the refrigeration cycle apparatus capable of shortening a defrosting time is used for the air conditioner, so that a reduction in room temperature can be suppressed during defrosting in a heating operation and the comfort can be improved.
- the present invention is a refrigeration cycle apparatus used for an air conditioner made up of an indoor unit having an auxiliary heater and an outdoor unit. By compensating for a reduction in heating capacity during defrosting in a heating operation, a reduction in room temperature can be further suppressed and the comfort can be further improved.
- the refrigeration cycle apparatus of the present invention a larger amount of discharge refrigerant flows into the discharge gas bypass, so that the temperature of the evaporator is further increased and the defrosting time can be shortened. Further, since the influence of the path resistance of the refrigerant controller provided on the discharge gas bypass is reduced, the design flexibility improves and thus a cost reduction is achieved.
- the refrigeration cycle apparatus for an air conditioner it is possible to suppress a reduction in room temperature during defrosting in a heating operation and improve the comfort.
- the dynamic pressure component of the discharge refrigerant acts on the bypass pipe.
- the ratio of the discharge refrigerant diverted at the branch pipe to the bypass pipe is quite large. Since the influence of the path resistance of the refrigerant controller provided on the bypass pipe is reduced, the design flexibility improves and thus a cost reduction is achieved. Further, a larger amount of discharge refrigerant flows into the bypass pipe, so that the defrosting time can be shortened.
- the present invention is applicable to not only an air conditioner but also to a refrigerator, a vending machine, a heat pump water heater, and so on.
- FIG. 1 is a refrigerant system diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.
- FIG. 1 illustrates the flow of a refrigerant in an air conditioner (the refrigerant flows along a solid line arrow during a heating operation and flows along a broken line arrow during a defrosting operation).
- the refrigerant flows along a solid line arrow during a heating operation and flows along a broken line arrow during a defrosting operation.
- a compressor 1 for compressing the refrigerant a four-way valve 11 for changing the flow of the refrigerant, a condenser 2 for condensing the high-pressure, high-temperature refrigerant, a throttling device 3 for decompressing the condensed refrigerant, and an evaporator 4 for evaporating the decompressed refrigerant are serially connected via pipes and compose a typical refrigeration cycle.
- the condenser 2 is provided in an indoor unit A and the other devices are provided in an outdoor unit B.
- the indoor unit A further includes an indoor blower 7 acting as a blower for the condenser and an electric heater 9, and the outdoor unit B further includes an outdoor blower 8 acting as a blower for the evaporator.
- a first discharge gas bypass 31 is provided for branching a discharge gas refrigerant from the compressor 1, on a discharge pipe 1a upstream from the four-way valve 11. Further, a second discharge gas bypass 32 is provided which branches from the first discharge gas bypass 31 as a bypass to an evaporator pipe 4a between the throttling device 3 and the evaporator 4, and a third discharge gas bypass 33 is provided which is a bypass to a suction pipe 1b of the compressor 1. In other words, a discharge gas bypass is made up of the first discharge gas bypass 31, the second discharge gas bypass 32, and the third discharge gas bypass 33.
- the first discharge gas bypass 31 includes a refrigerant controller 40 for optionally flowing the discharge gas refrigerant.
- the refrigerant controller 40 controls the flow of the refrigerant as needed.
- the second discharge gas bypass 32 includes an evaporator bypass flow-rate adjusting pipe 32a and a check valve 32b.
- the third discharge gas bypass 33 includes a suction bypass flow-rate adjusting pipe 33a which adjusts the balance of the flow rates of the second discharge gas bypass 32 and the third discharge gas bypass 33.
- the first discharge gas bypass 31 is branched from the discharge pipe 1a by means of a branch pipe 51 which is substantially T-shaped.
- the branch pipe 51 is configured such that the discharge refrigerant of the compressor 1 flows in a straight line (arrow D1) along the first discharge gas bypass 31 and the flow of the refrigerant to the four-way valve 11 is bent substantially at a right angle (arrow D2).
