EP1974064A1 - Verfahren und vorrichtung zur einstellung gezielter eigenschaftskombinationen bei mehrphasenstählen - Google Patents
Verfahren und vorrichtung zur einstellung gezielter eigenschaftskombinationen bei mehrphasenstählenInfo
- Publication number
- EP1974064A1 EP1974064A1 EP06829499A EP06829499A EP1974064A1 EP 1974064 A1 EP1974064 A1 EP 1974064A1 EP 06829499 A EP06829499 A EP 06829499A EP 06829499 A EP06829499 A EP 06829499A EP 1974064 A1 EP1974064 A1 EP 1974064A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- annealing
- steels
- carried out
- annealing treatment
- production
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 41
- 239000010959 steel Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 230000009977 dual effect Effects 0.000 claims abstract description 4
- 238000000137 annealing Methods 0.000 claims description 69
- 238000001816 cooling Methods 0.000 claims description 19
- 238000005098 hot rolling Methods 0.000 claims description 12
- 238000005246 galvanizing Methods 0.000 claims description 10
- 229910000859 α-Fe Inorganic materials 0.000 claims description 10
- 229910000734 martensite Inorganic materials 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 6
- 229910001563 bainite Inorganic materials 0.000 claims description 5
- 238000004886 process control Methods 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 15
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 230000006978 adaptation Effects 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 description 8
- 229910001566 austenite Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- -1 iron carbides Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the invention relates to a method and a device for setting specific combinations of properties in hot-rolled multiphase steels whose multiphase structure comprises at least 30% ferrite and at most 50% martensite, for example dual-phase and TRIP steels, which are on a conventional hot rolling mill, a thin slab Casting rolling mill or corresponding narrow and medium strip lines or a wire line are prepared with a standard analysis and a standard process management.
- Multi-phase steels have a significantly improved combination of strength and ductility compared to conventional steel grades and are therefore becoming more and more important, especially for the automotive industry.
- the most important steel groups for the automotive industry are dual-phase steels and TRIP steels.
- a characteristic feature of dual-phase steels is a low yield ratio, which is usually between 50 and 70%.
- HSLA steels high-strength low-alloy
- ie high-strength, low-alloy structural steels in addition to the lower yield strength at the same tensile strength level, significantly better elongation values are achieved.
- TRIP transformation induced plasticity
- steels with a texture of, for example, 40-70% ferrite, 15-40% bainite and 5-20% retained austenite is the transformation of the metastable retained austenite to martensite when external plastic deformation occurs.
- This transformation which is associated with an increase in volume and a plasticization of the ferritic matrix and is not carried by the austenite alone, but also by the surrounding structural constituents, results in a higher degree of solidification and leads overall to higher plastic strains.
- steels produced in this way have an extraordinary combination of high strength and high ductility, which makes them particularly suitable for use in the automotive industry.
- EP 1 396 549 A1 discloses a process in which a molten steel containing not only iron and unavoidable impurities but also at least one of Ti or Nb as an essential constituent and optionally one or more of elements max. 0.8% Cr, max. 0.8% Cu, max. 1, 0% Ni, is cast into thin slabs, which are annealed with a 850 to 1050 0 C amounting inlet temperature in an annealing furnace for an annealing time of 10 to 60 minutes at 1000 to 1200 0 C.
- the thin slabs are then hot rolled in the range of 750 to 1000 0 C and then to a coiling temperature of 300 to 530 0 C in two stages with a controlled cooling rate of the first stage of at least 150 K / s and a cooling pause of 4 bis Cooled for 8 seconds.
- the presence of Ti and / or Nb is important, since these elements remain in solution until the start of hot rolling and improve their subsequent separation, inter alia, the grain size of the hot strip, an increase in Austenitgehaltes and its stability.
- EP 1 394 279 B1 discloses a process for producing a low-carbon steel of high strength and high ductility with a tensile strength of greater than 800 MPa, a uniform elongation of greater than 5% and an elongation at break of greater than 20%.
- a steel with 0.20% C, 1, 60% Mn and admixtures of boron and a martensite phase content of greater than 90% After a cold rolling of greater than 20% of the total rolling an annealing treatment at a Temperature between 500 and 600 ° C, wherein a microstructure with an ultrafine, crystalline, granular ferrite structure of 100 to 300 nm is obtained with ferrite deposited in the iron carbides.
- the stated object is procedurally achieved with the characterizing features of claim 1, characterized in that following the cooling from the hot rolling or a later manufacturing step, for example in the manufacture of components, by a subsequent or intermediate annealing with variable annealing temperature and variable annealing time the desired combinations of strength and yield strength ratios can be set on the multiphase steels.
- An apparatus for carrying out the method is characterized by the features of claim 8.
- Advantageous embodiments of the invention are specified in the subclaims.
- the annealing treatment with a variable annealing temperature of ⁇ 600 0 C and a likewise variable annealing period of ⁇ 120 s leads so carried that the resulting microstructure of a ferritic base matrix and martensite or bainite with 10 to 50% of the area ratio.
- the annealing temperature primarily influences the level of yield strength by means of finely divided precipitates of carbides on the grain boundaries of the martensite or bainite, and the tensile strength level can be adjusted by the annealing time.
- the annealing treatment can be carried out offline in a continuous annealing device, independently of upstream or downstream process stages, or else online in the existing process line, for example in the course of strip galvanizing in the heating stage of a galvanizing line prior to insertion. run in the zinc bath, be performed.
- the annealing treatment it is furthermore possible for the annealing treatment to be carried out on already finished components (frame structures, wheels, connecting elements, etc.), with the result that these components are subsequently improved in their mechanical properties.
- the advantage of this procedure is that the forming of the component can be carried out on a good cold-formable material with a low yield ratio with good elongation and thus the tool wear is kept comparatively low.
- the strength of the components is increased to values that can otherwise be difficult to specify, because then the pressing force of the forming machines would not be sufficient.
- a zonal annealing treatment at localized points of a component is specifically possible according to the invention.
- the aim here is the partial replacement of welded tailor blanks. Tailor blanks are used to weld steels of higher strength at specific points of components in order to set desired component stiffnesses. However, this welding could be dispensed with if, instead, a zonal annealing treatment is then carried out at the points in question.
- a device for setting specific combinations of properties in hot-rolled multiphase steels by an annealing treatment is inventively characterized by a arranged at a freely selectable location within the production onsstrom or production line thermal plant in which an annealing to an annealing temperature of ⁇ 600 0 C. and is feasible up to an annealing time of ⁇ 120 s.
- This thermal installation can be a continuous heating device in which the annealing of components, for example, is carried out offline, or it is arranged online in an existing process line, for example in the course of strip galvanizing, in the heating stage of a galvanizing line prior to entry into the zinc bath.
- Dual phase steels exhibit partially anisotropic toughness properties in the rolling direction and transversely thereto.
- this anisotropy is made of the properties in both directions made uniform (isotropic properties).
- the untreated hot strip (annealing time 0 s) has a significantly different development of the elongation at break in roll longitudinal and transverse rolling direction. Due to the short annealing treatment (annealing time 1 min.), The tensile strength decreases slightly, but the values for the elongation at break altogether rise to a higher level:
- Fig. 3 is a flow chart of the annealing of components.
- FIGS. 1 to 3 show, in the form of flow patterns, the individual process steps required for the inventive annealing of strip material (FIG. 1), wire material (FIG. 2) and components (FIG Procedure path is marked with numbered directional arrows.
- Strip material FIG. 1
- wire material FIGG. 2
- components FIGS. 1 to 3
- FIGS. 1 to 3 show, in the form of flow patterns, the individual process steps required for the inventive annealing of strip material (FIG. 1), wire material (FIG. 2) and components (FIG Procedure path is marked with numbered directional arrows.
- Common to all the flow charts listed is that as a starting point, first a hot rolling takes place, followed by a controlled cooling from the hot rolling to achieve a multi-phase structure. The other possible process steps and the time of the annealing carried out in the various materials are described below.
- FIG. 1 shows possible process paths 1, 2 for an annealing treatment of strip material before further processing.
- an annealing treatment 30 is carried out after the hot rolling 10 and the controlled cooling 20 and subsequently the strip material is fed to the finished product 80 for further processing.
- the annealing treatment 30 can be carried out online, for which purpose a corresponding continuous furnace is to be arranged in the existing process line.
- a band bonding 40 of the hot strip takes place, so that before that a continuous annealing treatment 30 can be carried out online in the heating stage of the galvanizing line.
- the further processing then takes place to the finished product 80 of the strip material.
- FIG. 2 shows possible process paths 1, 2, 3 for an annealing treatment of wire material.
- the annealing treatment 30 which can be done online here as in the strip material.
- the heat treatment 30 is then followed directly by the further processing to the finished product 80.
- the pressing 50 of connecting elements takes place before the wire material is fed to the finished product 80 for further processing.
- this pressing 50 of connecting elements can be carried out already before the annealing treatment 30, as the method 3 shows.
- the resulting process steps arranged one behind the other are then: hot rolling 10, controlled cooling 20, pressing 50 of connecting elements, annealing treatment 30 and finally the further processing to the finished product 80.
- FIG. 3 shows possible process paths 1, 2, 3 for an annealing treatment of components, wherein for all three process paths after the controlled cooling 20, a further process step first takes place with the production of a blank 60.
- the production of components with adjusted mechanical properties takes place after the production of the blank 60, the pressing of the components 70.
- the entire component is then subjected to an annealing treatment 30 and then fed to the finished product 80 for further processing.
- process route 3 in process route 3 the production of components with a subsequent local change of the mechanical properties is carried out by a zonal annealing treatment 35 of the pressed component, whereby the pressing of the components 70 can advantageously be carried out on the still untreated blank. After this zonal annealing treatment 35, the component which is locally changed in its mechanical strength can then be supplied to the finished product 80 for further processing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Coating With Molten Metal (AREA)
- Metal Rolling (AREA)
Abstract
Mehrphasenstähle weisen gegenüber konventionellen Stahlgüten eine deutlich verbesserte Kombination aus Festigkeit und Duktilität auf und gewinnen deshalb - insbesondere für die Automobilindustrie - immer mehr an Bedeutung. Die z. Z. bedeutendsten Stahlgruppen für den Automobilbau sind Dualphasenstähle und TRIP-Stähle. Die für unterschiedliche Anforderungen durchzuführende Herstellung unterschiedlicher Mehrphasenstahl-Festigkeitsklassen unmittelbar am Warmband erfordert ein sehr umfangreiches Prozess-Know-how sowie vorab eine entsprechende Anpassung der Legierungselemente. Erfindungsgemäß wird vorgeschlagen, anschließend an die eigentliche Herstellung von Mehrphasenstählen mit einer Standardanalyse und einer Standardprozessführung eine Glühbehandlung (30) mit variabler Glühtemperatur und Glühdauer durchzuführen, wodurch sich nahezu beliebige Kombinationen unterschiedlicher Werkstoffe bzw. Eigenschaftskombinationen (Höhe der Streckgrenze, Zugfestigkeitsniveau) einstellen lassen.
Description
Verfahren und Vorrichtung zur Einstellung gezielter Eigenschaftskombinationen bei Mehrphasenstählen
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Einstellung gezielter Eigenschaftskombinationen bei warmgewalzten Mehrphasenstählen, deren mehr-phasiger Aufbau mindestens 30 % Ferrit und höchstens 50 % Martensit umfasst, beispielsweise Dualphasen- und TRIP-Stählen, die auf einer her- kömmlichen Warmwalzstraße, einer Dünnbrammen-Gieß-Walzanlage oder entsprechenden Schmal- und Mittelbandstraßen oder einer Drahtstraße mit einer Standardanalyse und einer Standardprozessführung hergestellt werden.
Mehrphasenstähle weisen gegenüber konventionellen Stahlgüten eine deutlich verbesserte Kombination aus Festigkeit und Duktilität auf und gewinnen deshalb - insbesondere für die Automobilindustrie - immer mehr an Bedeutung. Die z. Z. bedeutendsten Stahlgruppen für den Automobilbau sind Dualphasenstähle und TRIP-Stähle.
Aufgrund der deutlich niedrigeren Herstellungskosten bietet die Variante der Herstellung direkt als Warmband dabei wirtschaftliche Vorteile und besitzt somit ein sehr großes Potenzial für die Zukunft.
Charakteristisch für Dualphasen-Stähle ist ein niedriges Streckgrenzenverhält- nis, welches in der Regel zwischen 50 und 70 % liegt. Im Vergleich zu HSLA- Stählen (high-strength low-alloy), d. h. hochfesten, niedrig legierten Baustählen werden neben der niedrigeren Streckgrenze bei gleichem Zugfestigkeitsniveau deutlich bessere Dehnungswerte erreicht. Für einige Anwendungen (beispielsweise Rohre) kann es gewünscht sein, dass das Streckgrenzenverhältnis auf definierte Werte eingestellt werden muss, aber dennoch die Bruchdehnung so groß wie möglich ist.
Da die Herstellung unterschiedlicher Festigkeitsklassen unmittelbar am Warmband ein sehr umfangreiches Prozess-Know-how erfordert, ist es Stand der Technik, für jeden einzelnen Werkstoff entweder die chemische Analyse oder aber die Prozessführung anzupassen, wobei Trip-Stähle grundsätzlich ein et- was höheres Streckgrenzenverhältnis gegenüber Dualphasen-Stählen aufweisen.
Aus der EP 1 108 072 B1 ist ein Verfahren zur Herstellung von Dualphasen- Stählen bekannt, bei dem nach dem Fertigwalzen mit einer zweistufigen Abküh- lung ein zweiphasiges Gefüge aus 70 bis 90 % Ferrit und 30 bis 10 % Martensit erreicht wird. Die erste (langsame) Kühlung wird in einer Kühlstrecke durchgeführt, in der das Warmband durch mit Abstand hintereinander angeordnete Wasserkühlstufen mit einer Abkühlgeschwindigkeit von 20 - 30 K/s definiert gekühlt wird. Die Abkühlung ist dabei so eingestellt, dass die Abkühlkurve mit einer noch so hohen Temperatur in das Ferritgebiet einläuft, dass die Ferritbildung schnell erfolgen kann. Diese erste Kühlung wird so lange fortgesetzt, bis mindestens 70 % des Austenits in Ferrit umgewandelt sind, bevor die weitere (schnelle) Abkühlung unmittelbar und ohne Haltezeit anschließt.
Der besondere Effekt der TRIP-Stähle (transformation induced plasticity) mit einem Gefüge von beispielsweise 40 - 70 % Ferrit, 15 - 40 % Bainit und 5 - 20 % Restaustenit ist die Umwandlung des metastabilen Restaustenits zu Martensit, wenn eine äußere plastische Verformung auftritt. Diese mit einer Volumenzunahme und einer Plastifizierung der ferritischen Matrix verbundene Umwand- lung, welche nicht alleine vom Austenit, sondern auch von den umliegenden Gefügebestandteilen getragen wird, hat eine höhere Verfestigung zur Folge und führt insgesamt zu höheren plastischen Dehnungen. Es ergibt sich für derart hergestellte Stähle eine außergewöhnliche Kombination von hoher Festigkeit und hoher Duktilität, weshalb sie sich besonders für eine Verwendung in der Autoindustrie eignen.
Zur Herstellung eines perlitfreien warmgewalzten Stahlbandes mit TRIP-Eigen- schaften ist aus der EP 1 396 549 A1 ein Verfahren bekannt, bei dem eine Stahlschmelze, die neben Eisen und unvermeidbaren Verunreinigungen mindestens eines der Elemente Ti oder Nb als wesentlichen Bestandteil und wahlweise eines oder mehrere der Elemente max. 0,8 % Cr, max. 0,8 % Cu, max. 1 ,0 % Ni enthält, zu Dünnbrammen vergossen wird, die mit einer 850 bis 1050 0C betragenden Einlauftemperatur in einem Glühofen für eine Glühdauer von 10 bis 60 Minuten bei 1000 bis 1200 0C geglüht werden. Nach einer Entzunderung werden die Dünnbrammen dann im Bereich von 750 bis 1000 0C fertig warmgewalzt und dann auf eine Haspeltemperatur von 300 bis 530 0C in zwei Stufen mit einer gesteuerten Abkühlgeschwindigkeit der ersten Stufe von mindestens 150 K/s und einer Kühlpause von 4 bis 8 Sekunden abgekühlt. Neben der vorgeschriebenen Verfahrensführung ist das Vorhandensein von Ti und/oder Nb von Bedeutung, da diese Elemente bis zum Beginn des Warmwalzens in Lösung bleiben und bei ihrem späteren Ausscheiden u. a. die Kornfeinheit des Warmbandes, eine Erhöhung des Restaustenitgehaltes und dessen Stabilität verbessern.
Schließlich ist aus der EP 1 394 279 B1 ein Verfahren zur Herstellung eines kohlenstoffarmen Stahls hoher Festigkeit und hoher Duktilität mit einer Zugfes- tigkeit von größer 800 MPa, einer gleichmäßigen Dehnung von größer 5 % und einer Bruchdehnung von größer 20 % bekannt. Ausgehend von einem gehärteten bzw. vergüteten Vormaterial, einem Stahl mit 0,20 % C, 1 ,60 % Mn und Beimengungen an Bor und einem Martensitphasenanteil von größer 90 % wird nach einer Kaltwalzung von größer 20 % der Gesamtwalzung eine Glühbehand- lung bei einer Temperatur zwischen 500 und 600 °C durchgeführt, wobei ein Gefüge mit einer ultrafeinen, kristallinen, körnigen Ferritstruktur von 100 bis 300 nm mit im Ferrit abgelagerten Eisenkarbiden erhalten wird.
Von diesem Stand der Technik ausgehend ist es Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung anzugeben, womit Mehrphasenstähle, die mit einer Standardanalyse und einer Standardprozessführung hergestellt wurden,
zu Stahlsorten mit nahezu beliebigen Eigenschaftskombinationen umgewandelt werden können.
Die gestellte Aufgabe wird verfahrensmäßig mit den kennzeichnenden Merkmalen des Anspruchs 1 dadurch gelöst, dass im Anschluss an die Abkühlung aus dem Warmwalzen oder eines späteren Fertigungsschrittes, beispielsweise bei der Fertigung von Bauteilen, durch eine nach- bzw. zwischengeschaltete Glühbehandlung mit variabler Glühtemperatur und variabler Glühdauer die gewünschten Kombinationen von Festigkeiten und Streckgrenzenverhältnissen an den Mehrphasenstählen eingestellt werden. Eine Vorrichtung zur Durchführung des Verfahrens ist durch die Merkmale des Anspruchs 8 gekennzeichnet. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Durch die der eigentlichen Herstellung nachgeschaltete, erfindungsgemäß an- gepasste und einfach durchzuführende Glühbehandlung an Mehrphasenstählen mit einer Standardanalyse und einer Standardprozessführung lassen sich nahezu beliebige Kombinationen unterschiedlicher Werkstoffe bzw. Eigenschaftskombinationen (Höhe der Streckgrenze, Zugfestigkeitsniveau) einstellen. Die Herstellung unterschiedlicher Mehrphasenstahl-Festigkeitsklassen unmittelbar am Warmband erfordert dagegen ein sehr umfangreiches Prozess-Know-how sowie vorab eine entsprechende Anpassung der Legierungselemente.
Erfindungsgemäß wird die Glühbehandlung mit einer variablen Glühtemperatur von < 600 0C und einer gleichfalls variablen Glühdauer von ≤ 120 s so durchge- führt, dass das resultierende Gefüge aus einer ferritischen Grundmatrix sowie angelassenem Martensit oder Bainit mit 10 bis 50 % des Flächenanteils besteht. Durch die Glühtemperatur wird dabei in erster Linie die Höhe der Streckgrenze durch fein verteilte Ausscheidungen von Karbiden auf den Korngrenzen des Martensits oder Bainits beeinflusst und durch die Glühdauer ist das Zugfes- tigkeitsniveau einstellbar.
Die Durchführung der Glühbehandlung kann entsprechend der Erfindung, an- gepasst an vorhandene Gegebenheiten, unabhängig von vor- oder nachgeschalteten Verfahrensstufen offline in einer Durchlaufglüheinrichtung erfolgen oder aber online in der vorhandenen Prozesslinie, beispielsweise im Rahmen einer Bandverzinkung in der Aufheizstufe einer Verzinkungslinie vor dem Ein- lauf in das Zinkbad, durchgeführt werden.
Erfindungsgemäß ist es weiterhin möglich, dass die Glühbehandlung an bereits fertig gepressten Bauteilen (Rahmenkonstruktionen, Räder, Verbindungselemente u. a. ) vorgenommen wird, wodurch diese Bauteile nachträglich in ihren mechanischen Eigenschaften verbessert werden. Vorteil dieser Verfahrensweise ist, dass die Umformung zum Bauteil an einem gut kaltumformbaren Material mit niedrigem Streckgrenzenverhältnis bei guter Dehnung vorgenommen werden kann und somit der Werkzeugverschleiß vergleichsweise niedrig gehalten wird. Durch die nachfolgende Glühbehandlung wird die Festigkeit der Bauteile auf Werte gesteigert, die sonst nur schwer vorgegeben werden können, da dann die Presskraft der Umformmaschinen nicht ausreichen würde.
Neben der ganzheitlichen Glühbehandlung eines Bauteils ist nach der Erfindung auch die Anwendung einer zonalen Glühbehandlung an örtlich begrenzten Stellen eines Bauteils gezielt möglich. Zielrichtung ist hierbei der teilweise Ersatz von geschweißten "Tailor Blanks". Bei den Tailor Blanks werden gezielt an bestimmten Stellen von Bauteilen Stähle höherer Festigkeit eingeschweißt, um gewünschte Bauteilsteifigkeiten einzustellen. Auf dieses Einschweißen könnte aber verzichtet werden, wenn stattdessen dann an den betreffenden Stellen eine zonale Glühbehandlung vorgenommen wird.
Eine Vorrichtung zur Einstellung gezielter Eigenschaftskombinationen bei warmgewalzten Mehrphasenstählen durch eine Glühbehandlung, ist erfindungsgemäß durch eine an einem frei wählbaren Ort innerhalb der Produkti- onsanlage bzw. Produktionslinie angeordneten thermischen Anlage gekennzeichnet, in der eine Glühbehandlung bis zu einer Glühtemperatur von < 600 0C
und bis zu einer Glühdauer von < 120 s durchführbar ist. Diese thermische Anlage kann eine Durchlaufglüheinrichtung sein, in der offline die Glühbehandlung beispielsweise von Bauteilen vorgenommen wird oder sie ist online in einer vorhandenen Prozesslinie, beispielsweise im Rahmen einer Bandverzinkung, in der Aufheizstufe einer Verzinkungslinie vor dem Einlauf in das Zinkbad ange- ordnet.
Die Wirkungsweise der erfindungsgemäßen Glühbehandlung wird u. a. an folgendem Beispiel deutlich. Dualphasenstähle weisen teilweise anisotrope Zähigkeitseigenschaften in Walzrichtung und quer dazu auf. Bei einem an einem als Warmband hergestellten Dualphasenstahl mit 980-1035 N/mm2 Zugfestigkeit erfindungsgemäß durchgeführten kurzen Glühbehandlung über 60 s bei 500 0C ließ sich diese Anisotrophie der Eigenschaften in beiden Richtungen vergleichmäßigen (isotrope Eigenschaften). Wie die folgende Tabelle zeigt, besitzt das unbehandelte Warmband (Glühdauer 0 s) eine deutlich unterschiedliche Ausbil- düng der Bruchdehnungen in Walzlängs- und Walzquerrichtung. Durch die kurze Glühbehandlung (Glühdauer 1 min.) nimmt die Zugfestigkeit etwas ab, dafür steigen die Werte für die Bruchdehnung insgesamt auf ein höheres Niveau:
Glühdauer Rp0.2 Rm Rp0.2 / Rm A
(S) (Mpa) (Mpa) (%)
0 longitudinal 473 1035 0.46 13,0 transversal 469 981 0.48 7,8
60 longitudinal 503 839 0.60 17,7 transversal 513 881 0.58 18,1
Diese am Beispiel des Dualphasenstahls dargestellten Zusammenhänge gelten in gleicher Weise auch für TRIP-Stähle.
Weitere Einzelheiten zur möglichen Durchführung der vorstehend beschriebenen erfindungsgemäßen Glühbehandlung werden nachfolgend an in schematischen Zeichnungsfiguren dargestellten Flussbildern näher erläutert.
Es zeigen:
Fig. 1 ein Flussbild der Glühbehandlung von Bandmaterial,
Fig. 2 ein Flussbild der Glühbehandlung von Drahtmaterial,
Fig. 3 ein Flussbild der Glühbehandlung von Bauteilen.
In den Figuren 1 bis 3 sind in Form von Flussbildern, die für die erfindungsgemäße Glühbehandlung von Bandmaterial (Fig. 1 ), von Drahtmaterial (Fig. 2) und von Bauteilen (Fig. 3) erforderlichen einzelnen Verfahrensschritte darge- stellt, wobei der jeweilige Verfahrensweg mit nummerierten Richtungspfeilen gekennzeichneten ist. Allen aufgeführten Flussbildern ist gemeinsam, dass als Ausgangspunkt zunächst ein Warmwalzen erfolgt, an das sich eine gesteuerte Abkühlung aus dem Warmwalzen zur Erzielung eines mehrphasigen Gefüges anschließt. Die weiteren möglichen Verfahrensschritte und der Zeitpunkt der durchgeführten Glühbehandlung bei den verschiedenen Materialien werden nachfolgend beschrieben.
In Figur 1 sind mögliche Verfahrenswege 1 , 2 für eine Glühbehandlung von Bandmaterial vor der Weiterverarbeitung dargestellt. Beim Verfahrensweg 1 wird nach dem Warmwalzen 10 und der gesteuerten Abkühlung 20 eine Glühbehandlung 30 durchgeführt und daran anschließend das Bandmaterial zur Weiterverarbeitung zum Fertigprodukt 80 geführt. Die Glühbehandlung 30 kann online durchgeführt werden, wozu ein entsprechender Durchlaufofen in der vorhandenen Prozesslinie anzuordnen ist.
Beim eingezeichneten Verfahrensweg 2 findet beispielsweise eine Bandverzin- kung 40 des Warmbandes statt, sodass davor online eine kontinuierliche Glühbehandlung 30 in der Aufheizstufe der Verzinkungslinie durchgeführt werden kann. Im Anschluss an die Bandverzinkung 40 erfolgt dann die Weiterverarbeitung zum Fertigprodukt 80 des Bandmaterials.
In der Figur 2 sind mögliche Verfahrenswege 1 , 2, 3 für eine Glühbehandlung von Drahtmaterial dargestellt. Beim dargestellten Verfahrensweg 1 erfolgt nach dem Warmwalzen 10 und der anschließenden gesteuerten Abkühlung 20 die Glühbehandlung 30, die hier wie beim Bandmaterial online durchgeführt werden kann. An die Glühbehandlung 30 schließt sich dann direkt die Weiterverarbeitung zum Fertigprodukt 80 an.
Entsprechend dem Verfahrensweg 2 findet nach der auch hier online möglichen Durchführung der Glühbehandlung 30 noch ein weiterer Verarbeitungsschritt, u. z. das Pressen 50 von Verbindungselementen statt, bevor das Drahtmaterial der Weiterverarbeitung zum Fertigprodukt 80 zugeführt wird.
Alternativ kann dieses Pressen 50 von Verbindungselementen bereits vor der Glühbehandlung 30 durchgeführt werden, wie der Verfahrensweg 3 aufzeigt. Die sich hierdurch ergebenden hintereinander angeordneten Verfahrensschritte sind dann: Warmwalzen 10, gesteuerte Abkühlung 20, Pressen 50 von Verbindungselementen, Glühbehandlung 30 und schließlich die Weiterverarbeitung zum Fertigprodukt 80.
In Figur 3 sind mögliche Verfahrenswege 1 , 2, 3 für eine Glühbehandlung von Bauteilen dargestellt, wobei für alle drei Verfahrenswege nach der gesteuerten Abkühlung 20 zunächst mit der Herstellung eines Rohlings 60 ein weiterer Verfahrensschritt erfolgt.
Beim Verfahrensweg 1 , der Herstellung von Bauteilen mit justierten mechanischen Eigenschaften, erfolgt nach der Herstellung des Rohlings 60 das Pressen
der Bauteile 70. Das gesamte Bauteil wird dann einer Glühbehandlung 30 unterzogen und anschließend der Weiterverarbeitung zum Fertigprodukt 80 zugeführt.
Beim Verfahrensweg 2, der Herstellung von Bauteilen mit vorheriger örtlicher Glühbehandlung des Rohlings, erfolgt nach der Herstellung des Rohlings 60 eine zonale Glühbehandlung 35, weshalb das Pressen der Bauteile 70 am bereits örtlich wärmebehandelten Rohling und damit an einem Rohling mit örtlich veränderten mechanischen Eigenschaften vorgenommen werden muss.
Alternativ zum Verfahrensweg 2 wird im Verfahrensweg 3 die Herstellung von Bauteilen mit einer nachträglichen örtlichen Veränderung der mechanischen Eigenschaften durch eine zonale Glühbehandlung 35 des gepressten Bauteils durchgeführt, wodurch das Pressen der Bauteile 70 mit Vorteil am noch unbehandelten Rohling vorgenommen werden kann. Nach dieser zonalen Glühbe- handlung 35 kann dann das in seiner mechanischen Festigkeit örtlich veränderte Bauteil der Weiterverarbeitung zum Fertigprodukt 80 zugeführt werden.
Bezugszeichenliste
1 , 2, 3 Verfahrensweg
10 Warmwalzen
20 gesteuerte Abkühlung
30 Glühbehandlung des gesamten Werkstücks
35 zonale Glühbehandlung
40 Bandverzinkung
50 Pressen von Verbindungselementen
60 Herstellung des Rohlings
70 Pressen der Bauteile
80 Weiterverarbeitung zum Fertigprodukt
Claims
1. Verfahren zur Einstellung gezielter Eigenschaftskombinationen bei warmgewalzten Mehrphasenstählen, deren mehrphasiger Aufbau mindestens 30 % Ferrit und höchstens 50 % Martensit umfasst, beispielsweise Dualphasen- und TRIP-Stählen, die auf einer herkömmlichen Warmwalzstraße, einer Dünnbrammen Gieß-Walzanlage oder entsprechenden Schmal- und Mittelbandstraßen oder einer Drahtstraße mit einer Standardanalyse und einer Standardprozessführung hergestellt werden, dadurch gekennzeichnet, dass im Anschluss an die Abkühlung aus dem Warmwalzen (10) oder eines späteren Fertigungsschrittes, beispielsweise der Fertigung von Bauteilen, durch eine nach- bzw. zwischengeschaltete Glühbehandlung (30, 35) mit variabler Glühtemperatur und variabler Glühdauer die gewünschten Kombinationen von Festigkeiten und Streckgrenzenverhältnissen an den Mehrphasenstählen eingestellt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Glühbehandlung (30, 35) so durchgeführt wird, dass das resultierende Gefüge aus einer ferritischen Grundmatrix sowie angelassenem Martensit oder Bainit mit 10 bis 50 % des Flächenanteils besteht, wobei durch die Glühtemperatur in erster Linie die Höhe der Streckgrenze durch fein verteilte Ausscheidungen von Karbiden auf den Korngrenzen des Marten- sits oder Bainits beeinflusst wird und durch die Glühdauer das Zugfestigkeitsniveau einstellbar ist.
3. Verfahren nach Anspruch nach 1 oder 2, dadurch gekennzeichnet, dass die Glühbehandlung (30, 35) mit einer Glühtemperatur von < 600 0C und einer Glühdauer von < 120 s durchgeführt wird.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die Glühbehandlung (30, 35) offline in einer Durchlaufglüheinrichtung durchgeführt wird.
5. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die Glühbehandlung (30) online im Rahmen einer Bandverzinkung
(40) in der Aufheizstufe einer Verzinkungslinie vor dem Einlauf in das Zinkbad durchgeführt wird.
6. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die Glühbehandlung (30, 35) an bereits fertig gepressten Bauteilen vorgenommen wird.
7. Verfahren nach Anspruch 1 , 2, 3 oder 6, dadurch gekennzeichnet, dass die Glühbehandlung (35) zonal, d. h. an örtlich begrenzten Stellen eines Bauteils, gezielt vorgenommen wird.
8. Vorrichtung zur Einstellung gezielter Eigenschaftskombinationen bei warm- gewalzten Mehrphasenstählen, deren mehrphasiger Aufbau mindestens 30
% Ferrit und höchstens 50 % Martensit umfasst, beispielsweise Dualphasen- und TRIP-Stählen, die auf einer herkömmlichen Warmwalzstraße, einer Dünnbrammen-Gieß-Walzanlage oder entsprechenden Schmal- und Mittelbandstraßen oder einer Drahtstraße mit einer Standardanalyse und einer Standardprozessführung hergestellt werden, insbesondere zur Durch- führung des Verfahrens nach einem oder mehreren der vorhergehenden
Ansprüche 1 bis 7, dadurch gekennzeichnet, dass innerhalb der Produktionsanlage bzw. Produktionslinie an einem frei wählbaren Ort eine thermische Anlage angeordnet ist, in der eine Glühbehandlung (30, 35) mit einer variablen Glühtemperatur von ≤ 600 0C und ei- ner variablen Glühdauer von < 120 s durchführbar ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die thermische Anlage ein in einer Verzinkungslinie online angeordne- ter Durchlaufofen ist.
10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die thermische Anlage eine offline betriebene Durchlaufglüheinrich- tung ist.
11. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die thermische Anlage so ausgebildet ist, dass eine zonale Glühbe- handlung (35) an örtlich begrenzten Stellen eines Bauteils vor oder nach dessen eigentlicher Herstellung als Fertigprodukt durchführbar ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006001198A DE102006001198A1 (de) | 2006-01-10 | 2006-01-10 | Verfahren und Vorrichtung zur Einstellung gezielter Eigenschaftskombinationen bei Mehrphasenstählen |
PCT/EP2006/011909 WO2007079876A1 (de) | 2006-01-10 | 2006-12-11 | Verfahren und vorrichtung zur einstellung gezielter eigenschaftskombinationen bei mehrphasenstählen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1974064A1 true EP1974064A1 (de) | 2008-10-01 |
Family
ID=37908011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06829499A Withdrawn EP1974064A1 (de) | 2006-01-10 | 2006-12-11 | Verfahren und vorrichtung zur einstellung gezielter eigenschaftskombinationen bei mehrphasenstählen |
Country Status (10)
Country | Link |
---|---|
US (1) | US20090151821A1 (de) |
EP (1) | EP1974064A1 (de) |
JP (1) | JP2009522452A (de) |
CN (1) | CN101415846B (de) |
BR (1) | BRPI0620929A2 (de) |
CA (1) | CA2636287A1 (de) |
DE (1) | DE102006001198A1 (de) |
RU (1) | RU2379359C2 (de) |
UA (1) | UA90348C2 (de) |
WO (1) | WO2007079876A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008055514A1 (de) | 2008-12-12 | 2010-06-17 | Thyssenkrupp Steel Europe Ag | Verfahren zur Herstellung eines Bauteils mit verbesserten Bruchdehnungseigenschaften |
DE102013107100A1 (de) * | 2013-07-05 | 2015-01-08 | Thyssenkrupp Steel Europe Ag | Verschleißfestes, zumindest teilweise unbeschichtetes Stahlteil |
PL228818B1 (pl) * | 2015-04-14 | 2018-05-30 | Mejer-Nowakowska Magdalena M.S. Steel Spółka Cywilna | Sposób wyżarzania drutu |
DE102016202381B4 (de) * | 2016-02-17 | 2022-08-18 | Thyssenkrupp Ag | Fahrzeugrad |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6148521A (ja) * | 1984-08-10 | 1986-03-10 | Nippon Steel Corp | 低温靭性および強度の優れた鉄筋棒鋼の製造方法 |
JPH0759726B2 (ja) * | 1987-05-25 | 1995-06-28 | 株式会社神戸製鋼所 | 局部延性にすぐれる高強度冷延鋼板の製造方法 |
CN1017352B (zh) * | 1988-12-12 | 1992-07-08 | 武汉钢铁公司 | 冷轧双相钢的生产工艺 |
JPH0995731A (ja) * | 1995-10-02 | 1997-04-08 | Nkk Corp | 低温用建築向け鋼材の製造方法 |
US6190469B1 (en) * | 1996-11-05 | 2001-02-20 | Pohang Iron & Steel Co., Ltd. | Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper |
JPH10298648A (ja) * | 1997-04-23 | 1998-11-10 | Nippon Steel Corp | 高一様伸び低降伏比高張力鋼材の製造方法 |
TW459053B (en) * | 1997-12-19 | 2001-10-11 | Exxon Production Research Co | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
JP3587126B2 (ja) * | 1999-04-21 | 2004-11-10 | Jfeスチール株式会社 | 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法 |
EP1096029B1 (de) * | 1999-04-21 | 2006-01-25 | JFE Steel Corporation | Hochfeste heisstauchzinkbeschichtete stahlplatte mit hervorragenden duktilitätseigenschaften und verfahren zu deren herstellung |
FR2830260B1 (fr) * | 2001-10-03 | 2007-02-23 | Kobe Steel Ltd | Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci |
JP4156889B2 (ja) * | 2001-10-03 | 2008-09-24 | 株式会社神戸製鋼所 | 伸びフランジ性に優れた複合組織鋼板およびその製造方法 |
JP2004285430A (ja) * | 2003-03-24 | 2004-10-14 | Nomura Kogyo Kk | 鍛造品の製造方法 |
-
2006
- 2006-01-10 DE DE102006001198A patent/DE102006001198A1/de not_active Withdrawn
- 2006-12-11 RU RU2008109221/02A patent/RU2379359C2/ru not_active IP Right Cessation
- 2006-12-11 BR BRPI0620929-7A patent/BRPI0620929A2/pt not_active IP Right Cessation
- 2006-12-11 UA UAA200804988A patent/UA90348C2/ru unknown
- 2006-12-11 JP JP2008549775A patent/JP2009522452A/ja active Pending
- 2006-12-11 CA CA002636287A patent/CA2636287A1/en not_active Abandoned
- 2006-12-11 CN CN2006800508559A patent/CN101415846B/zh not_active Expired - Fee Related
- 2006-12-11 WO PCT/EP2006/011909 patent/WO2007079876A1/de active Application Filing
- 2006-12-11 EP EP06829499A patent/EP1974064A1/de not_active Withdrawn
- 2006-12-11 US US11/992,856 patent/US20090151821A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2007079876A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2009522452A (ja) | 2009-06-11 |
CN101415846B (zh) | 2011-12-14 |
WO2007079876A1 (de) | 2007-07-19 |
DE102006001198A1 (de) | 2007-07-12 |
BRPI0620929A2 (pt) | 2011-11-29 |
US20090151821A1 (en) | 2009-06-18 |
CA2636287A1 (en) | 2007-07-19 |
RU2008109221A (ru) | 2009-09-27 |
UA90348C2 (ru) | 2010-04-26 |
CN101415846A (zh) | 2009-04-22 |
RU2379359C2 (ru) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2366035B1 (de) | Manganstahlband mit erhöhtem phosphorgehalt und verfahren zur herstellung desselben | |
DE69617002T4 (de) | Verfahren zur herstellung von hochfesten nahtlosen stahlrohren mit hervorragender schwefel induzierter spannungsrisskorossionsbeständigkeit | |
DE60116477T2 (de) | Warm-, kaltgewalzte und schmelz-galvanisierte stahlplatte mit exzellentem reckalterungsverhalten | |
EP1309734B2 (de) | Höherfester, kaltumformbarer stahl und stahlband oder -blech, verfahren zur herstellung von stahlband und verwendungen eines solchen stahls | |
EP2690183B1 (de) | Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung | |
EP3535431B1 (de) | Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung | |
EP1918406B1 (de) | Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Bor mikrolegierten Mehrphasenstahl | |
EP2547800A1 (de) | Verfahren zur herstellung von werkstücken aus leichtbaustahl mit über die wanddicke einstellbaren werkstoffeigenschaften | |
WO2007048497A1 (de) | Verfahren zur herstellung von warmband mit mehrphasengefüge | |
EP2094876B1 (de) | Verfahren zur herstellung eines stahlbandes aus einem höherfesten dualphasenstahl | |
EP1918403B1 (de) | Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein martensitisches Gefüge bildenden Stahl | |
DE1508416B2 (de) | Verfahren zur Herstellung von Stahlteilen wie Bolzen, Schrauben, Zapfen u.dgl | |
DE60318277T2 (de) | Stahlrohr mit einem niedrigem Streckgrenze/Zugfestigkeit-Verhältnis | |
WO2008052917A1 (de) | Verfahren zum herstellen von stahl-flachprodukten aus einem ein komplexphasen-gefüge bildenden stahl | |
WO2015024903A1 (de) | Verfahren zum herstellen eines stahlbauteils | |
DE102007030207A1 (de) | Verwendung einer hochfesten Stahllegierung zur Herstellung von Strahlrohren mit hoher Festigkeit und guter Umformbarkeit | |
EP3924526A1 (de) | Verfahren zur herstellung von thermo-mechanisch hergestellten warmbanderzeugnissen | |
EP1974064A1 (de) | Verfahren und vorrichtung zur einstellung gezielter eigenschaftskombinationen bei mehrphasenstählen | |
EP2356262B1 (de) | Verfahren und vorrichtung zur herstellung von stahlrohren mit besonderen eigenschaften | |
DE102006032617B4 (de) | Verfahren zur Herstellung eines zum Formhärten geeigneten Blechhalbzeugs | |
EP1398390B1 (de) | Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge | |
EP3206808B1 (de) | Anlage und verfahren zur herstellung von grobblechen | |
WO2020201352A1 (de) | Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung | |
WO2008052920A1 (de) | Verfahren zum herstellen von stahl-flachprodukten aus einem mit aluminium legierten mehrphasenstahl | |
EP1396549A1 (de) | Verfahren zum Herstellen eines perlitfreien warmgewalzten Stahlbands und nach diesem Verfahren hergestelltes Warmband |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20081111 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SMS SIEMAG AG |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20130325 |