EP1419572A1 - Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique - Google Patents

Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique

Info

Publication number
EP1419572A1
EP1419572A1 EP02794725A EP02794725A EP1419572A1 EP 1419572 A1 EP1419572 A1 EP 1419572A1 EP 02794725 A EP02794725 A EP 02794725A EP 02794725 A EP02794725 A EP 02794725A EP 1419572 A1 EP1419572 A1 EP 1419572A1
Authority
EP
European Patent Office
Prior art keywords
phase
connection
current
monitoring
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02794725A
Other languages
German (de)
English (en)
Inventor
Viktor Barinberg
Leo Monter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1419572A1 publication Critical patent/EP1419572A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/004Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of incorrect phase sequence; with switching for obtaining correct phase sequence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0838Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements with H-bridge circuit

Definitions

  • the invention is based on a device and a method for monitoring the connection of an electrical supply unit according to the category of the independent claims.
  • a circuit arrangement for monitoring the failure of fuses is already known from DE 42 13 443 C1.
  • the fuses are each connected in the current paths of a three-phase network to supply a consumer.
  • the circuit arrangement has a first circuit in a delta connection for detecting the phase of a voltage between two conductors of the three-phase network in front of the fuses and a second
  • Circuit in delta connection for detecting the phase of a voltage between two conductors of the three-phase network after the fuses.
  • the respective phases before and after the fuses are compared with one another and a failure signal is emitted if a phase difference occurs or one or more phases are missing.
  • This circuit is also suitable for monitoring the connection of an electrical supply unit.
  • the invention is based on the object of specifying a device for monitoring the connection, which in particular reduces the hardware expenditure required for this. This task is solved by the features of the independent claim.
  • the device according to the invention for monitoring the connection of an electrical supply unit has one
  • Voltage detection which determines the phase voltages.
  • Current detection is also provided to determine the phase currents.
  • a transformation unit converts the phase currents into at least one cross current according to the theory of field-oriented regulation. According to the invention
  • a monitoring device which evaluates the course of the cross current for connection monitoring.
  • Field-oriented control is used in particular for servo drives. In the course of the field-oriented regulation, the necessary coordinate transformations of the phase sizes in transverse and longitudinal sizes are carried out.
  • connection monitoring can thus be done purely in software. Additional hardware is no longer necessary. This reduces the cost of the corresponding monitoring device.
  • the monitoring device for connection monitoring determines and evaluates the respective phase powers from the phase voltages and phase currents.
  • the sign of the resulting services is to be evaluated as an indication of whether and which phases have been interchanged and in which way.
  • the monitoring device evaluates the long current for connection monitoring.
  • the phase shift can be clearly detected by either + 120 ° or -120 ° using the slow current.
  • the slow current is already available as part of the field-oriented control, this evaluation ensures a low computing effort.
  • FIG. 2 shows the monitoring program, which runs in the device for connection monitoring, and the
  • Figures 3 to 8 typical curves of long-wave current and cross-current with associated DC link voltage with different connections of the three phases of a three-phase network.
  • the three phases U, V, W of a three-phase network (360 to 510 V; 50/60 Hz) are fed to a network connection unit 10 via a network connection 12.
  • Each of the three phases U, V, W is protected by a fuse 20.
  • the phase voltages Uu, Uv, Uw 14 are tapped and fed to a regulating and control block 34 of a supply unit 32.
  • This regulation and control block 34 supplies a first and a second protection control signal 16, 18 for controlling a charging protection 22 and a mains protection 24, which are integrated in the mains connection unit 10.
  • phase currents lu, Iv, Iw reach the respective choke connection points 28 as outputs of the network connection unit 10 via charging resistors 26 is finished. This is recognized by measuring the intermediate circuit voltage 46.
  • Commutation chokes 30 are now provided for each of the phases U, V, W, which are to be connected to the three choke connection points 28.
  • the other connections of the commutation chokes 30 are connected to the supply unit-side choke connections 36 of the supply unit 32.
  • the phase currents lu, Iv, Iw supplied via these choke connections 36 on the supply unit side are detected in the supply unit 32 and fed to the regulation and control block 34.
  • the output stage 40 is switched by output stage control signals 42 from the regulating and control block 34 in order to convert the fed three-phase AC voltage into a DC voltage for supplying an electric drive, for example.
  • This DC voltage is available as a DC link voltage 46 in a DC voltage intermediate circuit.
  • DC link capacitors 44 are provided to further smooth this voltage. The pending at the intermediate circuit capacitors 44
  • DC link voltage 46 is also supplied to the regulation and control block 34.
  • the regulation and control block 34 of the supply unit 32 is shown in more detail in FIG. 1b.
  • a voltage regulator 50 arranged in the regulating and control block 34 receives an intermediate circuit voltage setpoint 48 as input values and the intermediate circuit voltage 46 as an actual value. From this, the voltage regulator 50 determines a cross-current setpoint 52, which is supplied to both a current regulator 56 and a transformation and PWM conversion unit 60 as an input variable.
  • the phase voltages Uu, Uv, Uw 14 are fed to both a voltage transformation 74 and a reference angle generator 68.
  • the reference angle generator 68 determines the phase angle 67, which in turn is fed as an input variable to a current transformation 66 and the voltage transformation 74 as well as the transformation and PWM conversion unit 60.
  • the current transformation 66 generates, from the likewise supplied phase currents lu, Iv, Iw 38, according to the principles of field-oriented control, both a cross-current actual value 62 and a long-current actual value 64, which in addition to a long-current setpoint 54 serve the current controller 56 as input variables.
  • the current controller 56 provides the transformation and PWM conversion unit 60 with a transverse voltage setpoint 57 and a long voltage setpoint 59 as output variables.
  • the transformation and PWM conversion unit 60 is supplied with an actual transverse voltage value 70 and a long-voltage actual value 72, both of which are generated by the voltage transformation 74.
  • the transformation and PWM conversion unit 60 carries out a reverse transformation of the longitudinal and transverse components into the corresponding phase-related components and generates pulse-width-modulated control signals for the six transistors of the output stage 40.
  • the interface and control block 34 are supplied with external interface signals 19. That in the regulation and control block 32 current monitoring method for connection monitoring is shown in FIG. 2.
  • FIG. 3 shows the curves of the cross current (actual value) 62 and the slow current (actual value) 64 and the intermediate circuit voltage 46 as a function of time.
  • the intermediate circuit voltage 46 increases at the time of switching on with the course of an e-function.
  • the cross current 62 drops suddenly and then increases with the course of an e-function.
  • the slow current 64 oscillates around the zero line.
  • FIG. 3 shows the curves of the sizes mentioned with correct connection.
  • the phases U, V, W are cyclically offset by + 120 °, i. H. they were subsequently connected to V, W, U.
  • the connection sequence is W, V, U. Both cross current 62 and slow current 64 oscillate around the zero line and achieve both positive and negative values. This behavior can also be seen in FIGS. 7 and 8.
  • the phases W and V were interchanged (connection sequence: U, W, V), in Figure 8, the phases V and U (connection sequence: V, U, W).
  • the supply unit 32 is regulated in a field or network-oriented manner.
  • the detected phase current lu, Iv, Iw can, after conversion into a field-related orthogonal two-phase system (DQ coordinate system), into two components, namely cross current 62 and
  • Longitudinal stream 64 can be divided.
  • the slow current component 64 (reactive current component) builds up the reactive power of the supply unit 32 which is fed in or jerked off and is normally set to the value zero.
  • the cross current 62 is at right angles to the longitudinal current 64, is oriented in the same direction as the mains voltage and forms a measure of the active power fed in.
  • the supply unit 32 can be controlled in such a way that it rectifies the alternating voltage of the three-phase alternating voltage network into the intermediate circuit voltage 46 and uses this energy from the network to feed an electrical consumer, not shown, such as an inverter, which in turn supplies an electric motor.
  • the supply unit 32 comprises, for example, six controlled power transistors of the output stage 40, which are controlled by pulse width modulation, for example with a clock frequency of 8 kHz with a variable pulse width ratio.
  • the current transformation 66 provides the cross-current actual value 62 and the slow current actual value 64 in any case within the scope of the field-oriented control.
  • these components are now specifically evaluated for the detection of the network phase position.
  • the three phases U, V, W of a three-phase network are supplied to a network connection unit 10 in the correct phase in the manner provided.
  • the choke connection points 28 are to be connected for each phase U, V, W to the supply unit-side choke connections 36 in a correct manner via the commutation chokes 30 become.
  • a correct connection is shown in Figure la. However, there are now possibilities to interchange the network phase sequence with the network connection 12 due to incorrect connection.
  • the charging protection 22 is to be controlled in the sense of a closing via the external interface signal 19 in order to charge the intermediate circuit capacitor 44 via the charging resistors 26 serving to limit the current and the freewheeling diodes of the output stage 40.
  • the network protection 24 is open.
  • the regulation and control block 34 previously decides which control mechanism should be selected by comparing the intermediate circuit voltage 46 with a defined limit value (step 105 or step 107). If, for example, an intermediate circuit voltage 46 is less than 30% of the
  • step 107 the routine is started in step 107. If, on the other hand, an intermediate circuit voltage 46 greater than 30% of the intermediate circuit nominal voltage is detected (for example, the supply unit 32 was switched on and the intermediate circuit capacitors 44 are not yet fully discharged, or no charging current can flow after the charging protection 22 has been switched on), the routine proceeds according to step 105 started, or all three upper transistors 1.1, 1.3, 1.5 or all three lower 2.2, 2.4, 2.6 are controlled via the IGBT controls 42. This makes it more targeted via these transistors and charging resistors 26 for a time defined in the regulation and control block 34
  • step 107 the charging protection 22 is switched on and a check is made as to whether the mains current 38 (charging current or
  • phase currents lu, Iv, Iw 38 and the phase voltages Uu, Uv, Uw 14 are recorded for a predeterminable period of time and stored, for example, in digitized form.
  • the time profile of the cross current 62 and the long current 64 is also determined, as is the case, for example, in accordance with FIGS. 3 to 8.
  • Step 121 No instantaneous value of cross current 62 may be greater than zero. Only then is the criterion IQ ⁇ 0 fulfilled.
  • a further query 113 determines whether the phase-related powers Pu, Pv, Pw determined in step 107 are all greater than zero. Then it can be concluded that the phases are swapped cyclically either by + 120 ° or - 120 °. If this is the case, the time profile of the slow current 64 is evaluated in step 115. If one of the instantaneous values of the long current 64 is positive, this indicates a phase shift of + 120 °. In this case, the supply unit 32 was wired in the following manner: V, W, U. A corresponding message is output in step 129. The corresponding temporal behavior of the cross and longitudinal currents is shown in FIG.
  • connection sequence is: W, U, V. This corresponds to the time course of the currents in FIG. 5.
  • phase-related powers Pu, Pv, Pw it is determined which of the phase-related powers Pu, Pv, Pw is. If the power of phase U is greater than zero, as queried in step 117, this means that phases V and W are interchanged, the connection sequence is U, W, V. A corresponding message is generated in step 123. The associated current profiles are shown in FIG. 7. However, if the power of phase U is less than zero, a check is made in step 119 as to whether the power in phase V is positive. If this is the case, the following message is output in step 127: phases U and W are interchanged.
  • connection sequence now looks like this: W, V, U with the associated current profile according to FIG. 6. If the power in phase V is also not great zero, then The last possibility of error remains that the phases U and V are interchanged. The corresponding error message is generated in step 125.
  • the phase sequence is now V, U, W with the associated current profile shown in FIG. 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

La présente invention concerne un dispositif et un procédé pour surveiller la connexion d'une unité d'alimentation électrique. Ce procédé comprend une détection de tension (32), qui permet de déterminer une tension simple (14), et une détection de courant (32), qui permet de déterminer les courants de phase (38), au moyen d'une unité de transformation (66) qui transforme les courants de phase (38) selon le réglage orienté champ en au moins un courant transversal (62). Un dispositif de surveillance (34) analyse l'allure du courant transversal (62) afin de surveiller au moins une connexion d'alimentation (28, 36) qui permet l'alimentation d'une unité d'alimentation électrique (32).
EP02794725A 2001-08-14 2002-08-14 Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique Withdrawn EP1419572A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10139860 2001-08-14
DE10139860A DE10139860A1 (de) 2001-08-14 2001-08-14 Vorrichtung und Verfahren zur Anschlussüberwachung einer elektrischen Versorgungseinheit
PCT/DE2002/003018 WO2003017460A1 (fr) 2001-08-14 2002-08-14 Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique

Publications (1)

Publication Number Publication Date
EP1419572A1 true EP1419572A1 (fr) 2004-05-19

Family

ID=7695388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02794725A Withdrawn EP1419572A1 (fr) 2001-08-14 2002-08-14 Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique

Country Status (5)

Country Link
US (1) US7053626B2 (fr)
EP (1) EP1419572A1 (fr)
JP (1) JP4083120B2 (fr)
DE (1) DE10139860A1 (fr)
WO (1) WO2003017460A1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2369643T3 (es) 2009-05-05 2011-12-02 Sma Solar Technology Ag Dispositivo comprobador de cableado.
DE102009022056A1 (de) 2009-05-22 2010-11-25 Siemens Building Technologies Hvac Products Gmbh Verfahren zur Erfassung und Überwachung einer elektrischen Wechselspannung
DE102010015312A1 (de) * 2010-04-17 2011-10-20 Audi Ag Hochvoltsystem für ein Kraftfahrzeug und Verfahren zur Diagnose eines Hochvoltsystems für ein Kraftfahrzeug
JP5420484B2 (ja) * 2010-07-02 2014-02-19 株式会社日立製作所 電力変換装置のゲートパルス誤配線検出方法
CN102005729B (zh) * 2010-12-10 2013-05-22 丹东华通测控有限公司 一种智能型电动机保护控制器自适应交流输入信号的方法
US9298252B2 (en) 2012-04-17 2016-03-29 SMART Storage Systems, Inc. Storage control system with power down mechanism and method of operation thereof
US9323637B2 (en) 2013-10-07 2016-04-26 Sandisk Enterprise Ip Llc Power sequencing and data hardening architecture
US9087418B2 (en) 2013-11-19 2015-07-21 Ford Global Technologies, Llc Vehicle diagnostic system and method for detecting incorrect cable connections
US9280429B2 (en) 2013-11-27 2016-03-08 Sandisk Enterprise Ip Llc Power fail latching based on monitoring multiple power supply voltages in a storage device
US9250676B2 (en) 2013-11-29 2016-02-02 Sandisk Enterprise Ip Llc Power failure architecture and verification
US9214198B2 (en) * 2014-04-30 2015-12-15 Sandisk Enterprise Ip Llc Continuous capacitor health monitoring and power supply system
US9665451B2 (en) 2014-10-07 2017-05-30 Sandisk Technologies Llc Method and device for distributing holdup energy to memory arrays
CN105974263B (zh) * 2016-06-06 2019-07-30 珠海格力电器股份有限公司 一种电机接错线检测装置及方法
EP3533140B1 (fr) 2016-10-28 2024-06-05 Intelesol, LLC Convertisseur d'extraction de courant alternatif en courant continu à haute efficacité et procédés
EP3533141B1 (fr) 2016-10-28 2024-04-24 Intelesol, LLC Alimentation électrique en courant alternatif d'identification de charge avec commande et procédés
US11056981B2 (en) 2018-07-07 2021-07-06 Intelesol, Llc Method and apparatus for signal extraction with sample and hold and release
US11581725B2 (en) 2018-07-07 2023-02-14 Intelesol, Llc Solid-state power interrupters
US11671029B2 (en) 2018-07-07 2023-06-06 Intelesol, Llc AC to DC converters
US11334388B2 (en) 2018-09-27 2022-05-17 Amber Solutions, Inc. Infrastructure support to enhance resource-constrained device capabilities
US11205011B2 (en) 2018-09-27 2021-12-21 Amber Solutions, Inc. Privacy and the management of permissions
US11349296B2 (en) 2018-10-01 2022-05-31 Intelesol, Llc Solid-state circuit interrupters
US10985548B2 (en) 2018-10-01 2021-04-20 Intelesol, Llc Circuit interrupter with optical connection
JP7475351B2 (ja) 2018-12-17 2024-04-26 インテレソール エルエルシー Ac駆動型の発光ダイオードシステム
US11336199B2 (en) 2019-04-09 2022-05-17 Intelesol, Llc Load identifying AC power supply with control and methods
US11170964B2 (en) 2019-05-18 2021-11-09 Amber Solutions, Inc. Intelligent circuit breakers with detection circuitry configured to detect fault conditions
WO2021150684A1 (fr) 2020-01-21 2021-07-29 Amber Solutions, Inc. Interruption de circuit intelligente
US11670946B2 (en) 2020-08-11 2023-06-06 Amber Semiconductor, Inc. Intelligent energy source monitoring and selection control system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161011A (en) * 1978-02-21 1979-07-10 General Electric Company Ground distance relay employing phase comparator measurement
DE4213443C1 (de) * 1992-04-21 1994-01-20 Schleicher Relais Schaltungsanordnung zur Überwachung des Ausfalls von Sicherungen
US5477133A (en) * 1993-07-29 1995-12-19 Etcon Corporation Device for measuring a wide range of voltages and for determining continuity using visual and tactile indicators
JP3229520B2 (ja) * 1995-06-16 2001-11-19 三菱電機株式会社 相回転異常検出装置
FR2756049B1 (fr) * 1996-11-18 1998-12-31 Schneider Electric Sa Dispositif de detection preventive de defauts avec identification du type de charge
DE10035783A1 (de) * 1999-08-07 2001-02-08 Bosch Gmbh Robert Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs
US6559651B1 (en) * 2000-10-25 2003-05-06 Robert G. Crick Method for locating an open in a conductive line of an insulated conductor
GB2382878B (en) * 2001-12-04 2005-09-07 Adwel Internat Ltd A method and apparatus for testing laminated cores of electrical machines
DE10301826A1 (de) * 2003-01-20 2004-07-29 Robert Bosch Gmbh Regelsystem mit einer einfachen Hardware-Einheit zur Regelung einer elektrischen Maschine wahlweise im PWM-oder Blockbetrieb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03017460A1 *

Also Published As

Publication number Publication date
DE10139860A1 (de) 2003-03-13
US20050134288A1 (en) 2005-06-23
JP2004538493A (ja) 2004-12-24
WO2003017460A1 (fr) 2003-02-27
US7053626B2 (en) 2006-05-30
JP4083120B2 (ja) 2008-04-30

Similar Documents

Publication Publication Date Title
EP1419572A1 (fr) Dispositif et procede pour surveiller la connexion d'une unite d'alimentation electrique
EP1253706B1 (fr) Circuit d'électronique de puissane et procédé pour transférer la puissance active
DE102012221376B4 (de) System zum Erfassen eines Verdrahtungsfehlers eines Parallelinvertersystems
DE4208114C2 (de) Steuereinrichtung für einen bidirektionalen pulsbreitenmodulierten Stromrichter
DE102015106069A1 (de) Elektrische Motoransteuerungsvorrichtung
EP3329575B1 (fr) Procédé et dispositif pour opérer un système électrique, système électrique
EP3145750B1 (fr) Procédé de commutation d'un onduleur d'un entraînement électrique d'un véhicule automobile et onduleur pouvant être commuté de manière correspondante
DE102012104560A1 (de) Erkennung der Stringkonfiguration für einen Multistring-Wechselrichter
DE112016004878T5 (de) Wechselrichtervorrichtung
WO2016074835A1 (fr) Convertisseur statique et procédé pour faire fonctionner un convertisseur statique
WO2017084863A1 (fr) Procédé de détection d'une défaillance dans un groupe générateur
WO2019170495A1 (fr) Procédé et dispositif pour la compensation de temps mort au moyen de la superposition d'un signal de correction
DE102007016330A1 (de) Verfahren zur Ermittlung eines Zwischenkreisstromes, einer Zwischenkreisleistung und eines Phasenstromes sowie eine dazu korrespondierende Stromversorgungseinrichtung
EP4046268B1 (fr) Détermination des paramètres de filtrage dans un onduleur
EP1966879A1 (fr) Procede et dispositif de commande d'un moteur electrique
WO2017084857A1 (fr) Procédé de détection d'une défaillance dans un groupe générateur
DE112020002507T5 (de) Umrichtervorrichtung
WO2016139010A1 (fr) Procédé et dispositif de détection d'une procédure de commande d'un onduleur
WO2017089065A1 (fr) Procédé de détection d'une défaillance dans un groupe générateur
DE102015220005B4 (de) Verfahren und Schaltungsanordnung zum Ansteuern eines Halbleiterschalters, Wechselrichter
EP1142665B1 (fr) Appareil de soudage à l'arc
DE10159645B4 (de) Verfahren und Vorrichtung zur Aufrechterhaltung einer Versorgungsspannung einer Stromversorgung einer Elektronik eines Matrixumrichters bei Netzunterbrechung
DE102016203595A1 (de) Verfahren und Überwachungssystem zur Überwachung des Betriebs einer elektrischen Drehfeldmaschine sowie Fahrzeugantriebsvorrichtung
DE112021007411T5 (de) Leistungshalbleiterelement-Antriebsanpassungsschaltung, Leistungsmodul und Leistungsumwandlungsvorrichtung
DE102004030535B4 (de) Steuerverfahren und Steuervorrichtung für eine mit Netzfrequenz getaktete steuerbare Ein-/Rückspeiseeinheit eines Spannungszwischenkreis-Umrichters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MONTER, LEO

Inventor name: BARINBERG, VIKTOR

17Q First examination report despatched

Effective date: 20110620

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121124