- pipe tees 52 and 53 shaped like the branch pipe 51 are respectively provided on a junction with the evaporator pipe 4a at the exit of the second discharge gas bypass 32 and a junction with the suction pipe 1b at the exit of the third discharge gas bypass 33.
- a flow from the throttling device 3 to the evaporator pipe 4a is bent substantially at a right angle (arrow D3) and the refrigerant from the second discharge gas bypass 32 to the evaporator pipe 4a flows in a straight line (arrow D4).
- the discharge gas refrigerant compressed at a high temperature and pressure by the compressor 1 flows into the condenser 2 of the indoor unit A through the four-way valve 11 and is condensed by heat exchange, so that a room is heated.
- the condensed refrigerant flows into the outdoor unit B, is decompressed by the throttling device 3, flows into the evaporator 4 in a gas-liquid two phase state, and is evaporated by heat exchange to absorb heat outside the room. After that, the refrigerant is sucked back into the compressor 1 through the four-way valve 11.
- the refrigerant controller 40 is closed.
- frost gradually deposits on the evaporator 4 and the heating capacity is reduced with an increasing amount of deposited frost.
- the refrigerant controller 40 provided on the first discharge gas bypass 31 is opened to flow the discharge gas refrigerant to the second discharge gas bypass 32 and the third discharge gas bypass 33, so that the evaporator 4 is defrosted.
- the second discharge gas bypass 32 accelerates the melting of frost by increasing the temperature of the evaporator 4.
- the third discharge gas bypass 33 increases the dryness of the compressor 1 and raises the temperatures of the compressor 1 and the discharge gas refrigerant, so that the temperature of the evaporator 4 further increases.
- defrosting is performed in a heating state without switching the four-way valve 11. Although the heating capacity decreases, it is possible to reduce a temperature change in a heated room as compared with a defrosting system using a reverse cycle, thereby suppressing a reduction in comfort.
- the discharge gas bypass may be a combination of the first discharge gas bypass 31 and the second discharge gas bypass 32 or a combination of the first discharge gas bypass 31 and the third discharge gas bypass 33.
- the T-shaped branch pipe 51 is further provided on the junction of the first discharge gas bypass 31 on the discharge pipe 1a of the compressor 1.
- the branch pipe 51 is configured such that the discharge refrigerant of the compressor 1 flows in a straight line along the first discharge gas bypass 31 and the flow of the discharge refrigerant to the four-way valve 11 is bent at a right angle.
- the discharge gas refrigerant has a dynamic pressure component acting more greatly in the direction of the first discharge gas bypass 31 than in the direction of the four-way valve 11. The action of the dynamic pressure increases the ratio of the refrigerant diverted at the branch pipe 51 to the first discharge gas bypass 31, thereby increasing the flow rate of the discharge gas refrigerant to the first discharge gas bypass 31.
- frost deposited on the evaporator 4 can be melted in a shorter time and a temperature change in a room can be further reduced, so that a reduction in comfort can be further suppressed.
- a larger amount of discharge gas refrigerant to the first discharge gas bypass 31 than the four-way valve 11 it is possible to produce the remarkable effect of suppressing a reduction in comfort by, even when the room temperature temporarily decreases because of a reduction in heating capacity, completing defrosting in a far shorter time.
- the pipe tees 52 and 53 are used also on the junctions of the suction pipe 1b and the evaporator pipe 4a and are connected to flow the discharge gas refrigerant in straight lines on points where the exit of the second discharge gas bypass 32 and the exit of the third discharge gas bypass 33 join with the pipes of the refrigeration cycle, and a low path resistance is set to minimize interference with the flow, so that a flow rate from the discharge pipe 1a to the first discharge gas bypass 31 can be set larger.
- the T-shaped branch pipe 51 and pipe tees 52 and 53 do not always have to be perfect T shapes as long as a lower path resistance can be set on the discharge gas bypasses.
- the dynamic pressure component of the discharge gas refrigerant acts on the first discharge gas bypass 31 and the path resistance is reduced on the junction to smoothly flow the discharge gas refrigerant.
