EP1981639B1 - Broyeur a billes dote d'une masse d'equilibrage ajustable - Google Patents

Broyeur a billes dote d'une masse d'equilibrage ajustable Download PDF

Info

Publication number
EP1981639B1
EP1981639B1 EP06792377A EP06792377A EP1981639B1 EP 1981639 B1 EP1981639 B1 EP 1981639B1 EP 06792377 A EP06792377 A EP 06792377A EP 06792377 A EP06792377 A EP 06792377A EP 1981639 B1 EP1981639 B1 EP 1981639B1
Authority
EP
European Patent Office
Prior art keywords
carrier device
ball mill
unbalance
compensating mass
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06792377A
Other languages
German (de)
English (en)
Other versions
EP1981639A1 (fr
Inventor
Markus Bund
Wolfgang Mutter
Gerhard BÄR
Egbert Huwer
Hermann Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritsch GmbH
Original Assignee
Fritsch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200610006529 external-priority patent/DE102006006529A1/de
Priority claimed from DE200610018325 external-priority patent/DE102006018325A1/de
Application filed by Fritsch GmbH filed Critical Fritsch GmbH
Publication of EP1981639A1 publication Critical patent/EP1981639A1/fr
Application granted granted Critical
Publication of EP1981639B1 publication Critical patent/EP1981639B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/04Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with unperforated container
    • B02C17/08Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with unperforated container with containers performing a planetary movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/24Driving mechanisms

Definitions

  • the invention relates to a ball mill with adjustable balancing mass, in particular a planetary or centrifugal ball mill on a laboratory scale according to the definition of claim 1 and a method for operating them according to claim 15.
  • Lab scale ball mills are used for a wide range of applications, in particular for crushing and mixing samples and for mechanical alloying.
  • An overview of common laboratory mills can be found on the applicant's website at www.fritsch.de.
  • grinding bowls are arranged eccentrically to a center axis and move on a circular orbit about the center axis. As a result of the rotation of the grinding bowls, a centrifugal force directed radially outwards is exerted on the grinding stock.
  • planetary ball mills are based on creating a combined orbital and rotational motion for the grinding bowls by additional rotation about the grinding bowl axis in the laboratory system.
  • the drive of the grinding bowls in a planetary ball mill thus causes an absolute rotational movement of the grinding bowl around its own axis, the recording or planetary axis, so that in a planetary ball mill in comparison to a centrifugal ball mill, a significantly larger, further centrifugal component is generated. This is superimposed on the centrifugal component, which is generated by the circulation of the grinding bowls about the center axis. Finally, the Coriolis effect is also effective. These three forces result in the planetary ball mill a resulting force field to which the grinding balls and the ground material are exposed.
  • a planetary ball mill With certain dimensions of the rotating parts and certain rotational speeds trajectories for the grinding balls are generated in a planetary ball mill.
  • the grinding balls then move across the grinding bowl until they impinge on the inner wall of the grinding bowl. Thereafter, the grinding balls are taken along the inner circumference of the grinding bowl until the resulting force again ensures that the above-described transverse movement takes place and grinding balls perform a flight movement through the grinding bowl.
  • This is also referred to as "Wurfregime”.
  • a planetary ball mill can achieve a significantly better grinding effect at higher speeds.
  • a laboratory planetary ball mill with only a single grinding station and leveling compound, which was described in the patent DE 197 12 905 C2 which is hereby fully made by reference to the subject matter of the present disclosure.
  • Such a laboratory planetary ball mill is also referred to as a mono-ball mill or more precisely as a planetary mono (ball) mill and is sold under the brand name "pulverisette® 6" (see www.fritsch.de).
  • the pulverisette® 6 is a planetary monobloc mill with a displaceable balancing mass that compensates for the moment of inertia of a single grinding station. Although this mill has proven itself, it can still be improved.
  • the user To operate the mill, the user typically looks in a table in the operating instructions for the desired position of the leveling compound for a particular grinding vessel or weighs this and sets the target position before starting the mill by hand with a knurled nut. At first, this type of setting is relatively cumbersome and not very comfortable.
  • An inaccuracy factor is e.g. the treatment according to the total mass of the filled grinding vessel. That no distinction is made between e.g. a grind jar with a net mass of 1 kg with a filling of 2 kg and a grinding jar with a net mass of 2 kg with a filling of 1 kg. So there are already inaccuracies in the determination of the actual adjustment size. Furthermore, the approach can not take dynamic effects into account. For example, This unique setting can not take into account the fact that the vibrations become stronger with increasing speed. Therefore, at high speeds undesirable vibrations may occur despite proper adjustment. A change of the ground material during the grinding process can not be considered at all.
  • Yet another object of the invention is to provide a ball mill, which has a very high smoothness, especially at high speeds.
  • Another object is to provide a method of operating such a ball mill.
  • an adjustable balancing mass for a mono-ball mill with only a single grinding station is of particular importance in order to compensate for the moment of inertia of this one grinding station.
  • an adjustable balancing mass for (fine) control of imbalance in a ball mill with multiple symmetrical grinding stations, for example, to compensate for the moment of inertia of different grinding bowl and / or fillings in the grinding stations and to further improve their smoothness .
  • a mono-ball mill in particular a planetary or centrifugal ball mill on a laboratory scale, with a housing, a carrier device, a single grinding station, one drive for the carrier device and the grinding station, arranged on the support device mass balancing device with a balancing mass and an adjusting device for at least radial adjustment of the balancing mass to change the moment of inertia adapted to the - respective, the grinding vessel and the filling dependent - moment of inertia of the grinding station, or to compensate for the moment of inertia.
  • the carrier device rotates during operation of the mill relative to the housing or in the laboratory system about a center axis.
  • the grinding station comprises a grinding bowl receiving device for at least one grinding jar, is mounted rotatably about a center axis with respect to the axis of the receiving shaft to the carrier device and is carried by the latter about the center axis.
  • the drive of the carrier device and the receiving device is preferably carried out in opposite directions, for example by means of coupled belt drives by a single overall drive motor.
  • the grinding station comprises at least one grinding jar filled with ground material and grinding balls and inserted into the receiving device.
  • the term "milling balls" is also meant to include non-spherical media as known in the art.
  • the grinding jar is held in the receiving device as it is inserted and secured in the receiving device to operate the mill.
  • a grinding jar several grinding jars can be stacked one above the other in the one receiving device.
  • a mono-ball mill has no further rotating grinding station, opposite a grinding station to compensate for the imbalance.
  • the mass balancing device is arranged with the balancing mass to form a moment of inertia for the one grinding station.
  • the mono-ball mill has a controllable from outside the carrier device motor drive for the adjusting device, with which during the rotation of the carrier device, the balancing mass can be adjusted.
  • the mill offers the Possibility of a successive speed-dependent adjustment or adaptation.
  • the ball mill preferably also comprises a measuring device for measuring the dynamic imbalance and a control device which controls the drive of the adjusting device in dependence on the measured unbalance to automatically adjust the moment of inertia by means of the radial displacement of the balancing mass to the moment of inertia of the grinding station more precisely, in order to compensate for the respective moment of inertia of different grinding vessels and / or different fillings of the grinding vessels.
  • a control loop can thus be constructed which even takes dynamic effects into account.
  • the mass and the displacement path of the leveling compound are in particular adapted to the grinding station with any grinding vessels in the range of preferably 80 ml to 500 ml, e.g. made of stainless steel and / or agate, plus the filling, consisting of regrind and grinding balls or grinding media.
  • a particularly great advantage of the invention lies in the fact that with increasing speed by itself ever smaller imbalance-generating effects can be measured, since the vibration-causing forces increase at constant moment of inertia with the speed.
  • the sensitivity of the control is inherently speed-dependent, so that the faster the mill turns, the more accurate can be readjusted and so the mill can still be operated with low vibration, even at high speeds.
  • an acceleration sensor For the laboratory ball mill according to the invention, the use of an acceleration sensor has proved to be useful to measure the imbalance.
  • the Acceleration sensor is preferably fixed to the non-rotating suspension of the support device, for example attached to a suspension plate of the housing below the support device and thus measures the acceleration caused by the vibration suspension of the suspension during operation, ie during rotation of the support device, in particular the size and / or direction of acceleration ,
  • the mill preferably has means for detecting the angular position of the carrier device during the rotation about the center axis.
  • a magnet arrangement with magnets on the carrier device preferably on its underside, has proven to be expedient, which are detected by means of stationary Hall sensors, wherein the magnet arrangement has a e.g. has spatial coding to uniquely identify certain angular positions.
  • the signals of the Hall sensors are continuously evaluated by the control device during the rotation of the carrier device and the determined angular position is synchronized with the measurement result of the acceleration sensor.
  • the controller can determine the direction in which the balancing mass must be moved to reduce the imbalance and not to increase.
  • an energy transmission device which provides the energy for driving the adjusting device on the rotating carrier device.
  • the energy transmission device has a fixedly attached to the housing first part and a co-rotating with the carrier device second part.
  • the first and second part of Energy transmission device arranged coaxially to the center axis.
  • the drive for the adjusting device comprises a drive shaft which is rotatably mounted in relation to the carrier device and which preferably extends coaxially within the center axis and is rotatably mounted therein.
  • the center axis is formed as a hollow shaft, and the drive shaft protrudes with an upper and lower end of the hollow shaft.
  • the upper end of the central drive shaft is mechanically coupled to the adjusting device via a gear, preferably by means of a belt drive.
  • the belt drive transmits the movement or force to the adjusting device, more precisely a spindle drive, which finally shifts the balancing mass radially.
  • the threaded spindle preferably extends through an internal thread in the substantially U-shaped balancing mass along its axis of symmetry.
  • the drive shaft is free-running in the normal state with respect to the housing, so that the drive shaft is entrained by the carrier device due to the self-locking of the spindle drive of the adjusting device, that is, does not rotate relative to the carrier device.
  • the self-locking of the adjustment prevents unwanted displacement of the balancing mass to the outside in spite of acting on the balancing mass centrifugal force.
  • the drive shaft is braked during rotation of the carrier device at a lower end relative to the housing, which causes a relative rotation to the carrier device and thus the drive of the adjusting device.
  • braking in the laboratory system thus means driving in the co-rotated reference frame of the carrier device.
  • the drive of the adjusting device of the fixed to the housing, i. non-co-rotating control device can be controlled.
  • a coupled to the lower end of the drive shaft magnetic brake is used with an anchor part and a flange as a braking device to brake the drive shaft.
  • the braking device in the normal state, i. in the case of the magnetic brake in the de-energized state, form free-running and to brake the drive shaft when current is applied. As a result, it can be prevented that the balancing mass changes inadvertently when e.g. the power is interrupted.
  • the magnetic brake with only two states discontinuously controlled, d. H.
  • the brake assumes either a free running or a fully braking condition.
  • a separate drive motor for driving the drive shaft.
  • a servomotor is used, which is synchronized with the rotation of the carrier device to drive the drive shaft relative to the housing at the same speed as the carrier device in the normal state, ie, when the adjustment is not to be driven and to rotate so that the drive shaft does not rotate relative to the support device.
  • the drive motor of the stationary to the suspension the drive shaft driven either at lower or higher speed than the carrier device, depending on the direction (in or out) the balancing mass to be adjusted.
  • a first toothed belt wheel is attached to the upper end of the drive shaft, which is coupled via a drive belt with a second toothed belt wheel, which in turn is attached to the threaded spindle of the adjusting device.
  • the drive timing belt is deflected at right angles, for example, under the inner stator of the mass balancing device. It can be seen that in this embodiment, the energy used for the displacement of the balancing mass is removed via the mechanical coupling to the carrier device whose rotational energy, when the balancing mass is moved inwardly against the centrifugal force. To move outward, only the self-locking of the spindle drive has to be overcome.
  • the invention provides a ball mill in which the imbalance during the rotation of the support device is measured and the balancing mass is adjusted in dependence of the measured imbalance to automatically controlled with the moment of inertia to compensate for the moment of inertia of the grinding station and to ensure a low-vibration running.
  • the carrier device is accelerated to a setpoint speed and the unbalance is continuously measured during the acceleration, in particular regularly or continuously, and transmitted to the control device.
  • the adjustment of the balancing mass is controlled, so that a control loop for adjusting the balancing weight is formed.
  • the regulation takes place at least until the ball mill has reached the setpoint speed, since the imbalance increases with increasing speed, preferably even until the end of the grinding process.
  • the moment of inertia is continuously regulated by means of the feedback signal of the measuring device to the control device at least during the startup of the ball mill.
  • the measured unbalance is thus transmitted to the control device at least during the entire duration of the startup and evaluated to continuously control the adjustment of the balancing mass with increasing speed, wherein the readjustment of the counter-moment of inertia takes place stepwise or in several steps.
  • control device comprises a storage means in which a predetermined tolerance interval for the imbalance is stored.
  • the control device always sets the drive for the adjusting device in motion when the measured imbalance is outside the predetermined tolerance interval and activates the drive for the displacement of the balancing mass until the measured unbalance the associated limit of the tolerance interval whose amount is greater than the minimum achievable Imbalance, is reached. That When the mill is started up (in a control cycle), the tolerance interval in all steps is approached only from a single direction.
  • control program gives the user the opportunity to temporarily disable the balancing mass adjustment.
  • Fig. 1 shows a support device 2, which is rotatably mounted on a housing 1, of which only a suspension plate 12 is shown.
  • the carrier device 2 is mounted eccentrically and turn rotatably a grinding station 3 with a Mahlgefäßfactvoriques 32 for receiving a grinding vessel, not shown.
  • the grinding jar is clamped or otherwise secured in the grinding jar receiving device 32 by suitable means.
  • a mass balancing device 4 is arranged with radially displaceable balancing mass 42.
  • the balancing mass 42 is formed substantially U-shaped with a central portion 422 and two obliquely to the central part extending legs 424 and 426.
  • the carrier device 2 comprises two disc-shaped blocks 21, 22 bolted together.
  • An overall drive motor (not shown) drives the lower disk-shaped block 22 via a V-belt 23 as a total drive.
  • a center axis 24 is screwed at its lower with screws 14 fixed to the suspension plate 12 of the housing 1 and stored as a journal by means of a lower and upper ball bearing 25, 26 rotatably the support device 2.
  • the receiving or planetary shaft 34 rotatably supported in the carrier device 2.
  • the illustrated flying mounting of the Mahlgefäßingvoriques 32, the structure of the drive and the arrangement of the mass balancing device 4 on top of the support device 2 substantially corresponds to the mill, which in the DE 197 12 905 C2 described in particular in this regard by reference herein incorporated.
  • the invention is not limited to this design, but also in a new, flatter design of planetary ball mills, as for example in the applications DE 20 2005 015896 .
  • DE 20 2005 015897 and DE 20 2005 015898 filed by the same Applicant, filed on 7 October 2005, which are also incorporated herein by reference in their entirety.
  • a drive shaft 61 is rotatably supported within the center axis 24 by means of a lower and upper bearing 62, 63, in this example two ball bearings. Accordingly, the center axis 24 is formed as a hollow axle.
  • a toothed belt wheel 65 is attached, around which a toothed belt 66 is placed.
  • the toothed belt 66 extends around the horizontal toothed belt pulley 65 in a horizontal plane, parallel to Level of the support device 2, and is by means of pulleys 71, 72, of which in Fig. 6 only the guide roller 72 is shown, deflected in the vertical.
  • the drive shaft Zahnriemenrad 65 and the lower portion of the toothed belt 66 are recessed in a recess 27 in the top of the support device 2 to find space under the Mahlgefäßingvoriques 32.
  • the toothed belt is rotated by 90 ° in order to be able to drive a threaded spindle 74 via a toothed belt wheel 73.
  • the threaded spindle 74 is mounted at its respective ends in an inner and outer stator 43, 44 and drives via an internal thread 75 in the balancing mass 42 to this (see. Fig. 3 ).
  • a knurled knob 76 is still attached to the outer end of the threaded spindle 74, which is not needed in regular operation.
  • the balancing mass is further radially guided between the inner and outer stator 43, 44 by means of guide rods 77, 78 and the threaded spindle 74 of the spindle drive (see. 3 and 4 ).
  • a braking device in the form of a magnetic brake 8 is arranged.
  • the carrier device or sun disk 2 now rotates about the sun axis 24 and at the same time drives the rotation of the planet shaft 34 and thus of the grinding station 3 via the drive 5.
  • a centrifugal force F acts on the balancing mass 42, which would like to pull it outward, but the threaded spindle 74 and the associated internal thread 75 of the balancing mass 42 are self-locking, so that the balancing mass despite rotation of the support device 2 is not automatically moved radially outward.
  • the Drive shaft 61 taken with the rotation of the carrier device 2 and rotates with self-speed with, as long as the magnetic brake 8 runs free. That is, the drive shaft 61 rotates in the free-running state within the center axis 24 with the support device 2. In other words, the drive shaft 61 in the free-running state relative to the support device 2 at rest, that is, it finds no relative in this state Rotation instead, so that no drive on the threaded spindle 74 and the balancing mass 42 takes place.
  • the braking device 8 is activated during rotation of the carrier device 2, d. H. the brake is closed. Thereby, the drive shaft 61 is braked relative to the housing 1, whereby a rotation of the drive shaft 61 is effected relative to the rotating support device 2.
  • the drive 6 of the mass balancing device 4 is set in motion, that the drive belt 66 is set in motion and the pulley 73, the threaded spindle 74 rotates.
  • the balancing mass 42 is radial, d. H. either inwardly or outwardly, depending on the direction of rotation of the support device 2, moved. That is, by means of the proposed balancing mass drive 6, the energy or force which is expended to drive the balancing mass 42, the rotational energy of the support device 2 is removed.
  • the drive shaft 61 protrudes through a central opening 13 in the suspension plate 12 of the housing 1, and the braking device 8 is coaxially fixed from below to the suspension plate 12, which carries the center axis 24.
  • the brake device 8 is formed as a magnetic brake with a fixed flange part 81 fixed to the suspension plate 12 and a co-rotating armature part 82 to which the drive shaft 61 is fixed.
  • a magnetic coil 83 is inserted, which brakes the armature part 82 under current application.
  • a brake disc 85 is brought into overcoming an air gap 86 with a brake pad 87 in frictional engagement.
  • a magnetic brake of the company Magneta is used in vigorous-Berkel with the type designation 14.110.103. Such magnetic brakes have braking forces with respect to the torque of 0.6 to 3.6 Nm.
  • the magnetic brake 8 is designed to be free-running in an inactivated or de-energized state and braking in an activated, current-charged state. This has the advantage that in case of power failure during operation of the mill no unwanted drive of the balancing mass is set in motion. Otherwise, the mill could be damaged. Instead of the magnetic brake and a servo motor may be provided.
  • a two-dimensionally measuring acceleration sensor 9 measures the direction and magnitude in both dimensions (x and y directions) of the horizontal plane passing through Imbalance vibrations generated acceleration the suspension 12, illustrated by the arrows x and y.
  • the measured acceleration vector rotates transversely to the center axis 24 and thus biases an acceleration ellipse whose magnitude represents a measure of the imbalance.
  • the acceleration ellipse may be significantly eccentric due to differential stiffness in the two dimensions of the horizontal plane.
  • the adjusting device is preferably controlled as follows.
  • the controller drives the mill and continuously measures the acceleration vector.
  • the balance mass is slightly displaced in an (arbitrary) direction, and the change in the magnitude of the acceleration ellipse along the first major axis is determined. If the size has decreased, this has been the "right” direction and the process continues until the tolerance interval is reached. If the size has increased, this has been the "wrong" direction and it must be adjusted in the opposite direction. In the illustrated embodiment, the direction of rotation of the carrier device 2 is reversed for this purpose.
  • This embodiment of the ball mill has an angle detection device 10, with which the angular position of the support device 2 during rotation can be determined.
  • the angle detection device 10 comprises an arrangement of a plurality of magnets 101, which are fixed to the support device 2, more precisely to the underside thereof.
  • the magnets 101 are annular, in this example on a plurality of circumferential lines 110, 112 arranged with different radii (see.
  • a receiving device 102 with a plurality of Hall sensors 104 is arranged stationary relative to the housing 1 below the magnets 101.
  • the magnets are arranged such that a coding is formed, so that by means of the corresponding Hall sensors 104 (here three) at least at one point of the support device 2- in Fig. 8 if this is left, where a second magnet 101 is disposed on the outer circumference 110, this angular position can be uniquely identified.
  • the remaining magnets 101 which at regular angular intervals on the inner circumference 112 on the support device 2, for example as in Fig. 8 shown schematically, in a uniform division of nine, are then sufficient to count the induced by the magnets 101 signals in the Hall sensor assembly 102nd
  • Fig. 9 is the angle detection device 10, more specifically, the Hall sensors 102 are read by a control device 103 and evaluated. Further, the controller 103 reads out the acceleration sensor 9 and synchronizes its data with the angle information. As a result, the control device 103 can even optionally determine in which direction the balancing mass 42 is to be displaced in order to reduce the imbalance. Furthermore, the control device 103 controls the braking device 8 in order to control the drive 6 of the mass balancing device 4 and the main drive 23 of the carrier device 2.
  • the balancing mass 42 can always be displaced only in a certain direction, either inwards or outwards, depending on whether the carrier device 2 rotates clockwise or counterclockwise. Therefore persists random position of the balancing mass 42 only a 50% probability that the balancing mass 42 can be adjusted in a given direction of rotation of the support device 2 in the desired direction.
  • This problem can eg with the in Fig. 10 illustrated exemplary control method can be solved with the following measures.
  • the controller 103 loads 204 the tolerance interval from a memory means 105. Then, the controller 103 controls as follows:
  • a direction initialization routine 206-212 is first executed.
  • the ball mill is first approached 206 and carried out an initial measurement 208 of the acceleration ellipse.
  • the adjustment drive for an initial adjustment 210 is started and the acceleration ellipse is measured 208 'again.
  • the control device 103 determines whether the leveling compound has been adjusted in step 210, the "correct" direction.
  • the controller 103 judges 211 either - if the direction was correct - to continue the mill up or, if the direction was wrong, to reverse the direction of rotation 212 and start up from the beginning at step 206. Both cases occur statistically at 50% each.
  • the carrier device 2 is accelerated until the setpoint speed (query 218) is reached. After reaching the setpoint speed (query 218), the grinding process is continued for a long time and with further continuous measurement 213 of the imbalance and control 213, 214, 216 of the moment of inertia, until the grinding target is reached (query 222).
  • balancing mass 42 at the end of each grinding operation in the inner or outer extreme position 42a, 42b (see. Fig. 8 ), depending on which adjustment direction is just possible due to the direction of rotation of the support device 2, and in the subsequent grinding process, the support device 2 in the opposite direction to set in motion.
  • the balancing mass 42 can always be adjusted in the right direction. It is only necessary to drive the carrier device 2 alternately clockwise and counterclockwise in successive grinding operations.
  • Words is when braking the carrier device 2 after completion of a first grinding operation with a first rotational direction of the support device 2, the balancing mass 42 automatically adjusted to a first extreme position 42a or 42b.
  • the carrier device 2 When the carrier device 2 is accelerated for a subsequent second grinding operation, the carrier device 2 is started in the reverse second direction of rotation. When braking the carrier device after completion of the second grinding operation, the leveling compound is then automatically adjusted to the opposite second extreme position 42b and 42a and when accelerating the carrier device 2 for a subsequent third grinding operation, the carrier device 2 is set in motion again in the first direction, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Claims (22)

  1. Broyeur à boules, en particulier broyeur à boules planétaire ou broyeur à boules centrifuge à l'échelle de laboratoire, comprenant
    un carter (1),
    un dispositif support (2), qui est monté de façon à pouvoir tourner autour d'un axe central (24) par rapport au carter (1),
    au moins une station de broyage (3) avec un dispositif de réception (32) pour au moins un récipient de broyage, qui est logé de façon à pouvoir tourner autour d'un axe de réception (36) par rapport au dispositif support (2) et est entraîné par celui-ci autour de l'axe central (24) et au moins un récipient de broyage pouvant être chargé avec du matériau à broyer et des boules de broyage et pouvant être inséré dans le dispositif de logement,
    un entraînement (23) pour le dispositif support (2),
    un entraînement (5) pour le dispositif de réception (32),
    une masse d'équilibrage (42) déplaçable, afin de former un contre-couple d'inertie pour la station de broyage ou les stations de broyage (3),
    un dispositif de déplacement (74, 75) pour le déplacement de la masse d'équilibrage (42) pour modifier le contre-couple d'inertie de façon adaptée au couple d'inertie de la station de broyage ou des stations de broyage (3),
    un entraînement (8, 61, 65, 66, 73) contrôlable à l'extérieur du dispositif support (2) pour le dispositif de déplacement (74, 75), afin de déplacer la masse d'équilibrage (42) pendant la rotation du dispositif support (2).
  2. Broyeur à boules selon la revendication 1, conçu sous forme de mono-broyeur à boules avec seulement une unique station de broyage (3), la masse d'équilibrage (42) déplaçable étant disposée en face de l'une des stations de broyage (3) par rapport à l'axe central (24), afin de former un contre-couple d'inertie pour l'une des stations de broyage (3).
  3. Broyeur à boules selon la revendication 1 ou 2, comprenant
    un dispositif de mesure (9) pour la mesure du déséquilibre, et
    un dispositif de commande (103), qui commande l'entraînement (8, 61, 65, 66, 73) du dispositif de déplacement en fonction du déséquilibre mesuré, afin d'adapter le contre-couple d'inertie au moyen du déplacement de la masse d'équilibrage (42) automatiquement au couple d'inertie de la station de broyage ou des stations de broyage.
  4. Broyeur à boules selon la revendication 3,
    le dispositif de commande (103) comprenant un moyen de stockage (105), dans lequel est stocké un intervalle de tolérance prédéfini pour le déséquilibre, le déséquilibre mesuré par le dispositif de mesure (9) étant transmis sous forme d'information retour au dispositif de commande (103) et un circuit de réglage pour le déplacement de la masse d'équilibrage (42) étant formé, l'entraînement (8, 61, 65, 66, 73) étant mis en marche pour le dispositif de déplacement lorsque le déséquilibre mesuré se situe en dehors de l'intervalle de tolérance prédéfini.
  5. Broyeur à boules selon l'une quelconque des revendications précédentes, comprenant également un dispositif de transmission d'énergie (8, 61) pour la transmission de l'énergie de déplacement au dispositif support (2) rotatif, le dispositif de transmission d'énergie (8, 61) comprenant une première partie (81, 83) placée de façon solidaire par rapport au carter et une seconde partie (82, 61) tournant en même temps que le dispositif support, et le dispositif de déplacement (74, 75) étant entraîné au moins par moments au moyen de l'énergie de déplacement transmise.
  6. Broyeur à boules selon la revendication 5,
    la première et la seconde partie (81, 83, 82, 61) du dispositif de transmission d'énergie étant disposées sur le même axe que l'axe central (24).
  7. Broyeur à boules selon la revendication 5 ou 6,
    le dispositif de transmission d'énergie transmettant mécaniquement une force de réglage ou inductivement de l'énergie de déplacement électrique à la seconde partie (82, 61) co-rotative.
  8. Broyeur à boules selon l'une quelconque des revendications précédentes, l'énergie utilisée pour le déplacement par moteur de la masse d'équilibrage (42) étant prélevée sur l'énergie de rotation du dispositif support (2).
  9. Broyeur à boules selon l'une quelconque des revendications précédentes, l'entraînement pour le dispositif de déplacement comprenant un arbre d'entraînement (61) monté de façon à pouvoir tourner par rapport au dispositif support (2), lequel arbre est couplé au moyen d'un engrenage (65, 66, 73) avec le dispositif de déplacement (74, 75), de telle sorte que la masse d'équilibrage (42) est déplacée radialement lorsque l'arbre d'entraînement (61) est tourné par rapport au dispositif support (2).
  10. Broyeur à boules selon la revendication 9,
    un dispositif de freinage (8) étant prévu pour freiner la rotation de l'arbre d'entraînement (61) par rapport au carter ou un moteur d'entraînement étant prévu pour entraîner l'arbre d'entraînement (61), afin d'engendrer ainsi une rotation de l'arbre d'entraînement (61) par rapport au dispositif support (2) rotatif et d'entraîner le dispositif de déplacement (74, 75), le dispositif de freinage (8) comprenant un frein magnétique (81-83), le frein magnétique (81-83) étant conçu à marche libre dans l'état sans courant et l'arbre d'entraînement (61) freinant par rapport au carter (1) avec l'alimentation en courant.
  11. Broyeur à boules selon l'une quelconque des revendications précédentes, l'axe central (24) étant conçu sous forme d'axe creux et l'arbre d'entraînement (61) étant agencé sur le même axe à l'intérieur de l'axe creux et avec une extrémité supérieure et une extrémité inférieure (64, 67), lesquelles dépassent respectivement de l'axe creux, une roue d'entraînement (65) étant fixée sur l'extrémité supérieure, laquelle roue est couplée au dispositif de déplacement (74, 75), afin d'entraîner celui-ci.
  12. Broyeur à boules selon l'une quelconque des revendications précédentes, le dispositif de déplacement (74, 75) comprenant une commande de broche constituée d'une broche filetée et d'un filetage intérieur correspondant pour le coulissement radial de la masse d'équilibrage (42) et la commande de broche étant conçue de façon autobloquante, la commande de broche étant entraînée au moyen d'un arbre d'entraînement logé de façon à pouvoir tourner par rapport au dispositif support lorsque l'arbre d'entraînement (61) est tourné par rapport au dispositif support (2).
  13. Broyeur à boules selon l'une quelconque des revendications précédentes, le dispositif de mesure (9) pour la mesure du déséquilibre comprenant un capteur d'accélération, le capteur d'accélération mesurant la direction et/ou la grandeur de l'accélération et/ou l'accélération au moins en deux dimensions dans un plan transversal à l'axe central (24) et le dispositif de mesure (9) pour la mesure du déséquilibre étant fixé de façon stationnaire par rapport à l'axe central (24).
  14. Broyeur à boules selon l'une quelconque des revendications précédentes, le broyeur présentant des moyens (10) pour la détection de la position d'angle du dispositif support (2) pendant la rotation autour de l'axe central (24), le dispositif de mesure (9) étant lu pendant la rotation du dispositif support et étant synchronisé avec la position d'angle, afin de déterminer la direction du déséquilibre.
  15. Procédé de fonctionnement d'un broyeur à boules planétaire ou centrifuge doté d'au moins une station de broyage (3), qui, en fonctionnement, est entraînée par un dispositif support (2) tournant autour d'un axe central (24) autour de cet axe (24) et tourne en même temps au moins par rapport au dispositif support (2) autour d'un axe de réception (36) et d'une masse d'équilibrage (42) déplaçable comme contre-couple d'inertie pour la station de broyage ou les stations de broyage (3), en particulier pour le fonctionnement d'un broyeur à boules selon l'une quelconque des revendications précédentes,
    le déséquilibre étant mesuré pendant la rotation du dispositif de support (2) et
    la masse d'équilibrage (42), qui est placée de façon ajustable sur le dispositif support (2), étant déplacée en fonction du déséquilibre mesuré, afin d'adapter le contre-couple d'inertie automatiquement au couple d'inertie de la station de broyage ou des stations de broyage (3).
  16. Procédé selon la revendication 15,
    le dispositif support (2) étant accéléré jusqu'à un régime prévu et le déséquilibre étant mesuré en permanence pendant l'accélération, et le déplacement de la masse d'équilibrage (42) étant commandé automatiquement en fonction du déséquilibre mesuré, au moins jusqu'à ce que le broyeur à boules ait atteint le régime prévu.
  17. Procédé selon l'une quelconque des revendications précédentes, le dispositif support (2) étant accéléré jusqu'à un régime prévu et le déséquilibre étant mesuré en permanence pendant l'accélération, le déplacement de la masse d'équilibrage (42) étant effectué progressivement avec un régime croissant et la masse d'équilibrage étant déplacée plusieurs fois uniquement dans une seule direction lors du déplacement progressif pendant l'accélération du dispositif support (2), jusqu'à ce que le déséquilibre mesuré se situe dans un intervalle de tolérance prédéfini et l'intervalle de tolérance prédéfini pour le déséquilibre étant mémorisé dans un moyen de stockage (105) et le déséquilibre mesuré par un dispositif de mesure (9) étant transmis sous forme d'information retour à un dispositif de commande (103), de sorte qu'un circuit de réglage est formé pour le déplacement de la masse d'équilibrage, le dispositif de commande (103) mettant en marche un entraînement (8, 61, 65, 66, 73) pour le déplacement de la masse d'équilibrage (42) dans la direction qui provoque ensuite une réduction du déséquilibre dans les cas où le déséquilibre mesuré se situe en dehors de l'intervalle de tolérance prédéfinie.
  18. Procédé selon l'une quelconque des revendications précédentes, la direction radiale du déplacement de la masse d'équilibrage (42) dépendant du sens de rotation du dispositif support et le dispositif de commande (103) exécutant un programme de commande qui inverse automatiquement le sens de rotation du dispositif support (2) lorsque ceci est nécessaire pour le déplacement de la masse d'équilibrage (42) dans la bonne direction.
  19. Procédé selon l'une quelconque des revendications précédentes, le broyeur à boules présentant un dispositif de commande (103) avec un moyen de stockage (105), dans lequel est mémorisé un intervalle de tolérance prédéfini pour le déséquilibre, au moins les mesures suivantes étant exécutées :
    (a) mesure (213) du déséquilibre,
    (b) lorsque le déséquilibre mesuré se situe en dehors de l'intervalle de tolérance, déplacement (216) de la masse d'équilibrage (42) jusqu'à ce que l'intervalle de tolérance soit atteint,
    (c) accélération (219) du dispositif support (2) jusqu'à un régime supérieur,
    (d) mesure (213) du déséquilibre au régime supérieur,
    (e) lorsque le déséquilibre mesuré quitte l'intervalle de tolérance, déplacement (216) de la masse d'équilibrage (42) jusqu'à ce que l'intervalle de tolérance soit atteint,
    (f) accélération (219) du dispositif support (2), les mesures (d) à (f) étant mises en oeuvre jusqu'à ce qu'un régime prévu soit atteint (218).
  20. Procédé selon la revendication 19,
    la direction radiale du déplacement de la masse d'équilibrage (42) dépendant du sens de rotation du dispositif support (2) et le dispositif de commande (103) déterminant si
    (i) le sens de rotation du dispositif support (2) permet un déplacement de la masse d'équilibrage (42) dans la direction qui réduit le déséquilibre ou
    (ii) le sens de rotation du dispositif support (2) ne permet pas un déplacement de la masse d'équilibrage (42) dans la direction qui réduit le déséquilibre,
    et le dispositif de commande (103) prenant automatiquement la décision suivante (211) sur la base de l'alternative (i) ou (ii) déterminée :
    en présence du résultat (i) déterminé, poursuite de l'accélération du dispositif support (2),
    en présence du résultat (ii) déterminé, inversion (212) du sens de rotation du dispositif support (2).
  21. Procédé selon la revendication 19,
    la direction radiale du déplacement de la masse d'équilibrage (42) dépendant du sens de rotation du dispositif support (2),
    la masse d'équilibrage (42) pouvant être déplacée entre une première position extrême et une seconde position extrême (42a, 42b), qui se font face radialement,
    la masse d'équilibrage (42) étant déplacée, à la fin d'une opération de broyage, dans la première ou la seconde position extrême (42a, 42b), selon que telle ou telle direction de déplacement est possible du fait du sens de rotation du dispositif support (2) et
    le dispositif support (2) étant mis en marche dans la direction opposée lors de l'opération de broyage suivante afin de s'assurer que la masse d'équilibrage (42) peut être déplacée dans la bonne direction, de telle sorte que le dispositif support (2) est accéléré alternativement dans le sens des aiguilles d'une montre et dans le sens contraire à celui des aiguilles d'une montre lors d'opérations de broyage consécutives.
  22. Procédé selon l'une quelconque des revendications précédentes, la direction et l'ampleur de l'accélération de la suspension du dispositif support étant mesurées en permanence dans au moins deux dimensions dans un plan transversal à l'axe central (24), afin de déterminer l'ellipse d'accélération sous-tendue par le vecteur d'accélération tournant dans le plan et de déterminer au moins l'exactitude de la direction du réglage à l'aide de la variation de l'ellipse d'accélération lors du déplacement de la masse d'équilibrage.
EP06792377A 2006-02-10 2006-10-05 Broyeur a billes dote d'une masse d'equilibrage ajustable Active EP1981639B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200610006529 DE102006006529A1 (de) 2006-02-10 2006-02-10 Kugelmühle mit Mitteln zur Identifizierung von Mahlgefäßen
DE200610018325 DE102006018325A1 (de) 2006-04-19 2006-04-19 Kugelmühle mit verstellbarer Ausgleichsmasse
PCT/EP2006/009628 WO2007090440A1 (fr) 2006-02-10 2006-10-05 Broyeur a billes dote d'une masse d'equilibrage ajustable

Publications (2)

Publication Number Publication Date
EP1981639A1 EP1981639A1 (fr) 2008-10-22
EP1981639B1 true EP1981639B1 (fr) 2010-01-06

Family

ID=37520571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792377A Active EP1981639B1 (fr) 2006-02-10 2006-10-05 Broyeur a billes dote d'une masse d'equilibrage ajustable

Country Status (3)

Country Link
EP (1) EP1981639B1 (fr)
DE (1) DE502006005893D1 (fr)
WO (1) WO2007090440A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009983A1 (de) * 2012-05-22 2013-11-28 Fritsch Gmbh Kugelmühle mit automatisch verstellbarer Ausgleichsmasse

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012007530B4 (de) 2012-04-17 2017-05-11 Fritsch Gmbh Mahlgefäß für eine Labormühle
DE102012009984A1 (de) 2012-05-22 2013-11-28 Fritsch Gmbh Laborkugelmühle
DE102012009987B4 (de) 2012-05-22 2023-02-23 Fritsch Gmbh Laborkugelmühle
DE102012009982A1 (de) 2012-05-22 2013-11-28 Fritsch Gmbh Laborkugelmühle
DE102012009985A1 (de) 2012-05-22 2013-11-28 Fritsch Gmbh Laborkugelmühle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB730494A (en) * 1953-02-11 1955-05-25 Frank Limb O B E Improvements in and relating to ball mills and like rotary chamber apparatus
DE19712905C2 (de) * 1997-03-27 2003-11-06 Fritsch Gmbh Laborgeraetebau Planetenkugelmühle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009983A1 (de) * 2012-05-22 2013-11-28 Fritsch Gmbh Kugelmühle mit automatisch verstellbarer Ausgleichsmasse

Also Published As

Publication number Publication date
WO2007090440A1 (fr) 2007-08-16
EP1981639A1 (fr) 2008-10-22
DE502006005893D1 (de) 2010-02-25

Similar Documents

Publication Publication Date Title
EP1981639B1 (fr) Broyeur a billes dote d'une masse d'equilibrage ajustable
DE102006018325A1 (de) Kugelmühle mit verstellbarer Ausgleichsmasse
DE2923800C2 (de) Vorrichtung zur magnetischen Lagerung eines Rotors mit an den axialen Enden des Rotors vorgesehenen magnetischen Lagern
DE2506160C3 (de) Windkraftwerk
DE4444992C2 (de) Vorrichtung zum Unwuchtausgleich von Rotationskörpern, insbesondere von Schleifscheiben
DE102011120434A1 (de) Bürstenlose Permanentmagnetmaschine mit Axialfluss
DE102012009987A1 (de) Laborkugelmühle
DE19712905C2 (de) Planetenkugelmühle
EP3804586A1 (fr) Moulin à café
DE102012009984A1 (de) Laborkugelmühle
DE19806898A1 (de) Gerät zum Lesen und/oder Beschreiben scheibenförmiger Aufzeichnungsträger
DE102019122996A1 (de) Mahlwerk und Kaffeemaschine mit einem solchen Mahlwerk
DE102012009982A1 (de) Laborkugelmühle
DE102012009983A1 (de) Kugelmühle mit automatisch verstellbarer Ausgleichsmasse
DE102012009985A1 (de) Laborkugelmühle
EP3488971A1 (fr) Dispositif de pivotement électrique
DE2137901A1 (de) Vorrichtung zum feinauswuchten von schleifscheiben
EP1642046B1 (fr) Dispositif pour la transmission de force mecanique ou magnetique
DE2945631A1 (de) Einrichtung zum auswuchten von drehantreibbaren koerpern
EP0016219B1 (fr) Machine-outil à affûter
DE2134270B2 (de) Vorrichtung zum statischen und dynamischen Auswuchten von Schleif scheiben an Schleifmaschinen wahrend des Umlaufs
EP0730792B1 (fr) Vibrateur a balourd entraine par un moteur
DE4244015A1 (de) Wuchtkopf mit verstellbarer Unwucht zur Anbringung an einem auszuwuchtenden Maschinenteil
DE1573809C (de) Auswuchtvorrichtung zum Ausgleich von rotierenden Maschinenteilen, insbesondere Schleifscheiben, wahrend der Drehung
DE102022207743A1 (de) Unwuchtmesseinrichtung, Bearbeitungseinrichtung, sowie Verfahren zur Bearbeitung eines Werkstücks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006005893

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101007

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 18

Ref country code: DE

Payment date: 20231025

Year of fee payment: 18