EP1972853B1 - Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs - Google Patents

Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs Download PDF

Info

Publication number
EP1972853B1
EP1972853B1 EP07006041A EP07006041A EP1972853B1 EP 1972853 B1 EP1972853 B1 EP 1972853B1 EP 07006041 A EP07006041 A EP 07006041A EP 07006041 A EP07006041 A EP 07006041A EP 1972853 B1 EP1972853 B1 EP 1972853B1
Authority
EP
European Patent Office
Prior art keywords
heating element
ignition device
tube
protective tube
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07006041A
Other languages
English (en)
French (fr)
Other versions
EP1972853A1 (de
Inventor
Hannes Dipl. Ing. Kühl (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rauschert Steinbach GmbH
Original Assignee
Rauschert Steinbach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rauschert Steinbach GmbH filed Critical Rauschert Steinbach GmbH
Priority to EP07006041A priority Critical patent/EP1972853B1/de
Priority to PL07006041T priority patent/PL1972853T3/pl
Priority to AT07006041T priority patent/ATE448447T1/de
Priority to DE502007001963T priority patent/DE502007001963D1/de
Publication of EP1972853A1 publication Critical patent/EP1972853A1/de
Application granted granted Critical
Publication of EP1972853B1 publication Critical patent/EP1972853B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/02Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs for igniting solid fuel
    • F23Q7/04Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs for igniting solid fuel with fans for transfer of heat to fuel

Definitions

  • the invention relates to an ignition device comprising a protective tube and at least one electrical heating element in the protective tube.
  • the invention further relates to a method for igniting solid fuel, in particular for igniting renewable fuels such as pellets, wood chips or logs of wood or other biomass such as corn, cereals and the like.
  • renewable energy sources have become increasingly popular in recent years in view of their ecological importance due to a pleasing carbon dioxide balance.
  • JP 2005172383 A Such an ignition device for a combustion chamber with pellets, in which a rod-shaped heating element is arranged concentrically in a guide tube.
  • the guide tube has openings into which air is blown by means of a blower. The air is passed between the guide tube and the heating element and heated and flows out of an opening at the end of the guide tube.
  • the heating element Due to its rod-shaped construction, the heating element has a relatively large mass, which must be brought to ignition temperature when the heating element is switched on. This results in a time of about 2 minutes being required to ignite pellets with such an igniter.
  • the GB 862 063 A describes an electrically operated ignition device for igniting solid fuel, which comprises a protective tube and an electrical heating element in the protective tube.
  • the heating element which has a ceramic support rod around which a heating conductor is wound in the form of a resistance wire, is surrounded by air:
  • the DE 38 43 863 A1 describes a high temperature electrical heating element in tube or rod form, especially for igniting diesel.
  • the heating element has a substrate made of AIN, on which a heating conductor is printed.
  • the object is achieved with regard to the ignition device by an ignition device according to claim 1.
  • the faster ignition of the fuel is achieved due to a particularly low mass and / or increased ignition temperature of the ignition device.
  • the at least one heating element which is contained in the ignition device according to the invention, has only a very small mass, which can be heated particularly quickly and energy-saving during heating of the heating element. Permanently high ignition temperatures in the range of 1000 ° C. to 1200 ° C. can be achieved, so that a high radiation energy is radiated from the ignition device and heats the solid fuel. When passing the air flow through the support tube of the at least one heating element, the air heats up strongly and heats up the solid fuel as soon as the heated air flow strikes the solid fuel. This leads to a particularly fast and energy-saving ignition of the solid fuel, with the ignition time being approximately 3 ⁇ 4 shorter than with conventional ignition devices.
  • the design of the ignition device a bundled heat input is achieved on the air flowing through the ignition device, resulting in such a large Zündzeitverkürzung.
  • ignition can take place within about 30 to 60 seconds.
  • the energy consumption for igniting the fuel and the emission of smoke, soot and harmful gases, the z. B. arise when igniting wood, significantly reduced. While wood only smolders and does not burn, it generally smokes and smokes very strongly.
  • a support tube in particular with an annular cross-section, for the construction of the at least one heating element of the ignition device guarantees a high mechanical stability and strength and at the same time a low installation weight compared to a massive firing rod.
  • the risk of breakage is significantly reduced by the advantageous tubular design of the heating element.
  • Even "hot zones" in the ignition device are tolerated by the high mechanical stability of the support tube while z.
  • flat heating elements require a completely uniform temperature distribution over the Schuelement Diagram.
  • the at least one heating element can be permanently used at very high ignition temperatures by a selection of alkali, alkaline earth and glass phases of the material of particularly low contamination for forming the carrier element and the ceramic film.
  • At such high temperatures occurs at the usual, far higher levels of such impurities otherwise relatively quickly electrochemical corrosion in the transition region between the hot zone of the heat conductor and the colder zone in which the electrical leads are, so that an economical long-term operation of conventional Ignition devices with heating elements based on Al 2 O 3 at temperatures in the range of 900 to 1200 ° C has not been possible.
  • the heating element of an ignition device can be produced by a heat conductor is printed in thick film technology on the ceramic film, the ceramic film is wrapped around the support tube and then the heating element is formed by simple pressureless sintering in air.
  • the heating element is electrically insulated to the outside and also corrosion and resistant to oxidation. It has very good mechanical strength and hardness values. Due to the very flexible thick-film technology, the power ranges of the heating element can be adjusted individually within wide ranges. Moreover, this technique is miniaturizable. The at least one heating element is pushed into the protective tube and mechanically fixed there.
  • the electrical contacting of the at least one heating element is preferably covered with ceramic casting material, thereby electrically insulated and protected from harmful environmental influences such as waterlogging or high humidity, which may occur, for example, when passing normal ambient air through an ignition device.
  • Suitable ceramic casting compounds are temperature-change-resistant high-temperature adhesives which can possibly compensate for different coefficients of thermal expansion of the heating element (s) and protective tube.
  • a use of the ignition device according to the invention for igniting solid, flame-retardant fuel, especially for igniting renewable fuels such as pellets, wood chips and logs from corn and corn, and the like, is ideal because ignition can be done very quickly, low in pollutants and energy ,
  • the process according to the invention makes it possible to ignite flame-retardant solid fuels, such as renewable fuels in the form of pellets, wood chips or logs, as well as biomass in the form of corn, cereals and the like in a particularly fast, low-emission and energy-saving manner.
  • flame-retardant solid fuels such as renewable fuels in the form of pellets, wood chips or logs, as well as biomass in the form of corn, cereals and the like in a particularly fast, low-emission and energy-saving manner.
  • heating elements of the material combination Al 2 O 3 / W or Al 2 O 3 / Pt are already known and are permanently used up to a temperature of 800 ° C in air.
  • the support tube and in particular the ceramic foil of at least one heating element are formed from Al 2 O 3 , wherein the support tube and in particular the ceramic film with respect to an optimal durability of the heating element less than 500 ppm of impurities including alkalis (eg sodium, potassium, lithium), alkaline earths (eg calcium, magnesium) and glass phases (eg SiO 2 ).
  • the carrier tube and the ceramic foil preferably have less than 100 ppm, in particular less than 30 ppm of impurities.
  • the carrier tube and the ceramic foil of the at least one heating element are each formed completely from Al 2 O 3 , the Al 2 O 3 containing less than 500 ppm of impurities comprising alkalis (eg sodium, potassium, lithium). , Alkaline earths (eg calcium, magnesium) and glass phases (eg SiO 2 ).
  • alkalis eg sodium, potassium, lithium
  • Alkaline earths eg calcium, magnesium
  • glass phases eg SiO 2
  • an MgO content of up to 300 ppm can be tolerated.
  • the heat conductor material used in combination is preferably glass phase-free and also has small amounts of alkalis or alkaline earths. It is achieved that the ignition device can be permanently and reliably operated at temperatures above 900 ° C, without causing electrochemical corrosion in the contacting of the heating element. Thus, an operation of a heating element with a support tube and a ceramic foil of Al 2 O 3 at 1000 ° C under DC voltage or up to 1200 ° C under AC voltage permanently possible.
  • the support tube of a heating element of the ignition device has an inner diameter in the range of 5 to 35 mm.
  • the air flow which can be conducted through the carrier tube is therefore sufficiently large and is also heated quickly and reliably to high temperatures.
  • the air flow in a certain direction directing internals may be arranged, which extend the residence time of the air flow in the ignition device.
  • the air flow can be guided spirally through a carrier tube and thus heated even more.
  • At least two heating elements are arranged in the protective tube, so that the heating power is increased and the required ignition temperature can be reached even faster. In this way, particularly flame retardant fuels such. B. Wood chips with high humidity, ignite exclusively by the hot air flow.
  • heating elements it is preferable to arrange three or more heating elements in the protective tube.
  • preferably equal heating elements are used in the protective tube.
  • different heating elements for example with regard to the heating conductor material.
  • the protective tube and / or the carrier tube of the at least one heating element or the carrier tubes of the at least two heating elements is / are connected to a fan.
  • a fan generates the desired air flow through the ignition device in the direction of the combustion chamber.
  • the air flow can also be generated, for example, by sucking air out of the combustion chamber and at the same time allowing free access of air through the protective tube and / or the carrier tubes into the combustion chamber.
  • a support rod of a heating element may be provided with a system of U-shaped channels, which flow at least part of the air flow and flow out again at the same end of the support rod to then flow between the protective tube and the at least one heating element in the direction of the combustion chamber.
  • the space between the at least one, a flow-through support tube having heating element and the protective tube is filled with a heat-insulating material.
  • the heat input into the interior of the respective support tube and thus to the air flowing through it is further increased.
  • the result is an increase in the temperature in the support tube by up to 300 ° C compared to a version without heat-insulating material.
  • heat-insulating material in particular fiber mats, porous lightweight bricks or ceramic, vacuum moldings and the like have proven.
  • the at least one heating conductor of the at least one heating element is preferably formed from a refractory metal, such as tungsten, platinum, molybdenum or molybdenum disilicide, from an electrically conductive ceramic-metal composite or from an electrically conductive ceramic material. Due to the positive temperature coefficient of resistance of, for example, tungsten or platinum, a heating element formed thereby is quasi self-limiting.
  • Ceramic-metal composites or mixtures of ceramic and metal powders such as mixtures of 60 vol .-% Al 2 O 3 powder with 40 vol .-% tungsten, molybdenum or platinum powder, have proven to form a heat conductor .
  • a glass-phase-free heating conductor material having a particularly low content (in particular ⁇ 100 ppm) of alkalis and alkaline earths is preferred.
  • the heating conductor or its hot zone preferably extends over more than half the length of the respective heating element.
  • the protective tube is formed of a metal or a metal alloy, in particular with an operating temperature in the range of 900 to 1200 ° C.
  • non-corrosive Cr steels, hot work steels or heat resistant steels are suitable as the material for the thermowell.
  • ceramic protective tubes have a higher susceptibility to breakage and also usually a higher mass, which may have a negative effect on the achievable ignition speed.
  • the at least one electric heating element is heated to a temperature in the range of 1000 to 1200 ° C. Temperatures at the ignition device can be reached up to 1400 ° C for a short time. In particular, an alternating current operation of the at least one heating element is preferred in order to ensure a long service life of the heating element.
  • the first end of the protective tube containing the at least one heating element and the at least one heating conductor, is arranged as close as possible to the fuel to be ignited.
  • the distance between the fuel and the ignition device ⁇ 1 cm is selected or the ignition device is even immersed immersed in the solid fuel. In this case, the fuel ignites even faster than if a distance between the fuel and ignition device is present.
  • the first end of the protective tube containing the at least one heating element and the at least one heating conductor may be automatically removed from or from the combustion chamber after the solid fuel has been ignited.
  • the ignition element may also remain in or on the combustion chamber after ignition of the fuel. On the life of the ignition device has a remaining in or on the combustion chamber, which combustion gases may enter the protective tube, no significant negative impact.
  • FIG. 1a shows an ignition device 1 in longitudinal section.
  • the ignition device 1 has a protective tube 2 made of stainless Cr-steel and in the protective tube 2 a tubular heating element 3 on.
  • the heating element 3 has a support tube 3a of Al 2 O 3 with a content of impurities or alkalis, alkaline earths and glass phase of a total of ⁇ 100 ppm.
  • a printed heating conductor 4 made of platinum is embedded meandering at one end of the support tube 3a, which can be electrically contacted at the other end of the support tube 3a.
  • the position of the heating element 4 between the support tube 3a and the ceramic sheet 3b is indicated by dashed lines and can be seen through an eruption in the support tube 3a through immediately before the ceramic sheet 4.
  • the heating conductor 4 preferably extends over more than half the length of the heating element 3.
  • the heating element 3 is arranged concentrically in the protective tube 2 and fixed by means of a spacer ring 5 in the protective tube 2.
  • the spacer ring 5 can here completely surround the heating element 3 or be present only in regions, so that not only an air flow (see arrow) in the support tube 3a, but also in the intermediate space 6 between the heating element 3 and the protective tube 2 can be generated.
  • FIG. 1b shows the ignition device FIG. 1a in cross-section A - A '. It can be seen that the heating conductor 4 is arranged in a meander shape around the support tube 3a and is protected by the ceramic foil 3b.
  • FIG. 2 shows in the sectional view of a built-in wall of a combustion chamber 7 ignition device 1, which projects above the fuel 8, which is in the form of wood pellets, into the combustion chamber 7. It is just as possible here that the ignition device 1 does not protrude into the combustion chamber 7, but closes with the wall of the combustion chamber 7. However, the distance between fuel 8 and ignition device 1 is preferably chosen smaller than 1 cm.
  • the heating element 3 is placed on a Temperature of ⁇ 900 ° C heated and an air flow (see arrows) generated by the support tube 3a therethrough.
  • a further air flow between the protective tube 2 and the heating element 3 in the direction of the combustion chamber 7 is generated. The heated air streams or the hit on the fuel 8 and heat it.
  • the ignition device 1 radiates heat, which further heats the fuel 8. With sufficient heat input into the fuel 8 takes place the ignition.
  • the ignition device 1 can be pulled out of the combustion chamber 7 during the burnup of the fuel 8 or remain in its position.
  • FIG. 3 shows in a sectional view another, built into a wall of a combustion chamber 7 ignition 1.
  • the ignition device 1 is arranged so that it dips directly into the fuel 8 in the form of wood chips.
  • the ignition of the fuel 8 takes place here faster than in the arrangement of the ignition device 1 according to FIG. 2 because no distance between the ignition device 1 and the fuel 8 must be overcome.
  • FIG. 4 schematically shows a further ignition device with three tubular heating elements 3 in cross section, through which air flowing through can be heated particularly fast and strong.
  • the three heating elements 3 are arranged parallel to one another and to the protective tube 2 in this. In each support tube of the three heating elements 3, an air flow is generated in each case.
  • the gaps 6 between the protective tube 2 and the heating elements 3 are flowed through by a further air flow.
  • FIG. 5 schematically shows a further ignition device with three tubular heating elements 3 in cross section, through which air flowing through can be heated particularly fast and strong.
  • the three heating elements 3 are arranged parallel to each other and the protective tube 2 in this. In each support tube of the three heating elements 3, an air flow is generated in each case.
  • the interspaces between the protective tube 2 and the heating elements 3 are filled with heat-insulating material 9, for example of fiber mats, so that the air flowing through the carrier tubes air is heated particularly strong.
  • the ignition devices shown in the figures and their installation situation are chosen only by way of example from a wealth of other possible embodiments.
  • the expert is aware of the ignition device according to the invention readily able to make an adjustment of the ignition device to the local conditions of use and the purpose, without being inventive act.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Resistance Heating (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)
  • Solid-Fuel Combustion (AREA)

Description

  • Die Erfindung betrifft eine Zündeinrichtung, umfassend ein Schutzrohr und mindestens ein elektrisches Heizelement in dem Schutzrohr. Die Erfindung betrifft weiterhin ein Verfahren zum Zünden von festem Brennstoff, insbesondere zum Zünden von nachwachsenden Brennstoffen wie Pellets, Hackschnitzeln oder Scheiten aus Holz oder sonstiger Biomasse wie Mais, Getreide und dergleichen. Derartige nachwachsende Energieträger erfreuen sich in den letzten Jahren im Hinblick auf ihre ökologische Bedeutung aufgrund einer erfreulichen Kohlendioxidbilanz wachsender Beliebtheit.
  • Zündeinrichtungen der oben genannten Art sind hinreichend bekannt. So offenbart JP 2005172383 A eine derartige Zündeinrichtung für eine Brennkammer mit Pellets, bei welcher ein stabförmiges Heizelement konzentrisch in einem Führungsrohr angeordnet ist. Das Führungsrohr weist Öffnungen auf, in welche mittels eines Gebläses Luft eingeblasen wird. Die Luft wird zwischen dem Führungsrohr und dem Heizelement hindurch geleitet und erhitzt und strömt am Ende des Führungsrohres aus einer Öffnung aus. Das Heizelement weist aufgrund seines stabförmigen Aufbaus eine relativ große Masse auf, die beim Einschalten des Heizelements auf Zündtemperatur gebracht werden muss. Dies führt dazu, dass zum Zünden von Pellets mit einer derartigen Zündeinrichtung ein Zeitbedarf von etwa 2 Minuten erforderlich ist.
  • Die GB 862 063 A beschreibt eine elektrisch betriebene Zündeinrichtung zum Zünden von festem Brennstoff, welche ein Schutzrohr und ein elektrisches Heizelement in dem Schutzrohr umfasst. Das Heizelement, das einen keramischen Trägerstab aufweist, um welchen ein Heizleiter in Form eines Widerstandsdrahts gewickelt ist, wird von Luft umströmt:
  • Die DE 38 43 863 A1 beschreibt ein elektrisches Hochtemperatur-Heizelement in Röhrchen- oder Stabform, insbesondere zum Zünden von Diesel. Das Heizelement weist ein Substrat aus AIN auf, auf welches ein Heizleiter gedruckt wird.
  • Es ist Aufgabe der Erfindung, eine Zündeinrichtung und ein Verfahren zum Zünden von festem, schwer entflammbarem Brennstoff, insbesondere nachwachsenden Brennstoffen wie Pellets, Hackschnitzeln oder Scheiten aus Holz und ähnlichem bereitzustellen, so dass das Zünden schneller erfolgen kann.
  • Die Aufgabe wird hinsichtlich der Zündeinrichtung durch eine Zündeinrichtung gemäß Anspruch 1 gelöst. Die schnellere Zündung des Brennstoffs wird aufgrund einer besonders geringen Masse und/oder einer erhöhten Zündtemperatur der Zündeinrichtung erreicht.
  • Die erfindungsgemäße Zündeinrichtung zum Zünden von festem Brennstoff, insbesondere zum Zünden von nachwachsenden Brennstoffen wie Pellets, Hackschnitzeln oder Scheiten aus Holz, umfasst ein Schutzrohr und mindestens ein elektrisches Heizelement in dem Schutzrohr, wobei das mindestens eine Heizelement ein keramisches Trägerrohr und mindestens einen, auf eine Keramikfolie gedruckten, elektrischen Heizleiter aufweist, wobei die Keramikfolie derart um das Trägerrohr gewickelt und mit diesem versintert ist, dass der mindestens eine Heizleiter zwischen der Keramikfolie und dem Trägerrohr angeordnet ist, wobei das Trägerrohr derart im Schutzrohr angeordnet ist, dass ein Luftstrom durch das Trägerrohr hindurch leitbar ist.
  • Das mindestens eine Heizelement, das in der erfindungsgemäßen Zündeinrichtung enthalten ist, weist eine nur sehr.geringe Masse auf, die beim Aufheizen des Heizelements besonders schnell und energiesparend erhitzt werden kann. Es können dauerhaft hohe Zündtemperaturen im Bereich von 1000°C bis 1200°C erreicht werden, so dass eine hohe Strahlungsenergie von der Zündeinrichtung abgestrahlt wird und den festen Brennstoff erhitzt. Beim Hindurchleiten des Luftstroms durch das Trägerrohr des mindestens einen Heizelements erhitzt sich die Luft stark und heizt den festen Brennstoff weiter auf, sobald der erhitzte Luftstrom auf den festen Brennstoff trifft. Dies führt zu einer besonders schnellen und energiesparenden Zündung des festen Brennstoffs, wobei die Zeitspanne zur Zündung um etwa ¾ kürzer ist als bei herkömmlichen Zündeinrichtungen. Durch die Gestaltung der Zündeinrichtung wird ein gebündelter Wärmeeintrag auf die durch die Zündeinrichtung strömende Luft erreicht, was zu einer derart großen Zündzeitverkürzung führt. So kann eine Zündung insbesondere innerhalb von etwa 30 bis 60 Sekunden erfolgen. Dadurch ist der Energieverbrauch zum Zünden des Brennstoffs und die Emission von Rauch, Ruß und Schadgasen, die z. B. beim Zünden von Holz entstehen, deutlich reduziert. Während Holz nur schwelt und nicht brennt, rußt und raucht es nämlich allgemein sehr stark.
  • Die Verwendung eines Trägerrohres, insbesondere mit kreisringförmigem Querschnitt, zum Aufbau des mindestens einen Heizelements der Zündeinrichtung garantiert eine hohe mechanische Stabilität und Festigkeit und gleichzeitig ein geringes Einbaugewicht im Vergleich zu einem massiven Zündstab. Im Vergleich zu flachen Heizelementen ist die Bruchgefahr durch die vorteilhafte rohrförmige Gestaltung des Heizelements deutlich reduziert. Auch "heiße Zonen" in der Zündeinrichtung werden durch die hohe mechanische Stabilität des Trägerrohrs geduldet, während z. B. flächige Heizelemente eine vollkommen gleichmäßige Temperaturverteilung über die Heizelementfläche erfordern.
  • Das mindestens eine Heizelement kann durch eine Auswahl von an Alkalien, Erdalkalien und Glasphasen besonders gering verunreinigtem Material zur Bildung des Trägerelements und der Keramikfolie dauerhaft bei sehr hohen Zündtemperaturen verwendet werden. Bei derart hohen Temperaturen tritt bei den üblichen, weitaus höheren Gehalten an derartigen Verunreinigungen ansonsten relativ schnell eine elektrochemische Korrosion im Übergangsbereich zwischen der heißen Zone des Heizleiters und der kälteren Zone, in welchen sich die elektrischen Zuleitungen befinden, auf, so dass ein wirtschaftlicher Langzeitbetrieb herkömmlicher Zündeinrichtungen mit Heizelementen auf Basis von Al2O3 bei Temperaturen im Bereich von 900 bis 1200°C bisher nicht möglich war.
  • Ein weiterer Vorteil der erfindungsgemäßen Zündeinrichtung ist der im Vergleich zu herkömmlichen Zündeinrichtungen geringere Preis aufgrund der besonders einfach möglichen Herstellung und der kompakten Einbauform. So ist das Heizelement einer Zündeinrichtung herstellbar, indem ein Heizleiter in Dickschichttechnik auf die Keramikfolie gedruckt wird, die Keramikfolie um das Trägerrohr gewickelt wird und anschließend das Heizelement durch einfaches druckloses Sintern an Luft gebildet wird. Durch die Keramikfolie ist das Heizelement nach außen elektrisch isoliert und außerdem korrosions- und oxidationsbeständig. Es weist sehr gute mechanische Festigkeits- und Härtewerte auf. Aufgrund der sehr flexiblen Dickschichttechnik können die Leistungsbereiche des Heizelements in weiten Bereichen individuell eingestellt werden. Außerdem ist diese Technik miniaturisierbar. Das mindestens eine Heizelement wird in das Schutzrohr geschoben und dort mechanisch fixiert. Die elektrische Kontaktierung des mindestens einen Heizelements wird vorzugsweise mit keramischer Gussmasse bedeckt, dadurch elektrisch isoliert und vor schädlichen Umwelteinflüssen wie Staunässe oder hoher Luftfeuchte geschützt, die beispielsweise beim Durchleiten von normaler Umgebungsluft durch eine Zündeinrichtung auftreten können. Somit wird ein Kurzschluss zwischen den elektrischen Kontakten des mindestens einen Heizelements zuverlässig vermieden. Als keramische Gussmassen eignen sich temperaturwechselbeständige Hochtemperaturkleber, die gegebenenfalls unterschiedliche thermische Ausdehnungskoeffizienten von Heizelement(en) und Schutzrohr ausgleichen können.
  • Eine Verwendung der erfindungsgemäßen Zündeinrichtung zum Zünden von festem, schwer entflammbarem Brennstoff, insbesondere zum Zünden von nachwachsenden Brennstoffen wie Pellets, Hackschnitzeln oder Scheiten aus Holz sowie von Mais, Getreide und dergleichen, ist ideal, da eine Zündung besonders schnell, schadstoffarm und energiesparend erfolgen kann.
  • Die Aufgabe wird hinsichtlich des Verfahrens durch das Verfahren nach Anspruch 13 gelöst. Das erfindungsgemäße Verfahren zum Zünden von festem Brennstoff, insbesondere zum Zünden von nachwachsenden Brennstoffen wie Pellets, Hackschnitzeln oder Scheiten aus Holz, ist durch folgende Schritte gekennzeichnet:
    • Anordnen einer erfindungsgemäßen Zündeinrichtung an einer Brennkammer, in welcher sich fester Brennstoff befindet, derart dass ein erstes Ende des Schutzrohrs enthaltend das mindestens eine Heizelement und den mindestens einen Heizleiter an die Brennkammer angrenzt oder in diese hineinragt;
    • Erhitzen des mindestens einen elektrischen Heizelements auf eine Temperatur von mindestens 900°C, wobei ein Luftstrom durch die Zündeinrichtung hindurch geleitet und erwärmt wird; und
    • Erhitzen und Zünden des festen Brennstoffs durch Beaufschlagung des Brennstoffs mit dem erwärmten Luftstrom und einer vom mindestens einen Heizelement abgegebenen Strahlungsenergie, insbesondere innerhalb einer Zeitspanne von einer Minute. Insbesondere sind Zündzeiten von nur etwa 30 Sekunden ohne weiteres möglich.
  • Das erfindungsgemäße Verfahren ermöglicht es, schwer entflammbare feste Brennstoffe, wie nachwachsende Brennstoffe in Form von Pellets, Hackschnitzeln oder Scheiten aus Holz sowie Biomasse in Form von Mais, Getreide und dergleichen besonders schnell, schadstoffarm und energiesparend zu entzünden.
  • Zum Zünden leicht entflammbarer Brennstoffe, wie z. B. von Brenngasgemischen und gasförmigen oder flüssigen Brennstoffen sind Heizelemente der Materialkombination Al2O3/W bzw. Al2O3/Pt bereits bekannt und werden bis zu einer Temperatur von 800 °C an Luft dauerhaft eingesetzt.
  • Um derartige Heizelemente für die erfindungsgemäße Zündeinrichtung und somit in einem Temperaturbereich von mindestens 900°C in Luft dauerhaft nutzen zu können, ist es erforderlich, dass das Trägerrohr und insbesondere auch die Keramikfolie des mindestens einen Heizelements zu mindestens 50 % aus Al2O3 gebildet sind, wobei das Trägerrohr und insbesondere auch die Keramikfolie im Hinblick auf eine optimale Haltbarkeit des Heizelements weniger als 500 ppm an Verunreinigungen umfassend Alkalien (z.B. Natrium, Kalium, Lithium), Erdalkalien (z.B. Kalzium, Magnesium) und Glasphasen (z.B. SiO2) aufweisen. Bevorzugt weisen das Trägerrohr und die Keramikfolie weniger als 100 ppm, insbesondere weniger als 30 ppm an Verunreinigungen auf.
  • Es hat sich insbesondere als vorteilhaft erwiesen, wenn das Trägerrohr und die Keramikfolie des mindestens einen Heizelements jeweils vollständig aus Al2O3 gebildet sind, wobei das Al2O3 weniger als 500 ppm an Verunreinigungen umfassend Alkalien (z.B. Natrium, Kalium, Lithium), Erdalkalien (z.B. Kalzium, Magnesium) und Glasphasen (z.B. SiO2) aufweist. Zur Stabilisierung des Al2O3 - Korngefüges, insbesondere zur Vermeidung von Riesenkornwachstum, ist ein MgO-Gehalt bis zu 300 ppm tolerierbar.
  • Das in Kombination dazu eingesetzte Heizleitermaterial ist bevorzugt glasphasenfrei und weist ebenso geringe Mengen an Alkalien oder Erdalkalien auf. Es wird erreicht, dass die Zündeinrichtung dauerhaft und zuverlässig bei Temperaturen oberhalb 900°C betrieben werden kann, ohne dass es zu einer elektrochemischen Korrosion im Bereich der Kontaktierung des Heizleiters kommt. Somit ist ein Betrieb eines Heizelements mit einem Trägerrohr und einer Keramikfolie aus Al2O3 bei 1000°C unter Gleichspannung oder bis zu 1200°C unter Wechselspannung dauerhaft möglich.
  • Es hat sich bewährt, wenn das Trägerrohr eines Heizelements der Zündeinrichtung einen Innendurchmesser im Bereich von 5 bis 35 mm aufweist.
  • Der durch das Trägerrohr hindurch leitbare Luftstrom ist dadurch ausreichend groß und wird zudem schnell und zuverlässig auf hohe Temperaturen erhitzt.
  • Dabei hat es sich bewährt, wenn ein Luftstrom im Bereich von 5 bis 100000 cm3/min durch eine erfindungsgemäße Zündeinrichtung hindurch geleitet wird. Die optimale Menge an hindurch zu leitender Luft kann im Hinblick auf die jeweiligen örtlichen Gegebenheiten in einfacher Weise experimentell ermittelt werden.
  • Im Trägerrohr eines Heizelements und/oder zwischen dem Schutzrohr und dem mindestens einem Heizelement können weiterhin Leitbleche oder andere, die Luftströmung in eine bestimmte Richtung lenkende Einbauten angeordnet sein, welche die Verweilzeit des Luftstroms in der Zündeinrichtung verlängern. So kann beispielsweise mittels eines Leitblechs der Luftstrom spiralförmig durch ein Trägerrohr geführt und somit noch stärker erhitzt werden.
  • Es ist bevorzugt, wenn mindestens zwei Heizelemente im Schutzrohr angeordnet sind, so dass die Heizleistung erhöht ist und die erforderliche Zündtemperatur noch schneller erreicht werden kann. Auf diese Weise lassen sich auch besonders schwer entflammbare Brennstoffe, wie z. B. Hackschnitzel mit hoher Feuchte, ausschließlich durch den heißen Luftstrom entzünden.
  • Insbesondere ist es bevorzugt, im Schutzrohr drei oder mehr Heizelemente anzuordnen. Dabei werden im Hinblick auf eine einfache und unkomplizierte Ansteuerung der Zündeinrichtung vorzugsweise gleiche Heizelemente im Schutzrohr eingesetzt. Allerdings ist es auch möglich, unterschiedliche Heizelemente, beispielsweise im Hinblick auf das Heizleitermaterial, einzusetzen. So können bei Verwendung unterschiedlicher Heizleitermaterialien die unterschiedlichen Temperaturkoeffizienten der Materialien ausgenutzt werden, um ein bestimmtes Temperatur-Zeit-Profil beim Erhitzen der Zündeinrichtung einzustellen.
  • Es hat sich bewährt, wenn das Schutzrohr und/oder das Trägerrohr des mindestens einen Heizelements oder die Trägerrohre der mindestens zwei Heizelemente mit einem Gebläse verbunden ist/sind. Ein derartiges Gebläse erzeugt den gewünschten Luftstrom durch die Zündeinrichtung hindurch in Richtung Brennkammer. Allerdings kann der Luftstrom beispielsweise auch dadurch erzeugt werden, dass Luft aus der Brennkammer abgesaugt wird und gleichzeitig ein freier Zutritt von Luft durch das Schutzrohr und/oder die Trägerrohre hindurch in die Brennkammer ermöglicht wird.
  • Weiterhin hat es sich bewährt, wenn mehrere Heizelemente, jeweils mit einem Trägerrohr, strömungstechnisch in Reihe nacheinander geschaltet sind, so dass der Luftstrom das Trägerrohr eines ersten Heizelements durchströmt und anschließend noch mindestens ein weiteres Trägerrohr eines zweiten Heizelements durchströmt, bevor der erwärmte Luftstrom aus der Zündeinrichtung austritt. Ein Trägerstab eines Heizelements kann mit einem System an U-förmigen Kanälen versehen sein, die zumindest einen Teil des Luftstroms einströmen und am gleichen Ende des Trägerstabes wieder ausströmen lassen, um anschließend zwischen dem Schutzrohr und dem mindestens einen Heizelement in Richtung Brennkammer zu strömen.
  • Für das Heizelemente mit dem durchströmbaren Trägerrohr hat es sich bewährt, wenn dieses derart im Schutzrohr angeordnet ist, dass es weiterhin von Luft weitgehend umströmbar ist. Bei einer derartigen Anordnung strömt somit ein Luftstrom durch das jeweilige Trägerrohr und weiterhin ein Luftstrom im Zwischenraum zwischen Schutzrohr und dem mindestens einen Heizelement. Die abstrahlende Oberfläche ist somit vergrößert. Beide Luftströme erhitzen sich am mindestens einen Heizelement und treffen auf den zu entflammenden Brennstoff.
  • Es ist aber genauso möglich, dass der Zwischenraum zwischen dem mindestens einen, ein durchströmbares Trägerrohr aufweisenden Heizelement und dem Schutzrohr mit einem wärmeisolierenden Material ausgefüllt ist. Der Wärmeeintrag ins Innere des jeweiligen Trägerrohrs und damit auf die hindurch strömende Luft wird dadurch nochmals erhöht. Es resultiert eine Erhöhung der Temperatur im Trägerrohr um bis zu 300°C im Vergleich zu einer Ausführung ohne wärmeisolierendes Material. Als wärmeisolierendes Material haben sich insbesondere Fasermatten, poröse Leichtbausteine oder Keramik, Vakuumformteile und dergleichen bewährt.
  • Vorzugsweise ist der mindestens eine Heizleiter des mindestens einen Heizelements aus einem Refraktärmetall, wie Wolfram, Platin, Molybdän oder Molybdändisilizid, aus einem elektrisch leitfähigen Keramik-Metall-Komposit oder aus einem elektrisch leitfähigen Keramikmaterial gebildet. Durch den positiven Temperaturkoeffizienten des Widerstands von beispielsweise Wolfram oder Platin ist ein damit gebildetes Heizelement quasi selbstbegrenzend. Keramik-Metall-Komposite bzw. Mischungen aus Keramik- und Metallpulvern, wie beispielsweise Mischungen von 60 Vol.-% Al2O3 -Pulver mit 40 Vol.-% Wolfram-, Molybdän- oder Platinpulver, haben sich zur Bildung eines Heizleiters bewährt. Im Hinblick auf die Lebensdauer der Zündeinrichtung ist insbesondere ein glasphasenfreies Heizleitermaterial mit besonders geringem Gehalt (insbesondere < 100 ppm) an Alkalien und Erdalkalien bevorzugt.
  • Der Heizleiter bzw. seine heiße Zone erstreckt sich vorzugsweise über mehr als die Hälfte der Länge des jeweiligen Heizelements.
  • Es hat sich bewährt, wenn das Schutzrohr aus einem Metall oder einer Metall-Legierung, insbesondere mit einer Einsatztemperatur im Bereich von 900 bis 1200°C gebildet ist. Insbesondere eignen sich nicht-rostende Cr-Stähle, Warmarbeitsstähle oder hitzebeständige Stähle als Material für das Schutzrohr. Zwar ist auch die Verwendung eines keramischen Schutzrohrs möglich, jedoch weisen keramische Schutzrohre eine höhere Bruchanfälligkeit und zudem üblicherweise eine höhere Masse auf, die sich gegebenenfalls negativ auf die erreichbare Zündgeschwindigkeit auswirkt.
  • Zum Erreichen einer schnellen Zündung des Brennstoffs hat sich bewährt, wenn das mindestens eine elektrische Heizelement auf eine Temperatur im Bereich von 1000 bis 1200°C erhitzt wird. Kurzzeitig können Temperaturen an der Zündeinrichtung bis zu 1400°C erreicht werden. Dabei ist insbesondere ein Wechselstrombetrieb des mindestens einen Heizelements bevorzugt, um eine hohe Lebensdauer des Heizelements zu gewährleisten.
  • Es hat sich bewährt, wenn das erste Ende des Schutzrohrs, enthaltend das mindestens eine Heizelement und den mindestens einen Heizleiter, möglichst nahe am zu zündenden Brennstoff angeordnet wird. Insbesondere hat es sich bewährt, wenn der Abstand zwischen Brennstoff und Zündeinrichtung ≤ 1 cm gewählt wird oder die Zündeinrichtung sogar in den festen Brennstoff eintauchend angeordnet wird. In diesem Fall zündet der Brennstoff noch schneller, als wenn ein Abstand zwischen Brennstoff und Zündeinrichtung vorhanden ist.
  • Das erste Ende des Schutzrohrs, enthaltend das mindestens eine Heizelement und den mindestens einen Heizleiter, kann nach dem Zünden des festen Brennstoffs automatisch aus oder von der Brennkammer entfernt werden. Das Zündelement kann aber nach Zünden des Brennstoffs auch in oder an der Brennkammer verbleiben. Auf die Lebensdauer der Zündeinrichtung hat ein Verbleiben in oder an der Brennkammer, wobei Verbrennungsgase in das Schutzrohr eintreten können, keinen wesentlichen negativen Einfluß.
  • Die Figuren 1a bis 5 zeigen beispielhaft eine erfindungsgemäße Zündeinrichtung und deren Verwendung. So zeigt
  • Figur 1a
    eine Zündeinrichtung im Längsschnitt; '
    Figur 1b
    die Zündeinrichtung aus Figur 1a im Querschnitt A - A';
    Figur 2
    im Schnittbild eine in eine Brennkammer eingebaute Zündeinrichtung;
    Figur 3
    im Schnittbild eine weitere in eine Brennkammer eingebaute Zündeinrichtung;
    Figur 4
    eine Zündeinrichtung mit drei Heizelementen im Querschnitt; und
    Figur 5
    eine weitere Zündeinrichtung mit drei Heizelementen im Querschnitt.
  • Figur 1a zeigt eine Zündeinrichtung 1 im Längsschnitt. Die Zündeinrichtung 1 weist ein Schutzrohr 2 aus nicht-rostendem Cr-Stahl und im Schutzrohr 2 ein rohrförmiges Heizelement 3 auf. Das Heizelement 3 weist ein Trägerrohr 3a aus Al2O3 mit einem Gehalt an Verunreinigungen bzw. Alkalien, Erdalkalien und Glasphase von insgesamt < 100 ppm auf. Zwischen dem Trägerrohr 3a und einer Keramikfolie 3b aus dem gleichen Material ist an einem Ende des Trägerrohrs 3a ein gedruckter Heizleiter 4 aus Platin mäanderförmig eingebettet, der am anderen Ende des Trägerrohrs 3a elektrisch kontaktiert werden kann. Im Längsschnitt ist die Lage des Heizleiters 4 zwischen dem Trägerrohr 3a und der Keramikfolie 3b gestrichelt angedeutet und durch einen Ausbruch im Trägerrohr 3a hindurch unmittelbar vor der Keramikfolie 4 erkennbar. Der Heizleiter 4 erstreckt sich dabei vorzugsweise über mehr als die Hälfte der Länge des Heizelements 3. Das Heizelement 3 ist konzentrisch im Schutzrohr 2 angeordnet und mittels eines Distanzrings 5 im Schutzrohr 2 fixiert. Der Distanzring 5 kann hier das Heizelement 3 vollständig umgeben oder aber nur bereichsweise vorhanden sein, so dass nicht nur ein Luftstrom (siehe Pfeil) im Trägerrohr 3a, sondern auch im Zwischenraum 6 zwischen dem Heizelement 3 und dem Schutzrohr 2 erzeugt werden kann.
  • Figur 1b zeigt die Zündeinrichtung aus Figur 1a im Querschnitt A - A'. Es ist zu erkennen, dass der Heizleiter 4 mäanderförmig um das Trägerrohr 3a herum angeordnet und von der Keramikfolie 3b geschützt ist.
  • Figur 2 zeigt im Schnittbild eine in eine Wandung einer Brennkammer 7 eingebaute Zündeinrichtung 1, welche oberhalb des Brennstoffs 8, der in Form von Holzpellets vorliegt, in die Brennkammer 7 ragt. Es ist hier genauso möglich, dass die Zündeinrichtung 1 nicht in die Brennkammer 7 hineinragt, sondern mit der Wandung der Brennkammer 7 abschließt. Der Abstand zwischen Brennstoff 8 und Zündeinrichtung 1 wird jedoch bevorzugt kleiner 1 cm gewählt. Zum Zünden des Brennstoffs 8 wird das Heizelement 3 auf eine Temperatur von ≥ 900°C erhitzt und ein Luftstrom (siehe Pfeile) durch das Trägerrohr 3a hindurch erzeugt. Gegebenenfalls wird ein weiterer Luftstrom zwischen dem Schutzrohr 2 und dem Heizelement 3 in Richtung der Brennkammer 7 erzeugt. Der bzw. die erhitzten Luftströme treffen auf den Brennstoff 8 auf und erwärmen diesen. Weiterhin strahlt die Zündeinrichtung 1 Wärme ab, die den Brennstoff 8 weiter erwärmt. Bei ausreichendem Wärmeeintrag in den Brennstoff 8 erfolgt dessen Zündung. Die Zündeinrichtung 1 kann während des Abbrands des Brennstoffs 8 aus der Brennkammer 7 herausgezogen sein oder aber in ihrer Position verbleiben.
  • Figur 3 zeigt im Schnittbild eine weitere, in eine Wandung einer Brennkammer 7 eingebaute Zündeinrichtung 1. Die Zündeinrichtung 1 ist so angeordnet, dass diese in den Brennstoff 8 in Form von Hackschnitzeln aus Holz unmittelbar eintaucht. Die Zündung des Brennstoffs 8 erfolgt hier schneller als bei der Anordnung der Zündeinrichtung 1 gemäß Figur 2, da kein Abstand zwischen der Zündeinrichtung 1 und dem Brennstoff 8 überwunden werden muss.
  • Figur 4 zeigt schematisch eine weitere Zündeinrichtung mit drei rohrförmigen Heizelementen 3 im Querschnitt, durch welche hindurch strömende Luft besonders schnell und stark erhitzt werden kann. Die drei Heizelemente 3 sind parallel zueinander und zum Schutzrohr 2 in diesem angeordnet. In jedem Trägerrohr der drei Heizelemente 3 wird jeweils ein Luftstrom erzeugt. Die Zwischenräume 6 zwischen dem Schutzrohr 2 und den Heizelementen 3 werden von einem weiteren Luftstrom durchströmt.
  • Figur 5 zeigt schematisch eine weitere Zündeinrichtung mit drei rohrförmigen Heizelementen 3 im Querschnitt, durch welche hindurch strömende Luft besonders schnell und stark erhitzt werden kann. Die drei Heizelemente 3 sind parallel zueinander und zum Schutzrohr 2 in diesem angeordnet. In jedem Trägerrohr der drei Heizelemente 3 wird jeweils ein Luftstrom erzeugt. Die Zwischenräume zwischen dem Schutzrohr 2 und den Heizelementen 3 sind mit wärmeisolierendem Material 9, beispielsweise aus Fasermatten, ausgefüllt, so dass die durch die Trägerrohre strömende Luft besonders stark erhitzt wird.
  • Die in den Figuren dargestellten Zündeinrichtungen und deren Einbausituation sind nur beispielhaft aus einer Fülle von weiteren Ausführungsmöglichkeiten gewählt. Der Fachmann ist in Kenntnis der erfindungsgemäßen Zündeinrichtung ohne weiteres in der Lage, eine Anpassung der Zündvorrichtung an die örtlichen Einsatzgegebenheiten und den Einsatzzweck vorzunehmen, ohne dabei erfinderisch tätig zu werden.

Claims (17)

  1. Zündeinrichtung (1) zum Zünden von festem Brennstoff (8), insbesondere zum Zünden von Pellets, Hackschnitzeln oder Scheiten aus Holz, umfassend ein Schutzrohr (2) und mindestens ein elektrisches Heizelement (3) in dem Schutzrohr (2),
    dadurch gekennzeichnet,
    dass das mindestens eine Heizelement (3) ein keramisches Trägerrohr (3a) und mindestens einen, auf eine Keramikfolie (3b) gedruckten, elektrischen Heizleiter (4) aufweist, wobei die Keramikfolie (3b) derart um das Trägerrohr (3a) gewickelt und mit diesem versintert ist, dass der mindestens eine Heizleiter (4) zwischen der Keramikfolie (3b) und dem Trägerrohr (3a) angeordnet ist, wobei das Trägerrohr (3a) derart im Schutzrohr (2) angeordnet ist, dass ein Luftstrom durch das Trägerrohr (3a) hindurch leitbar ist.
  2. Zündeinrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Trägerrohr (3a) und die Keramikfolie (3b) des mindestens einen Heizelements (3) jeweils aus mindestens 50% Al2O3 gebildet sind, wobei das Trägerrohr (3a) und die Keramikfolie (3b) weniger als 500 ppm an Verunreinigungen umfassend Alkalien, Erdalkalien und Glasphasen aufweisen.
  3. Zündeinrichtung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass das Al2O3 weniger als 100 ppm, insbesondere weniger als 30 ppm an Verunreinigungen aufweist.
  4. Zündeinrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass das Trägerrohr (3a) einen Innendurchmesser im Bereich von 3 bis 35 mm aufweist.
  5. Zündeinrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass mindestens zwei Heizelemente (3) im Schutzrohr (2) angeordnet sind.
  6. Zündeinrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass das Schutzrohr (2) und/oder das Trägerrohr (3a) des mindestens einen Heizelements (3) oder die Trägerrohre (3a) der mindestens zwei Heizelemente (3), mit einem Gebläse verbunden ist/sind.
  7. Zündeinrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass das mindestens eine Heizelement (3) derart im Schutzrohr (2) angeordnet ist, dass es weiterhin von Luft umströmbar ist.
  8. Zündeinrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass zwischen dem Schutzrohr (2) und dem mindestens einen Heizelement (3) Leitbleche oder andere, den Luftstrom in eine bestimmte Richtung lenkende Einbauten angeordnet sind.
  9. Zündeinrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass ein Zwischenraum (6) zwischen dem mindestens einen Heizelement (3) und dem Schutzrohr (2) mit einem wärmeisolierenden Material (9) ausgefüllt ist.
  10. Zündeinrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass im Trägerrohr (3a) des mindestens einen Heizelements (3) Leitbleche oder andere, den Luftstrom in eine bestimmte Richtung lenkende Einbauten angeordnet sind.
  11. Zündeinrichtung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass der mindestens eine Heizleiter (4) aus einem Refraktärmetall, insbesondere aus Wolfram, Platin, Molybdän oder Molybdändisilizid, aus einem elektrisch leitfähigen Keramik-Metall-Komposit oder aus einem elektrisch leitfähigen Keramikmaterial gebildet ist.
  12. Zündeinrichtung nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass das Schutzrohr (2) aus einem Metall oder einer Metall-Legierung gebildet ist.
  13. Verfahren zum Zünden von festem Brennstoff (8), insbesondere zum Zünden von Pellets, Hackschnitzeln oder Scheiten aus Holz, gekennzeichnet durch folgende Schritte:
    - Anordnen einer Zündeinrichtung (1) nach einem der Ansprüche 1 bis 12 an einer Brennkammer (7), in welcher sich fester Brennstoff (8) befindet, derart dass ein erstes Ende des Schutzrohrs (2) enthaltend das mindestens eine Heizelement (3) und den mindestens einen Heizleiter (4) an die Brennkammer (7) angrenzt oder in diese hineinragt;
    - Erhitzen des mindestens einen elektrischen Heizelements (3) auf eine Temperatur von mindestens 900°C, wobei ein Luftstrom durch die Zündeinrichtung (1) hindurchgeleitet und erwärmt wird; und
    - Erhitzen und Zünden des festen Brennstoffs (8) durch Beaufschlagung des Brennstoffs (8) mit dem erwärmten Luftstrom und einer vom mindestens einen Heizelement (3) abgegebenen Strahlungsenergie, insbesondere innerhalb einer Zeitspanne von einer Minute.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet,
    dass das mindestens eine elektrische Heizelement (3) auf eine Temperatur im Bereich von 900 bis 1200°C erhitzt wird.
  15. Verfahren nach einem der Ansprüche 13 oder 14,
    dadurch gekennzeichnet,
    dass ein Luftstrom im Bereich von 8,3 · 10-8 bis 1,67 · 10-3 m3/s (5 bis 100000 cm3/min) durch die Zündeinrichtung (1) hindurch in die Brennkammer (7) geleitet wird.
  16. Verfahren nach einem der Ansprüche 13 bis 15,
    dadurch gekennzeichnet,
    dass das erste Ende des Schutzrohrs (2), enthaltend das mindestens eine Heizelement (3) und den mindestens einen Heizleiter (4), in den festen Brennstoff (8) eintauchend angeordnet wird.
  17. Verfahren nach einem der Ansprüche 13 bis 16,
    dadurch gekennzeichnet,
    dass das erste Ende des Schutzrohrs (2), enthaltend das mindestens eine Heizelement (3) und den mindestens einen Heizleiter (4), nach dem Zünden des festen Brennstoffs (8) automatisch von oder aus der Brennkammer (7) entfernt wird.
EP07006041A 2007-03-23 2007-03-23 Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs Not-in-force EP1972853B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07006041A EP1972853B1 (de) 2007-03-23 2007-03-23 Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs
PL07006041T PL1972853T3 (pl) 2007-03-23 2007-03-23 Urządzenie zapłonowe i sposób zapalania paliwa stałego
AT07006041T ATE448447T1 (de) 2007-03-23 2007-03-23 Zündeinrichtungen und verfahren zum zünden festen brennstoffs
DE502007001963T DE502007001963D1 (de) 2007-03-23 2007-03-23 Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07006041A EP1972853B1 (de) 2007-03-23 2007-03-23 Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs

Publications (2)

Publication Number Publication Date
EP1972853A1 EP1972853A1 (de) 2008-09-24
EP1972853B1 true EP1972853B1 (de) 2009-11-11

Family

ID=38462039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07006041A Not-in-force EP1972853B1 (de) 2007-03-23 2007-03-23 Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs

Country Status (4)

Country Link
EP (1) EP1972853B1 (de)
AT (1) ATE448447T1 (de)
DE (1) DE502007001963D1 (de)
PL (1) PL1972853T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354704A1 (de) 2009-12-30 2011-08-10 Rauschert Steinbach GmbH Heizeinrichtung zur Erzeugung extrem heißer Gase
EP3835639A1 (de) 2019-12-12 2021-06-16 Basf Se Gasdichtes, wärmedurchlässiges, keramisches und mehrlagiges verbundrohr

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008013657U1 (de) * 2008-10-17 2008-12-24 Rauschert Steinbach Gmbh Elektrodenanordnung
AT511814B1 (de) * 2012-04-27 2013-03-15 Karl Stefan Riener Elektrische Zündvorrichtung für Brennmaterial in einer Heizeinrichtung sowie damit ausgestattete Heizeinrichtung
CN102881529B (zh) * 2012-07-03 2015-08-12 刘华强 高压断路器固体燃气弹操作机构
DE102012218187A1 (de) * 2012-10-05 2014-04-10 BTS Engineering GmbH Elektrischer Zünder für industrielle Beheizungseinrichtung
DE102013014911A1 (de) 2013-09-03 2015-04-09 Messer Austria Gmbh Brenner
DE102015111585A1 (de) * 2015-07-16 2017-01-19 Mitsubishi Hitachi Power Systems Europe Gmbh Kohlenstaubbrenner mit einstückiger, elektrisch beheizter Brennstoffdüse
DE102018109643A1 (de) 2018-04-23 2019-10-24 Eisenmann Se Vorrichtung und Verfahren zum Erhitzen von Gas für einen Hochtemperaturofen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB761583A (en) * 1954-03-03 1956-11-14 Gen Electric Co Ltd Improvements in or relating to electric blowers
GB862063A (en) * 1958-09-12 1961-03-01 Gen Electric Co Ltd Improvements in or relating to electrically operated solid fuel igniters
DE3843863A1 (de) * 1988-12-24 1990-06-28 Bosch Gmbh Robert Hochtemperatur-heizelement, verfahren zu seiner herstellung und verwendung desselben
EP0635993B1 (de) * 1993-07-20 2000-05-17 TDK Corporation Keramisches Heizelement
JP2005172383A (ja) * 2003-12-12 2005-06-30 Obata Yoshimori ペレット燃焼器着火装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354704A1 (de) 2009-12-30 2011-08-10 Rauschert Steinbach GmbH Heizeinrichtung zur Erzeugung extrem heißer Gase
EP3835639A1 (de) 2019-12-12 2021-06-16 Basf Se Gasdichtes, wärmedurchlässiges, keramisches und mehrlagiges verbundrohr

Also Published As

Publication number Publication date
EP1972853A1 (de) 2008-09-24
PL1972853T3 (pl) 2010-04-30
ATE448447T1 (de) 2009-11-15
DE502007001963D1 (de) 2009-12-24

Similar Documents

Publication Publication Date Title
EP1972853B1 (de) Zündeinrichtungen und Verfahren zum Zünden festen Brennstoffs
DE3243395C2 (de) Verdampfungsbrenner für flüssigen Brennstoff
AT504398B1 (de) Porenbrenner, sowie verfahren zum betrieb eines porenbrenners
DE2732365A1 (de) Verfahren und vorrichtung zur erzeugung von waerme durch verbrennung eines gas/luft-gemisches
DE102005040330A1 (de) Vorrichtung zum Messen des Korrosionsverlustes
EP2354704A1 (de) Heizeinrichtung zur Erzeugung extrem heißer Gase
DE10316544A1 (de) Mikrowellenbrennofen und Mikrowellenbrennverfahren
DE2710628A1 (de) Als zuendelement geeigneter koerper aus siliciumcarbid-teilchen und verfahren zu seiner herstellung
EP0416335B1 (de) Temperaturschalter
EP1523641B1 (de) Porenbrenner sowie gargerät, enthaltend mindestens einen porenbrenner
DE102005005832B4 (de) Rekuperatorbrenner und Verfahren zum Erhitzen eines Industrieofens unter Einsatz des Brenners
EP1954639B1 (de) Vorrichtung zum beheizen von ofenanlagen
WO2017008937A1 (de) Kohlenstaubbrenner mit einstückiger, elektrisch beheizter brennstoffdüse
CH662640A5 (de) Vergasungsbrenner fuer fluessigen brennstoff.
DE102010011156A1 (de) Vorrichtung zur thermischen Behandlung von Halbleitersubstraten
WO2004106829A1 (de) Ofen für die herstellung von zahnersatz oder -teilersatz
DE102008053494B4 (de) Rückdiffusionswärmerohr
EP0249087B1 (de) Wärmestrahler zur Grossraumbeheizung
EP1715247A1 (de) Brenner
DE19609128A1 (de) Elektrischer Saunaofen
DE670596C (de) Elektrischer Feueranzuender
EP0897017B1 (de) Turmofen zur Wärmebehandlung von Metallbändern
DE2204058A1 (de) Rückstrahl-Auskleidung
DE3205132C1 (de) Heizungskessel für Niedertemperatur
EP2527774B1 (de) Vorrichtung zum Beheizen von Ofenanlagen für Waren, insbesondere für Glaswaren, sowie hiermit versehene Ofenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RTI1 Title (correction)

Free format text: IGNITION DEVICES AND TMETHOD FOR IGNITING A SOLID FUEL

RTI1 Title (correction)

Free format text: IGNITION DEVICES AND METHODS FOR IGNITING A SOLID FUEL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007001963

Country of ref document: DE

Date of ref document: 20091224

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: RAUSCHERT STEINBACH G.M.B.H.

Effective date: 20100331

26N No opposition filed

Effective date: 20100812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100212

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100323

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20131210

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160322

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160318

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180319

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180320

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007001963

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 448447

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190323