- the ratio of the refrigerant diverted at the branch pipe 51 to the first discharge gas bypass 31 is increased and the influence of the path resistance of the refrigerant controller 40 provided on the first discharge gas bypass 31 is reduced.
- the design margin of the refrigerant controller 40 can be increased, thereby reducing the cost.
- the flow rate from the discharge pipe 1a to the first discharge gas bypass 31 can be set larger also by making a path resistance on the discharge gas bypass smaller than a path resistance on the condenser 2.
- the flow rate on the discharge gas bypass is reduced by making shorter the refrigerant pipes of the path from the first discharge gas bypass 31 to the second discharge gas bypass 32 and the path from the first discharge gas bypass 31 to the third discharge gas bypass 33 than the pipe length of the condenser 2 or making the pipes of the bypasses larger in diameter than the pipe of the condenser 2.
- the path resistance on the discharge gas bypass is set lower than the path resistance on the condenser 2, so that the flow rate from the discharge pipe 1a to the first discharge gas bypass 31 can be set larger than the flow rate to the four-way valve on the side of the condenser. Further, the flow rate of the discharge gas refrigerant from the compressor 1 to the first discharge gas bypass 31 is set larger than the flow rate to the four-way valve 11 during defrosting, so that the temperature of the evaporator 4 is increased.
- the temperature of the evaporator 4 is further increased by increasing the degree of superheat of the compressor 1 and the temperature of the discharge gas refrigerant, thereby further reducing the defrosting time of the evaporator 4 while suppressing a reduction in the capability of the condenser 2. Further, since the influence of the path resistance of the refrigerant controller 40 provided on the first discharge gas bypass 31 is reduced, the design flexibility improves and thus a cost reduction is achieved. Furthermore, the refrigeration cycle apparatus configured thus makes it possible to provide an air conditioner with higher comfort.
- the ratio of the refrigerant diverted to the first discharge gas bypass 31 is normally less than 50% and the defrosting time for melting frost is relatively long.
- 50% to 90% of the discharge refrigerant flows into the first discharge gas bypass 31, so that defrosting is completed in about five to seven minutes depending upon the ambient temperature condition.
- the amount of refrigerant circulating into the condenser 2 of the indoor unit A decreases, a reduction in heating capacity can be suppressed also by increasing the dryness of the compressor 1 and the temperature of the discharge gas refrigerant.
- the electric heater 9 as an auxiliary heater in the indoor unit A, it is possible to compensate for a reduction in heating capacity in a refrigeration cycle. Thus a reduction in room temperature is further suppressed and the comfort can be further improved.
- FIG. 2 is a refrigeration system diagram of a refrigeration cycle apparatus according to a second embodiment of the present invention.
- a refrigeration cycle of FIG. 2 is identical to the refrigeration cycle of FIG. 1 but is different in that an outdoor unit B includes an outside-air temperature detector 101 for detecting the temperature of outside air sucked into an evaporator 4, an evaporation temperature detector 102 for detecting the temperature of the evaporator 4, and a controller 110 for processing the detected temperatures and detecting the operating time of a compressor 1 with a timer function.
- an outdoor blower 8 is operated.
- frost deposits on the evaporator 4 because the evaporation temperature of a refrigerant flowing through the evaporator 4 largely falls below 0°C and thus the temperature of the evaporator 4 falls below freezing. In this case, frost deposits even when the outside air temperature exceeds 0°C.
- a discharge refrigerant bypass is provided in a refrigeration cycle to shorten a defrosting time and the temperature of the evaporator 4 is increased. Further, the outdoor blower 8 is operated to expose the evaporator 4 to the outside air higher than 0°C, so that the thermal energy of the outside air can be efficiently used for defrosting and thus the defrosting time can be further shortened.
- the outdoor blower 8 When the temperature of the evaporation temperature detector 102 is lower than the temperature of the outside-air temperature detector 101, the outdoor blower 8 is operated until the temperature of the evaporation temperature detector 102 reaches the temperature of the outside-air temperature detector 101.
