EP1966879A1 - Procede et dispositif de commande d'un moteur electrique - Google Patents

Procede et dispositif de commande d'un moteur electrique

Info

Publication number
EP1966879A1
EP1966879A1 EP06830105A EP06830105A EP1966879A1 EP 1966879 A1 EP1966879 A1 EP 1966879A1 EP 06830105 A EP06830105 A EP 06830105A EP 06830105 A EP06830105 A EP 06830105A EP 1966879 A1 EP1966879 A1 EP 1966879A1
Authority
EP
European Patent Office
Prior art keywords
electric motor
battery
generator
current
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06830105A
Other languages
German (de)
English (en)
Inventor
Matthias Schanzenbach
Juergen Hachtel
Markus Wimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1966879A1 publication Critical patent/EP1966879A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/18Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the invention is based on a method and a device for operating an electronic motor controlled by pulse width modulation on a DC voltage network according to the independent claims.
  • the present invention describes a method and a device for controlling and / or regulating an electric motor.
  • Such electric motors are used for example in motor vehicles in the form of pump motors. It is generally provided to supply the electric motor from a battery and / or by means of a generator with electrical energy.
  • the control and / or regulation takes place by means of a high-frequency pulse width modulation (PWM).
  • PWM pulse width modulation
  • the essence of the invention is that during start-up of the electric motor by means of the PWM the motor current necessary for the operation of the electric motor is increased continuously, for example from the value 0.
  • the advantage of such a control of the electric motor is that current peaks can be avoided, which are caused by the occurring during start-up of electric motors large starting currents. Such current peaks can lead to damage to the battery. Furthermore, these current peaks can cause a dynamic voltage dip, which in other consumers who also from the battery and / or the
  • Generator can be supplied, can lead to failure.
  • the current gradient, with which the motor current is continuously increased limited to a predetermined maximum value.
  • the maximum value which can also be designed as a setpoint value, can be predefined as a function of operating parameters of the battery and / or of the generator. Typical operating parameters represent the discharge current of the battery and / or the current increase generated by the generator. In addition, however, the structural design of the generator can be used to specify the maximum value, for example by the
  • Determination of the maximum achievable current gradient by the generator is defined as the current that can be generated within a given time by the generator.
  • a maximum target rotational speed can be used, which is predetermined as a function of the battery voltage.
  • Another possibility is to take into account the load torque, which is applied to the electric motor or must be applied by the electric motor, in determining the maximum target speed.
  • the intended for the operation of the electric motor battery or the generator supplies additional electrical consumers with energy. It is prevented by the present invention that it comes at current peaks during startup of the electric motor to a failure of these other consumers.
  • the continuous increase of the motor current or the current gradient to which this increase is limited is made dependent on the supply of the further consumers with electrical energy. For example, the power demand for more consumers in one Vehicle such as the heater, the light or an ACC (Adaptive Cruise Control) can be considered to determine the allowable current gradient.
  • Figure 1 shows schematically in a block diagram an inventive device for
  • FIG. 3 shows an equivalent circuit diagram of an electric motor.
  • FIGS. 5a to 5c show diagrams for explaining the derivation of the speed limitation.
  • the electric motor When operating an electric motor, a high power requirement occurs during startup. If the electric motor is powered by a battery with electrical energy, it can be a
  • the energy supplied to the motor or the supplied motor current is slowly increased, in order to avoid unwanted high current peaks and to protect the electrical system of the vehicle.
  • FIG. 1 schematically shows a possible device with which a slow or continuous increase of the motor current at the electric motor 180 can be achieved.
  • a processing unit 110 is provided in a control unit 100, for example in the form of a microprocessor or an ASICS, which evaluates external data and derives therefrom control signals which control or regulate the electric motor 180 and possibly also a generator 190 present in the vehicle.
  • operating parameters of the electric motor itself can be detected as external data, which are recorded by means of a suitable means 130 and forwarded to the processing unit 110.
  • operating parameters can also be understood to mean the pressure ratio in the hydraulic branch before and after a pump motor, which by means of
  • Pressure sensors or models can be determined.
  • predetermined operating parameters of the electric motor can also be detected as operating parameters, which can optionally be stored directly in a suitable memory on the electric motor or in the control unit. Schematically, such a memory is represented by the block 120.
  • This device can also query the required load torque for the electric motor and direct it to the processing unit 110 so that this at the
  • Control can be considered.
  • a generator 190 is present in the vehicle in which the control unit 100 is used, its operating parameters can likewise be used to generate the control signals of the electric motor 180.
  • its operating parameters can likewise be used to generate the control signals of the electric motor 180.
  • a suitable generator 190 for example, by means of a suitable
  • the current operating state of the generator 190 detected.
  • specific structural parameters of the generator 190 can be taken into account, which can be stored in a memory on the generator or in the control unit.
  • Construction parameters can be understood, for example, as the maximum current flow rate that can be generated by the generator, ie the current that can be generated within a predetermined time.
  • the state of the battery 160 is also detected and taken into account. It is primarily on the state of charge or the degree of strain of
  • Target battery through other consumers it is also possible to specifically detect the required supply power of the further consumers by suitable means 170 in order to be able to make a prognosis about the utilization of the battery 160.
  • suitable means 170 Such a prognosis can also be incorporated in the control of the electric motor 180, for example when the battery supplies the only supply voltage for the consumers considered.
  • the generator 190 can likewise be operated as a function of the detected data and / or as a function of the activation of the electric motor 180.
  • FIG. 2 shows a schematic block diagram in which the control unit 200 controls the electric motor 220 by means of a motor voltage U M or a motor current I M. Typically, such control is performed by (high frequency) pulse width modulation.
  • the power supply of the controller 200 and the electric motor 220 is in the present case by a battery 230, which supplies a battery voltage U Ba t, and a
  • the control unit 200 or the electric motor 220 can be supplied with a higher current I Zu .
  • the generator and the battery are usually connected in parallel in the vehicle and the generator is readjusted only with a certain current gradient (eg 300 to 1000 A / s), the power is supplied from the battery in a jump-like switching on the motor. These high currents can damage the battery. By specifying a maximum current gradient, ie a defined increase in current in a given time when driving the motor during startup, such damage can be avoided. If, in addition, the current gradient is adapted to the current gradient of the generator, the motor current required for starting the motor can be generated completely by the generator of the vehicle. This spares the battery from high current jumps. About that In addition, in such a control dynamicchrossein stipulate be avoided in the electrical system, since the battery is relieved.
  • a certain current gradient eg 300 to 1000 A / s
  • FIG. 400 shows a continuous course, which after a certain time, like the course according to FIG. 420, also changes into a constant power requirement for the operation of the motor.
  • different current gradients may be set, which are required depending on the hydraulic power requirement of an existing in the vehicle ESP controller.
  • the setting of the maximum current gradient can be carried out by specifying a setpoint speed.
  • the maximum setpoint speed used in this way is calculated in accordance with a particular exemplary embodiment
  • the maximum setpoint speed can be derived as follows:
  • the motor voltage U M can be divided into different partial voltages U R (assignment to the ohmic resistance
  • the system equations of the motor can be derived from the stress balance and the spin set and read: ⁇ d ⁇ _
  • the states here are the armature current i and the rotational speed ⁇ .
  • the parameters are the inductance L, the moment of inertia J, the motor constant K and the resistance R.
  • the inputs of the system are the manipulated variable supply voltage U and the load torque Ti oad .
  • the load torque depends on the pressure applied to the pump elements and the
  • the load torque is composed of a constant friction component and a pressure-dependent load component: ⁇ / Where p is the pressure-side and p ds ss represents the suction pressure, which values can for example be taken from HIM (hydraulic model of the ESP) or directly detected by pressure sensors.
  • HIM hydroaulic model of the ESP
  • the load torque can be assumed to be known.
  • the supply voltage U is calculated so that the desired
  • the first term takes into account the inertia of the motor, the second the voltage induced by rotation and the third the required voltage due to the load torque.
  • the scan of the controller is 5ms. Therefore, both the supply voltage U and the desired trajectory ⁇ d (t) can be modified in these time steps.
  • the trajectory is planned over a sampling cycle. This is shown in FIG. 5a.
  • the desired speed at time j + 1 is thus selected so that both control value limitations are met and the current gradient does not exceed the required maximum.
  • the calculation of the new setpoint value ⁇ d J + 1 will be discussed in more detail below. For this, the calculation of the control is necessary first.
  • controller component is composed of proportional and integral component.
  • equations can be written as follows:
  • the manipulated variable U is composed of feedforward control U d and control U H :
  • the speed control receives a setpoint speed from higher-level functions. However, it can not be guaranteed that it can be performed by the pump. Therefore, the target speed at the next time (j + l) should be modified so that
  • the current can be expressed in the time m as a function of the load torque and the spin.
  • the new setpoint speed is thus subject to the restriction (4.1) of the restriction ⁇ d J + 1 ⁇ > J + 1 .
  • (5.6) Under nominal conditions (no model error, ideal load moment estimation) condition (5.6) can therefore be used to maintain the permitted motor current gradient. It should be noted that both model errors and faulty load moment estimates can lead to deviations.
  • FIG. 5c shows the PWM generator with its interfaces.
  • the motor voltage is calculated as a function of the PWM duty cycle and the battery voltage:
  • ⁇ i £ ⁇ i ⁇ t PWM J + i ⁇ ot ⁇ PWM J + 1 _ (5 g)
  • the motor current of the last cycle i mot J and the PWM J can be calculated from known quantities of the last cycle:
  • the motor current difference can be expressed using the equation of motion as follows
  • the change in the PWM is calculated from the quotient of the supply voltage U to the battery voltage U ba t:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)
  • Motor And Converter Starters (AREA)

Abstract

L'invention concerne un procédé et un dispositif de commande et/ou de réglage d'un moteur électrique. De tels moteurs électriques sont utilisés, par exemple dans des véhicules, comme moteurs d'actionnement de pompes. Il est généralement prévu d'alimenter le moteur en énergie électrique au moyen d'une batterie et/ou d'un générateur. La commande et le réglage s'effectuent au moyen d'une modulation d'impulsions en largeur haute fréquence (PWM). L'invention est caractérisée en ce que, lors du démarrage du moteur au moyen du PWM, le courant nécessaire pour le fonctionnement du moteur électrique est augmenté de manière continue, par exemple à partir de la valeur 0.
EP06830105A 2005-12-20 2006-11-23 Procede et dispositif de commande d'un moteur electrique Withdrawn EP1966879A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005060859A DE102005060859A1 (de) 2005-12-20 2005-12-20 Verfahren und Vorrichtung zur Ansteuerung eines Elektromotors
PCT/EP2006/068849 WO2007071520A1 (fr) 2005-12-20 2006-11-23 Procede et dispositif de commande d'un moteur electrique

Publications (1)

Publication Number Publication Date
EP1966879A1 true EP1966879A1 (fr) 2008-09-10

Family

ID=37744379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830105A Withdrawn EP1966879A1 (fr) 2005-12-20 2006-11-23 Procede et dispositif de commande d'un moteur electrique

Country Status (5)

Country Link
US (1) US8653775B2 (fr)
EP (1) EP1966879A1 (fr)
JP (1) JP2009520453A (fr)
DE (1) DE102005060859A1 (fr)
WO (1) WO2007071520A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006028925A1 (de) 2006-06-23 2007-12-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung und/oder Regelung eines Generators in einem Fahrzeug
GB0624599D0 (en) * 2006-12-09 2007-01-17 Aeristech Ltd Engine induction system
DE102007020068A1 (de) 2007-04-27 2008-10-30 Kaltenbach & Voigt Gmbh Verfahren und Vorrichtung zur Bestimmung der Motorkonstante eines Elektromotors
US10100827B2 (en) 2008-07-28 2018-10-16 Eaton Intelligent Power Limited Electronic control for a rotary fluid device
DE102009030817A1 (de) * 2009-05-19 2010-11-25 Volkswagen Ag Verfahren und Vorrichtung zum Bremsen von Fahrzeugrädern
DE102013015542A1 (de) 2013-06-28 2014-04-10 Daimler Ag Steuereinheit für einen Elektromotor
CN109412466B (zh) * 2018-12-07 2021-02-26 山东电力工程咨询院有限公司 汽轮机危急直流润滑油泵复合型启停装置及控制方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4301515A1 (de) 1992-06-16 1993-12-23 Hans Hermann Rottmerhusen Elektronisch kommutierter Motor
JP3290481B2 (ja) * 1992-12-03 2002-06-10 東芝キヤリア株式会社 冷凍サイクル制御装置
DE4302515C2 (de) 1993-01-29 1996-10-02 Hatz Motoren Ölpumpe für Hubkolbenverbrennungsmotor
JPH06249483A (ja) 1993-02-26 1994-09-06 Fuji Electric Co Ltd 複数空調装置の同時起動防止方法
JPH07222470A (ja) 1994-01-26 1995-08-18 Taiyo Electric Mfg Co Ltd 誘導電動機の始動方法
DE19711979A1 (de) * 1997-03-12 1998-10-08 Brose Fahrzeugteile Verfahren zur elektrischen Steuerung und Regelung der Bewegung von elektrisch betriebenen Aggregaten
TW523973B (en) * 1998-10-02 2003-03-11 Delta Electronics Inc Activation circuit and method
JP3396440B2 (ja) * 1999-02-08 2003-04-14 株式会社日立製作所 同期電動機の制御装置
EP1039623A3 (fr) 1999-03-26 2003-09-03 Siemens Aktiengesellschaft Actioneur et entrainement auxiliaire pour véhicule avec moteur à courant continu et limitaion du courant de démarrage
JP3926519B2 (ja) * 1999-08-30 2007-06-06 本田技研工業株式会社 ハイブリッド車両
DE19944194A1 (de) 1999-09-15 2001-03-22 Bosch Gmbh Robert Elektronisch kommutierbarer Motor mit Überlastschutz
JP2001197792A (ja) * 1999-11-04 2001-07-19 Satake Eng Co Ltd エンジン駆動発電装置の負荷始動方法及びエンジン駆動発電装置。
DE10102885C2 (de) 2001-01-23 2003-02-27 Delta Electronics Inc Startvorrichtung und Verfahren zum Beseitigen eines Spitzenstroms
DE10219820A1 (de) * 2002-05-03 2003-11-13 Bosch Gmbh Robert Schaltungsanordnung zur Versorgung der Steuerelektronik bei elektrischen Maschinen
JP4112930B2 (ja) * 2002-09-04 2008-07-02 東芝三菱電機産業システム株式会社 インバータ装置
US7414377B2 (en) * 2002-09-23 2008-08-19 Siemens Energy & Automation, Inc. System and method for automatic current limit control
US6769389B2 (en) * 2002-11-26 2004-08-03 General Motors Corporation Dual voltage tandem engine start system and method
US7196491B2 (en) * 2003-02-12 2007-03-27 Siemens Energy & Automation, Inc. System and method for stall detection of a motor
JP4124447B2 (ja) * 2003-02-28 2008-07-23 本田技研工業株式会社 エンジン駆動式作業機
DE102004007393A1 (de) * 2003-02-28 2004-09-09 Denso Corp., Kariya Maschinenanlasser mit einem Anlassermotor
EP1612085A4 (fr) * 2003-04-04 2012-03-28 Hitachi Ltd Dispositif a commande electrique pour vehicule et dispositif a commande a quatre roues motrices du type a moteur hybride/moteur
DE10335928B4 (de) * 2003-08-06 2006-11-09 Vb Autobatterie Gmbh Verfahren zur Ermittlung einer von der Elektrolytkonzentration und/oder Elektrolytverteilung abhängigen auf den Ladezustand einer Speicherbatterie bezogenen Kenngröße
JP4063192B2 (ja) * 2003-10-23 2008-03-19 日産自動車株式会社 モータ駆動4wd車両の制御装置
JP4245546B2 (ja) * 2004-11-04 2009-03-25 トヨタ自動車株式会社 動力出力装置およびそれを備えた車両
JP2006230084A (ja) * 2005-02-17 2006-08-31 Hitachi Ltd 交流駆動装置,車両制御装置,電力変換方法及び車両制御方法
DE102005059585A1 (de) * 2005-12-14 2007-06-21 Robert Bosch Gmbh Verfahren und Vorrrichtung zum Bestimmen der Drehzahl einer elektrischen Maschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007071520A1 *

Also Published As

Publication number Publication date
US8653775B2 (en) 2014-02-18
DE102005060859A1 (de) 2007-06-28
US20100270961A1 (en) 2010-10-28
WO2007071520A1 (fr) 2007-06-28
JP2009520453A (ja) 2009-05-21

Similar Documents

Publication Publication Date Title
EP2499737B1 (fr) Procédé de contrôle de plausibilité du couple d'une machine électrique, et régulateur de machine servant à la régulation d'une machine électrique et à la mise en oeuvre de ce procédé
WO2007071520A1 (fr) Procede et dispositif de commande d'un moteur electrique
DE102015218732A1 (de) Elektromotorantriebssteuervorrichtung, elektrisch betriebene Servolenkungsvorrichtung, elektrisch betriebene Bremsvorrichtung und elektrisch betriebene Pumpvorrichtung
WO2003017460A1 (fr) Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique
EP1880096B1 (fr) Procede et dispositif de commande electrique d'une soupape au moyen d'un element de fermeture mecanique
EP0690556B1 (fr) Reconnaissance de l'arrêt d'un moteur tournant alimenté par un onduleur sans capteur de vitesse, dans le cas d'un redémarrage
DE112016004878T5 (de) Wechselrichtervorrichtung
DE102011075789A1 (de) Verfahren zum Betrieb einer Drehfeldmaschine
WO2017016747A1 (fr) Procédé et dispositif pour faire fonctionner un système électrique
EP2502329B1 (fr) Dispositif pour réduire au minimum la consommation du courant prélevé dans une batterie par une génératrice de véhicule à moteur pendant la phase de démarrage d'un véhicule à moteur
WO2017084856A1 (fr) Procédé et dispositif de détermination de la vitesse de rotation dans un groupe générateur
DE102015120271A1 (de) Ausgabemodul eines Antriebssteuersystems
EP3449564B1 (fr) Procédé et dispositif de commande d'une machine électrique
DE112015000065T5 (de) Spannungssteuerungsvorrichtung und Spannungssteuerungsverfahren
EP2371055B1 (fr) Procédé et dispositif d'excitation d'un moteur électrique
DE102015220005B4 (de) Verfahren und Schaltungsanordnung zum Ansteuern eines Halbleiterschalters, Wechselrichter
DE102014215479A1 (de) Verfahren zum Betreiben einer geschalteten Reluktanzmaschine
EP3008818A1 (fr) Procédé et dispositif pour faire fonctionner un entraînement de soufflante à moteur électrique
EP3152829B1 (fr) Procédé et dispositif de contrôle du fonctionnement d'un moteur électrique
EP3878089B1 (fr) Procédé et dispositif de limitation de valeur de réglage pour la régulation d'un courant orientée champ
DE102009001507A1 (de) Verfahren zum Betrieb eines elektrischen Servolenksystems und danach arbeitendes Steuergerät
WO2022218819A1 (fr) Procédé de régulation à orientation de champ d'un moteur électrique
DE102021129144A1 (de) Verfahren zum Betreiben einer elektrischen Schaltungsanordnung, elektrische Schaltung und Kraftfahrzeug
DE10322560A1 (de) Verfahren und Vorrichtung zur Steuerung eines elektrischen Laders
DE102014220516A1 (de) Verfahren und Vorrichtung zum Betreiben einer elektrischen Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB HU IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB HU IT

17Q First examination report despatched

Effective date: 20110406

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170601