- the thermal energy of the outside air can be further used for defrosting and increases the defrosting efficiency, achieving a shorter defrosting time.
- the operation of the outdoor blower 8 is stopped after a certain period of time.
- an outside air temperature or an evaporator temperature is erroneously detected, it is possible to prevent the outdoor blower 8 from being operated more than necessary and interfering with defrosting, thereby shortening the defrosting time of the evaporator 4 while suppressing a reduction in the capability of the condenser 2.
- the devices can be more reliable.
- the amount of frost on the evaporator 4 is estimated based on the normal operation time of the compressor 1 from the completion of previous defrosting or a time when the detected temperature of the evaporation temperature detector 102 is not higher than a predetermined value, and then the operating time of the outdoor blower 8 during defrosting is determined, thereby eliminating a mode in which the variations of the detectors interfere with defrosting.
- the defrosting time of the evaporator 4 while suppressing a reduction in the capability of the condenser 2 and further improve the reliability of the devices.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Defrosting Systems (AREA)
Claims (15)
- Appareil pour circuit de réfrigération dans lequel un compresseur (1), une soupape à quatre voies (11), un condenseur (2), un dispositif d'étranglement (3) et un évaporateur (4) sont raccordés par l'intermédiaire de canalisations, comprenant :des dérivations de gaz de décharge (31, 32, 33) permettant de faire circuler un réfrigérant de décharge vers au moins l'un d'un tuyau d'aspiration (1b) du compresseur et d'un tuyau d'évaporateur (4a) destiné à raccorder le dispositif d'étranglement et l'évaporateur, à partir d'un tuyau de décharge (1a) destiné à raccorder le compresseur et la soupape à quatre voies, etun contrôleur de réfrigérant (40) pouvant en option faire circuler le réfrigérant de décharge vers les dérivations de gaz de décharge,dans lequel on fait partiellement traverser le réfrigérant de décharge du compresseur au travers des dérivations de gaz de décharge pendant le dégivrage dans une opération de chauffage, etcaractérisé en ce quel'appareil comprend en outre un tuyau de branchement (51) en forme de T sur le tuyau de décharge (1a), le réfrigérant de décharge du compresseur (1) circulant en ligne droite dans la direction (D1) de la dérivation de gaz de décharge, et le flux du réfrigérant de décharge étant dévié dans la direction (D2) de la soupape à quatre voies, ce qui fait que le débit d'écoulement vers les dérivations de gaz de décharge est plus grand que le débit d'écoulement vers la soupape à quatre voies (11),dans lequel le tuyau de branchement est raccordé de sorte à ce que le réfrigérant de décharge du compresseur (1) présente une composante de pression dynamique agissant plus fortement dans la direction (D1) de la dérivation de gaz de décharge que dans la direction (D2) de la soupape à quatre voies.
- Appareil pour circuit de réfrigération selon la revendication 1, dans lequel la dérivation de gaz de décharge (31, 32, 33) présente une résistance à l'écoulement inférieure à celle du condenseur.
- Appareil pour circuit de réfrigération selon la revendication 1, dans lequel le réfrigérant de décharge provenant de la dérivation de gaz de décharge (32) circule en ligne droite au travers d'un raccord en té de canalisation (52) sur un point où la sortie de la dérivation de gaz de décharge (32) rejoint le tuyau (4a) d'un circuit de réfrigération.
- Appareil pour circuit de réfrigération selon la revendication 1, dans lequel chacune des dérivations de gaz de décharge (31, 32, 33) vers le tuyau d'évaporateur (4a) et le tuyau d'aspiration (1b) présente une longueur plus petite que celle du tuyau du condenseur.
- Appareil pour circuit de réfrigération selon la revendication 1, dans lequel les dérivations de gaz de décharge ne présentent pas de diamètre plus petit que celui du tuyau du condenseur.
- Appareil pour circuit de réfrigération selon la revendication 1, l'appareil pour circuit de réfrigération étant utilisé pour un climatiseur constitué d'une unité d'intérieur (A) et d'une unité extérieure (B).
- Appareil pour circuit de réfrigération selon la revendication 1, l'appareil pour circuit de réfrigération étant utilisé pour un climatiseur constitué d'une unité d'intérieur (A) possédant un dispositif de chauffage auxiliaire (9) et d'une unité extérieure (B).
- Procédé de mise en oeuvre d'un appareil pour circuit de réfrigération dans lequel un compresseur (1), une soupape à quatre voies (11), un condenseur (2), un dispositif d'étranglement (3) et un évaporateur (4) sont raccordés par l'intermédiaire de canalisations, l'appareil comprenant en outre :des dérivations de gaz de décharge (31, 32, 33) permettant de faire circuler un réfrigérant de décharge vers au moins l'un d'un tuyau d'aspiration (1b) du compresseur et d'un tuyau d'évaporateur (4a) destiné à raccorder le dispositif d'étranglement et l'évaporateur, à partir d'un tuyau de décharge (1a) destiné à raccorder le compresseur et la soupape à quatre voies, etun contrôleur de réfrigérant (40) pouvant en option faire circuler le réfrigérant de décharge vers les dérivations de gaz de décharge,un tuyau de branchement (51) en forme de T sur le tuyau de décharge (1a),dans lequel on fait partiellement traverser le réfrigérant de décharge du compresseur au travers des dérivations de gaz de décharge pendant le dégivrage dans une opération de chauffage,le réfrigérant de décharge du compresseur (1) circule en ligne droite dans la direction (D1) de la dérivation de gaz de décharge, et le flux du réfrigérant de décharge est dévié dans la direction (D2) de la soupape à quatre voies, ce qui fait que le débit d'écoulement vers les dérivations de gaz de décharge est plus grand que le débit d'écoulement vers la soupape à quatre voies (11), etle tuyau de branchement est raccordé de sorte à ce que le réfrigérant de décharge du compresseur (1) présente une composante de pression dynamique agissant plus fortement dans la direction (D1) de la dérivation de gaz de décharge que dans la direction (D2) de la soupape à quatre voies.
- Procédé selon la revendication 8, dans lequel de 50 % à 90 % du réfrigérant de décharge s'écoulent dans les dérivations de gaz de décharge.
- Procédé selon la revendication 8, l'appareil comprenant en outre un ventilateur (7) pour le condenseur et un ventilateur (8) pour l'évaporateur, le ventilateur (8) pour l'évaporateur étant mis en oeuvre pendant le dégivrage.
- Procédé selon la revendication 10, l'appareil comprenant en outre un détecteur de température de l'air extérieur (101) destiné à détecter la température de l'air traversant l'évaporateur (4),
dans lequel le fonctionnement du ventilateur (8) pour l'évaporateur est commandé en fonction de la température d'air détectée par le détecteur de température de l'air extérieur pendant le dégivrage. - Procédé selon la revendication 10, l'appareil comprenant en outre un détecteur de température d'évaporation (102) destiné à détecter la température de l'évaporateur (4),
dans lequel le fonctionnement du ventilateur (8) pour l'évaporateur est commandé en fonction de la température détectée par le détecteur de température d'évaporation pendant le dégivrage. - Procédé selon la revendication 10, dans lequel le fonctionnement du ventilateur (8) pour l'évaporateur est commandé par la durée pendant le dégivrage.
- Procédé selon la revendication 10, dans lequel la durée de fonctionnement du ventilateur (8) pour l'évaporateur est commandée pendant le dégivrage grâce à la durée de fonctionnement du compresseur en fonctionnement normal.
- Procédé selon la revendication 10, dans lequel le fonctionnement du ventilateur (8) pour l'évaporateur est commandé par une durée lorsque l'évaporateur présente une température qui n'est pas supérieure à une température prédéterminée en fonctionnement normal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007110243A JP5104002B2 (ja) | 2007-04-19 | 2007-04-19 | 冷凍サイクル装置およびそれを備えた空気調和機 |
JP2007301512 | 2007-11-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1983277A2 EP1983277A2 (fr) | 2008-10-22 |
EP1983277A3 EP1983277A3 (fr) | 2014-11-19 |
EP1983277B1 true EP1983277B1 (fr) | 2017-05-31 |
Family
ID=39689507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08153996.7A Ceased EP1983277B1 (fr) | 2007-04-19 | 2008-04-03 | Appareil de circuit de réfrigération |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1983277B1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2505941T3 (da) * | 2009-11-25 | 2019-06-17 | Daikin Ind Ltd | Køleindretning til container |
JP2012078015A (ja) * | 2010-10-01 | 2012-04-19 | Panasonic Corp | 冷凍サイクル装置 |
CN107023950B (zh) * | 2017-04-01 | 2020-07-31 | 青岛海尔空调器有限总公司 | 空调器不停机除霜运行方法 |
CN107152819A (zh) * | 2017-06-06 | 2017-09-12 | 青岛海尔空调器有限总公司 | 空调装置及其控制方法 |
CN113639491B (zh) * | 2021-07-07 | 2023-03-31 | 青岛海尔空调电子有限公司 | 用于热泵设备除霜的方法、装置和热水机组 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6010178A (ja) | 1983-06-29 | 1985-01-19 | Sumitomo Electric Ind Ltd | 管路気中送電線の導体電流検出装置 |
JPS6291759A (ja) * | 1985-10-15 | 1987-04-27 | 三菱電機株式会社 | ヒートポンプ用冷凍サイクルの除霜方法 |
JPH0620039Y2 (ja) * | 1985-09-27 | 1994-05-25 | 三菱電機株式会社 | 空気調和機 |
-
2008
- 2008-04-03 EP EP08153996.7A patent/EP1983277B1/fr not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
EP1983277A3 (fr) | 2014-11-19 |
EP1983277A2 (fr) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2128535B1 (fr) | Dispositif de climatisation | |
EP1659348B1 (fr) | Dispositif de congelation | |
US9506674B2 (en) | Air conditioner including a bypass pipeline for a defrosting operation | |
US6405559B1 (en) | Refrigerating apparatus | |
US10006647B2 (en) | Air conditioning system with distributor for a plurality of indoor units | |
JP5213817B2 (ja) | 空気調和機 | |
EP2806233B1 (fr) | Dispositif frigorifique | |
KR100821728B1 (ko) | 공기 조화 시스템 | |
EP2863154A1 (fr) | Dispositif de pompe à chaleur | |
JP4654828B2 (ja) | 空気調和装置 | |
JP6138711B2 (ja) | 空気調和装置 | |
CN104949210B (zh) | 空调系统、空调器和空调系统的控制方法 | |
JP2009036503A (ja) | 冷凍サイクル装置およびそれを備えた空気調和機 | |
JP6223469B2 (ja) | 空気調和装置 | |
JP6880204B2 (ja) | 空気調和装置 | |
JP2010271011A (ja) | 空気調和機 | |
JP2010164257A (ja) | 冷凍サイクル装置及び冷凍サイクル装置の制御方法 | |
JP2018013286A (ja) | 制御装置、空気調和機及び制御方法 | |
CN101307964B (zh) | 制冷循环装置 | |
EP1983277B1 (fr) | Appareil de circuit de réfrigération | |
US20210341192A1 (en) | Heat pump device | |
JP2009145032A (ja) | 冷凍サイクル装置およびそれを備えた空気調和機 | |
JP2018013287A (ja) | 空気調和機及び空気調和機の制御方法 | |
JPWO2016098195A1 (ja) | 空気調和装置 | |
WO2020161834A1 (fr) | Dispositif à cycle frigorifique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PANASONIC CORPORATION |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 47/02 20060101ALI20141014BHEP Ipc: F25B 13/00 20060101AFI20141014BHEP |
|
17P | Request for examination filed |
Effective date: 20150220 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AKX | Designation fees paid |
Designated state(s): DE |
|
AXX | Extension fees paid |
Extension state: RS Extension state: AL Extension state: BA Extension state: MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170124 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008050453 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008050453 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180420 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008050453 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |