EP1965081A1 - Centrifugal pump with coaxial magnetic coupling - Google Patents

Centrifugal pump with coaxial magnetic coupling Download PDF

Info

Publication number
EP1965081A1
EP1965081A1 EP08003862A EP08003862A EP1965081A1 EP 1965081 A1 EP1965081 A1 EP 1965081A1 EP 08003862 A EP08003862 A EP 08003862A EP 08003862 A EP08003862 A EP 08003862A EP 1965081 A1 EP1965081 A1 EP 1965081A1
Authority
EP
European Patent Office
Prior art keywords
pump
magnetic
drive
impeller
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08003862A
Other languages
German (de)
French (fr)
Other versions
EP1965081B1 (en
Inventor
Werner Platt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Wernert and Co OHG
Original Assignee
H Wernert and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H Wernert and Co OHG filed Critical H Wernert and Co OHG
Publication of EP1965081A1 publication Critical patent/EP1965081A1/en
Application granted granted Critical
Publication of EP1965081B1 publication Critical patent/EP1965081B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/025Details of the can separating the pump and drive area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/049Roller bearings

Definitions

  • the invention relates to a centrifugal pump having the features of the preamble of claim 1, as shown in DE 298 22 717 U1 is known.
  • centrifugal pumps with magnetic coupling represent an important type of industrially used machines for the conveyance of liquids. Compared to the simpler centrifugal pumps with mechanical seal they have the advantage of a hermetic seal of the pump chamber. This makes them especially favorable for the promotion of aggressive or toxic liquids.
  • the present invention seeks to improve the radial bearing in the magnetic coupling of a generic centrifugal pump.
  • a centrifugal pump with the features of claim 1 is proposed.
  • the magnet driver has at least one arranged in the region of the interior of the impeller magnetic rotor unit bearing, thereby the pump length can be significantly reduced despite independent storage of the magnetic driver within the pump.
  • the magnetic drive bearing bearings are preferably used.
  • the rolling bearing of the magnetic driver remains unaffected by the pumped liquid.
  • the magnet driver preferably has an open towards the drive side cup shape to receive the at least one bearing of the magnet rotor within the pump housing.
  • a particularly advantageous mounting of the magnetic driver is achieved by a hollow hollow cantilever, through which the drive shaft of the magnet driver is guided, and which preferably carries on at least one inner or outer surface at least one of its end portions a bearing for the magnet driver. Tapering in these end areas facilitate the placement of such bearings in a small space. When the taper is made from the root of the cantilever, high bearing forces can be absorbed in a lightweight construction.
  • the at least partial storage of the magnetic driver within the space defined by the impeller magnetic rotor unit and the embodiments of such storage are of independent inventive significance.
  • the embodiments have in common that they have a suction nozzle 2 and a discharge nozzle 3 exhibiting pump housing 1, wherein a pump impeller 4 is mounted coaxially with the suction nozzle and is fluidly connected in the radial direction with the discharge nozzle 3.
  • the pump impeller 4 has on the drive side a magnetic rotor 6, with which it forms an open to the drive side impeller magnetic rotor unit. This has on its outer circumference on the rotating part 9 of a sliding bearing, while the fixed part 10 of this slide bearing on the Inner wall 20 of the pump housing 1 is arranged.
  • On the radially inner side of the magnet rotor carries 6 permanent magnets 7.
  • a continuous hollow Kragzapfen 39 from the drive-side housing end wall to the pump side down and has a tapered design 39a, 39b, wherein at its drive end portion which penetrates the drive shaft 15 of the pump is roller-mounted, while a second roller bearing in the opposite end on his Outside the drive shaft 15 indirectly, namely superimposed on the magnet driver 13.
  • the latter has for this purpose on the drive side open cup shape.
  • the outer circumference of the impeller magnetic rotor unit 19 can now - be used to accommodate the rotating part 9 of the slide bearing - with complete freedom of design and generous axial extent and does not have to be as thin as possible in the prior art, for economic reasons, protective jacket 8. This, too, had led in the prior art to the need for further radial startup and emergency bearings 37, which are no longer needed here in any way. It is even possible, with a suitable choice of material and with appropriate shaping, that parts of the magnet rotor 6 itself can become the rotating part 9 of the slide bearing.
  • the fixed part 10 of the slide bearing can be easily brought directly to the stable inner housing 20 of the pump housing 1 and no longer needs disadvantageous be the principle thin wall of the split pot 12. It is even possible, with a suitable choice of the material and with appropriate shaping, that parts of the housing wall 20 of the pump housing 1 itself can become the fixed part of the plain bearing 10, possibly even by a multi-layered design.
  • the slide bearing 9, 10 is arranged exactly here, which can be operated as long as desired with the residual liquid with sufficient cooling.
  • very small residual amounts which tend to occur at high delivery heights of the pump and low static counter-pressure, it can not be ruled out that these can escape axially in order to move to even higher radial levels in the impeller. This can be prevented via a lock in the form of a circulating ring 21.
  • the inner diameter of the circulating ring 21 is selected to be smaller than the contact diameter between the plain bearing halves 9 and 10, then the enclosed and rotating liquid ring 23 will always wet the plain bearing 9, 10.
  • Another advantage of this design results in the stoppage of the pump, namely, when the circulation ring 21 prevents complete emptying of the pump in the region of the sliding bearing 9, 10. If the pump is then restarted without a liquid is present at the suction nozzle 2, which is also a frequent operating error, then the slide bearing 9, 10 is still sufficiently lubricated with the remaining liquid in the liquid retention chamber (22) liquid template and their axial escape during rotation also prevented by the lock.
  • the invention can be exploited to significantly shorten the axial extent of the pump.
  • This is possible by the magnetic driver 13 is not stored in the pump housing 1, but is placed directly on the shaft journal of the engine, so is ultimately stored by the prime mover.
  • This is usually an electric motor.
  • the electric motor is flanged directly to the pump, which is known as "block construction".
  • a, preferably detachable, split pot 12 introduced, as it always finds use in industrial pumps.
  • these splitters are made very thin-walled on the circumference in order to realize the smallest possible radial gap between the magnet rotor 6 and magnet driver 13 can.
  • Due to the design of the split pot 12 can be performed with a smooth end wall and must point with its larger opening in the direction of the drive side.
  • the split pot 12 itself should not be used to support a rolling bearing because of its thinness, but now offers according FIG. 1 in its inner region 24 sufficient space for an axially generously sized rolling bearing 16 of the magnet driver 13.
  • the axial Baumass the pump can be reduced to that of the conventional block design, however
  • the magnetic driver 13 is part of the pump, which allows a complete series assembly and stockpiling of the pump.
  • the shaft end 25 in such an axially shortened construction can advantageously according to FIG. 2 be carried out so that either via a conventional pump clutch (shown only the pin portion 27 of the pump clutch) the direct connection of a motor is possible (which could be flanged via an intermediate ring also directly to the pump) or a shaft journal 28 again with the conventional pump free shaft end leads (eg to comply with specified standard dimensions).
  • a shaft end 25 should provide the opportunity to attach an additional flywheel 26 to compensate for the mentioned disadvantage of the type B chosen here when starting the pump can. All this would be part of the final assembly of the pump unit (which would also be carried out by the user of the pump itself) and would still allow a large-scale series assembly and cheap stockpiling of the pump at the manufacturer as described above.
  • the rotating part 9 of the plain bearing need not necessarily consist of two defined bearing sleeves a and b or from the magnet rotor 6 itself, but can FIG. 3 also as an axially continuous sleeve 29 (FIG. FIG. 3 , upper half) or molding compound 30 ( FIG. 3 , lower half).
  • FIG. 9 makes this construction also for the present invention. Since in particular the mentioned plastic materials (eg PTFE or PE) can be used very well as a sliding bearing material in mixed friction region, a construction is proposed, as shown in Figure 15 in the lower half. If, on the other hand, the material of the innermost material layer 35 is not suitable for plain bearings, the construction in the upper half of FIG. 15 must be used.
  • plastic materials eg PTFE or PE

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

A centrifugal pump has static and closed housing/walling (1) for the feed liquid within the pump, and a contactless permanent-magnetic coaxial rotary coupling (6,7;13,14) for transmission of a drive torque within the pump housing. A pump impeller (4) forms an open unit with a magnet rotor (6). Between the magnet rotor (6) and a magnet driver (13) is a partitioning wall facing the opening of the pump drive-face, and the magnet driver (13) is mounted in at least one rolling bearing (16a; 16b) adjoining the pump.

Description

Die Erfindung betrifft eine Kreiselpumpe mit den Merkmalen des Oberbegriffs des Anspruchs 1, wie sie aus der DE 298 22 717 U1 bekannt ist.The invention relates to a centrifugal pump having the features of the preamble of claim 1, as shown in DE 298 22 717 U1 is known.

Die Kreiselpumpen mit Magnetkupplung stellen eine wichtige Art industriell verwendeter Maschinen zur Förderung von Flüssigkeiten dar. Gegenüber den einfacheren Kreiselpumpen mit Gleitringdichtung weisen sie den Vorteil einer hermetischen Abdichtung des Pumpenraumes auf. Dies lässt sie insbesondere zur Förderung aggressiver oder giftiger Flüssigkeiten günstig erscheinen.The centrifugal pumps with magnetic coupling represent an important type of industrially used machines for the conveyance of liquids. Compared to the simpler centrifugal pumps with mechanical seal they have the advantage of a hermetic seal of the pump chamber. This makes them especially favorable for the promotion of aggressive or toxic liquids.

In den meisten ausgeführten Fällen kommen koaxiale Drehkupplungen mit radialer Anordnung der Magnete und entsprechend radialen magnetischen Wirklinien zur Anwendung. Nur diese Bauart wird im Folgenden weiter betrachtet und ist auch Gegenstand der Anmeldung.In most cases executed coaxial rotary joints with radial arrangement of the magnets and corresponding radial magnetic action lines are used. Only this type is further considered below and is also the subject of the application.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, die radiale Lagerung im Bereich der Magnetkupplung einer gattungsgemäßen Kreiselpumpe zu verbessern. Zur Lösung dieser Aufgabe wird eine Kreiselpumpe mit den Merkmalen des Anspruchs 1 vorgeschlagen.Based on this, the present invention seeks to improve the radial bearing in the magnetic coupling of a generic centrifugal pump. to Solution of this problem, a centrifugal pump with the features of claim 1 is proposed.

Wenn der Magnettreiber über mindestens ein im Bereich des Innenraumes der Laufrad-Magnetrotor-Einheit angeordnetes Lager verfügt, kann dadurch die Pumpenbaulänge trotz eigenständiger Lagerung des Magnettreibers innerhalb der Pumpe erheblich verkürzt werden. Für die Magnettreiber-Lagerung werden bevorzugt Wälzlager verwendet. Die Wälzlagerung des Magnettreibers bleibt von der Förderflüssigkeit unberührt. Hierzu dient vorzugsweise ein ansich bekannter, zwischen dem Magnetrotor und dem Magnettreiber angeordneter Spalttopf. Der Magnettreiber weist vorzugsweise eine zur Antriebsseite hin offene Topfform auf, um das mindestens eine Lager des Magnetrotors innerhalb des Pumpengehäuses aufzunehmen. Eine besonders vorteilhafte Lagerung des Magnettreibers wird durch einen durchgehend hohlen Kragzapfen erreicht, durch den die Antriebswelle des Magnettreibers geführt ist, und der vorzugsweise an mindestens einer inneren oder äußeren Fläche an mindestens einem seiner Endbereiche ein Lager für den Magnettreiber trägt. Verjüngungen in diesen Endbereichen erleichtern die Unterbringung derartiger Lager auf kleinem Raum. Wenn die Verjüngung von der Wurzel des Kragzapfens ausgehend erfolgt, können bei leichter Bauweise hohe Lagerkräfte aufgenommen werden.If the magnet driver has at least one arranged in the region of the interior of the impeller magnetic rotor unit bearing, thereby the pump length can be significantly reduced despite independent storage of the magnetic driver within the pump. For the magnetic drive bearing bearings are preferably used. The rolling bearing of the magnetic driver remains unaffected by the pumped liquid. For this purpose, a known ansich known, disposed between the magnet rotor and the magnet driver split pot. The magnet driver preferably has an open towards the drive side cup shape to receive the at least one bearing of the magnet rotor within the pump housing. A particularly advantageous mounting of the magnetic driver is achieved by a hollow hollow cantilever, through which the drive shaft of the magnet driver is guided, and which preferably carries on at least one inner or outer surface at least one of its end portions a bearing for the magnet driver. Tapering in these end areas facilitate the placement of such bearings in a small space. When the taper is made from the root of the cantilever, high bearing forces can be absorbed in a lightweight construction.

Die zumindest teilweise Lagerung des Magnettreibers innerhalb des von der Laufrad-Magnetrotor-Einheit aufgespannten Raumes sowie die Ausgestaltungen einer derartigen Lagerung sind von eigenständiger erfinderischer Bedeutung.The at least partial storage of the magnetic driver within the space defined by the impeller magnetic rotor unit and the embodiments of such storage are of independent inventive significance.

Die vorgenannten sowie die beanspruchten und in den Ausführungsbeispielen beschriebenen erfindungsgemäß zu verwendenden Bauteile unterliegen in ihrer Größe, Formgestaltung, Materialauswahl und technischen Konzeption keinen besonderen Ausnahmebedingungen, so dass die in dem Anwendungsgebiet bekannten Auswahlkriterien uneingeschränkt Anwendung finden können.The above-mentioned and the claimed components to be used according to the invention described in the exemplary embodiments are not subject to special conditions of size, shape, material selection and technical design, so that the selection criteria known in the field of application can be used without restriction.

Weitere Einzelheiten, Merkmale und Vorteile des Gegenstandes der Erfindung ergeben sich aus den Unteransprüchen sowie aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der - beispielhaft - ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Anordnung einer Kreiselpumpe mit koaxialer Magnetkupplung dargestellt ist. In der Zeichnung zeigen:

Fig. 1
eine erste Ausführungsform;
Fig. 2
eine zweite Ausführungsform;
Fig. 3
eine dritte Ausführungsform;
Fig. 4
eine vierte Ausführungsform;
Fig. 5
eine fünfte Ausführungsform;
Fig. 6
eine sechste Ausführungsform;
Fig. 7
eine siebte Ausführungsform;
Fig. 8
eine achte Ausführungsform sowie
Fig. 9
eine neunte Ausführungsform.
Further details, features and advantages of the subject matter of the invention will become apparent from the subclaims and from the following description of the accompanying drawings, in which - by way of example - a preferred embodiment of the inventive arrangement of a centrifugal pump is shown with coaxial magnetic coupling. In the drawing show:
Fig. 1
a first embodiment;
Fig. 2
a second embodiment;
Fig. 3
a third embodiment;
Fig. 4
a fourth embodiment;
Fig. 5
a fifth embodiment;
Fig. 6
a sixth embodiment;
Fig. 7
a seventh embodiment;
Fig. 8
an eighth embodiment as well
Fig. 9
a ninth embodiment.

Den Ausführungsformen ist gemeinsam, dass sie ein einen Saugstutzen 2 und einen Druckstutzen 3 aufweisendes Pumpengehäuse 1 aufweisen, wobei ein Pumpen-Laufrad 4 koaxial zum Saugstutzen gelagert ist und in radialer Richtung mit dem Druckstutzen 3 fluidisch verbunden ist. Das Pumpen-Laufrad 4 weist antriebsseitig einen Magnetrotor 6 auf, mit dem es zusammen eine zur Antriebsseite hin offene Laufrad-Magnetrotor-Einheit bildet. Diese weist auf ihrem Außenumfang den rotierenden Teil 9 einer Gleitlagerung auf, während der feststehende Teil 10 dieser Gleitlagerung an der Innenwand 20 des Pumpengehäuses 1 angeordnet ist. Auf der radialen Innenseite trägt der Magnetrotor 6 Permanentmagnete 7. Diese stehen Permanentmagneten 14 mit radialem Abstand gegenüber, welche auf der Außenfläche eines etwa topfförmigen Magnettreibers 13 angeordnet sind. Zwischen dem Magnetrotor und dem Magnettreiber ist in allen Ausführungsbeispielen eine Trennwand, ggf. in Gestalt eines so genannten Spalttopfes 12, zwischengefügt, welche/r den Magnettreiber gegenüber dem flüssigkeitsbenetzten Inneren der Pumpe trocken hält. Der Magnettreiber 13 ist an zwei axial beabstandeten Stellen über Wälzlager 16a und 16b gelagert. Diese Lagerung findet bei allen Ausführungsbeispielen - wenn auch nicht zwingend - jeweils gegenüber dem Pumpengehäuse 1 statt, wobei diese Lagerung bei den Ausführungsformen nach Figuren 1 bis 9 zumindest pumpenseitig innerhalb des von der Laufrad-Magnetrotor-Einheit 19 gebildeten Raumes erfolgt. Hierzu steht ein durchgehend hohler Kragzapfen 39 von der antriebsseitigen Gehäusestirnwand zur Pumpenseite hin ab und weist eine sich verjüngende Bauform 39a, 39b auf, wobei an seinem antriebsseitigen Endbereich die ihn durchdringende Antriebswelle 15 der Pumpe wälzgelagert ist, während ein zweites Wälzlager im gegenüberliegenden Endbereich auf seiner Außenseite die Antriebswelle 15 indirekt, nämlich über den Magnettreiber 13 lagert. Letzterer weist hierzu eine antriebsseitig offene Topfform auf.The embodiments have in common that they have a suction nozzle 2 and a discharge nozzle 3 exhibiting pump housing 1, wherein a pump impeller 4 is mounted coaxially with the suction nozzle and is fluidly connected in the radial direction with the discharge nozzle 3. The pump impeller 4 has on the drive side a magnetic rotor 6, with which it forms an open to the drive side impeller magnetic rotor unit. This has on its outer circumference on the rotating part 9 of a sliding bearing, while the fixed part 10 of this slide bearing on the Inner wall 20 of the pump housing 1 is arranged. On the radially inner side of the magnet rotor carries 6 permanent magnets 7. These are opposed to permanent magnets 14 with a radial distance, which are arranged on the outer surface of an approximately cup-shaped magnet driver In all embodiments, a partition, possibly in the form of a so-called split pot 12, which keeps the magnetic driver dry against the liquid-wetted interior of the pump, is interposed between the magnet rotor and the magnet driver. The magnet driver 13 is supported at two axially spaced locations via rolling bearings 16a and 16b. This storage is in all embodiments - although not mandatory - each with respect to the pump housing 1 instead, said storage in the embodiments according to FIGS. 1 to 9 at least on the pump side takes place within the space formed by the impeller magnetic rotor unit 19. For this purpose, a continuous hollow Kragzapfen 39 from the drive-side housing end wall to the pump side down and has a tapered design 39a, 39b, wherein at its drive end portion which penetrates the drive shaft 15 of the pump is roller-mounted, while a second roller bearing in the opposite end on his Outside the drive shaft 15 indirectly, namely superimposed on the magnet driver 13. The latter has for this purpose on the drive side open cup shape.

Der äußere Umfang der Laufrad-Magnetrotor-Einheit 19 kann nun - bei völliger Gestaltungsfreiheit und in großzügiger axialer Ausdehnung - zur Aufnahme des rotierenden Teils 9 der Gleitlagerung genutzt werden und muss nicht wie beim Stand der Technik der aus wirtschaftlichen Gründen möglichst dünnwandige Schutzmantel 8 sein. Auch dies hatte im Stand der Technik zur Notwendigkeit weiterer radialer Anlauf- und Notlager 37 geführt, die hier in keiner Weise mehr benötigt werden. Es wird sogar möglich, bei geeigneter Wahl des Werkstoffes und bei entsprechender Formgebung, dass Teile der Magnetrotors 6 selbst zum rotierenden Teil 9 der Gleitlagerung werden können.The outer circumference of the impeller magnetic rotor unit 19 can now - be used to accommodate the rotating part 9 of the slide bearing - with complete freedom of design and generous axial extent and does not have to be as thin as possible in the prior art, for economic reasons, protective jacket 8. This, too, had led in the prior art to the need for further radial startup and emergency bearings 37, which are no longer needed here in any way. It is even possible, with a suitable choice of material and with appropriate shaping, that parts of the magnet rotor 6 itself can become the rotating part 9 of the slide bearing.

Da alle Teile der koaxialen Magnetkupplung radial weiter innen gelegen sind, kann der feststehende Teil 10 der Gleitlagerung ohne weiteres direkt an die stabile innere Gehäusewandung 20 des Pumpengehäuses 1 herangeführt werden und muss nicht mehr nachteilig die prinzipiell dünne Wandung des Spalttopfes 12 sein. Es wird sogar möglich, bei geeigneter Wahl des Werkstoffes und bei entsprechender Formgebung, dass Teile der Gehäusewandung 20 des Pumpengehäuses 1 selbst zum feststehenden Teil der Gleitlagerung 10 werden können, evtl. auch erst durch eine mehrschichtige Ausführung.Since all parts of the coaxial magnetic coupling are located radially further inside, the fixed part 10 of the slide bearing can be easily brought directly to the stable inner housing 20 of the pump housing 1 and no longer needs disadvantageous be the principle thin wall of the split pot 12. It is even possible, with a suitable choice of the material and with appropriate shaping, that parts of the housing wall 20 of the pump housing 1 itself can become the fixed part of the plain bearing 10, possibly even by a multi-layered design.

Für eine wirksame Gleitlagerung ist es dabei unerheblich, ob in zwei expliziten Lagerstellen 9,10a und 9,10b gelagert wird, oder ob die gesamte Gleitlagerung zu einer einzigen axial erstreckten "Lagertrommel" auseinander gezogen wird. Auch sind Kombinationen denkbar, also explizite rotierende Lagerung 9a und b gegen feststehende Lagerung 10 als axial erstreckte Trommel und umgekehrt.For an effective slide bearing, it is irrelevant whether 9,10a and 9,10b is stored in two explicit bearings, or whether the entire slide bearing is pulled apart into a single axially extending "storage drum". Also, combinations are conceivable, ie explicit rotating bearing 9a and b against fixed bearing 10 as an axially extended drum and vice versa.

Im Falle einer - in der Praxis häufigen - Betriebsstörung der Pumpe über massiven Gaseintrag (Luft oder verdampfte Förderflüssigkeit in Folge Kavitation) wird sich die in der Pumpe verbleibende Restflüssigkeit als abgeschleuderter Ring am äußeren Umfang im Pumpengehäuse 1 sammeln. Bei einer entsprechenden Pumpe ist genau hier nun die Gleitlagerung 9,10 angeordnet, die mit der Restflüssigkeit bei ausreichender Kühlung beliebig lange betrieben werden kann. Es ist allerdings bei sehr geringen Restmengen, die sich tendenziell bei großen Förderhöhen der Pumpe und geringem statischen Gegendruck einstellen, nicht auszuschließen, dass diese axial entweichen können, um sich auf noch höhere radiale Niveaus im Laufrad zu begeben. Dies kann über eine Sperre in Form eines Umlaufringes 21 verhindert werden. Wird der Innendurchmesser des Umlaufringes 21 kleiner als der Kontaktdurchmesser zwischen den Gleitlagerhälften 9 und 10 gewählt, so wird der eingeschlossene und rotierende Flüssigkeitsring 23 stets die Gleitlagerung 9, 10 benetzen. Ein weiterer Vorteil dieser Konstruktion ergibt sich im Stillstand der Pumpe, wenn nämlich der Umlaufring 21 eine völlige Entleerung der Pumpe im Bereich der Gleitlagerung 9, 10 verhindert. Wird die Pumpe dann erneut angefahren, ohne dass eine Flüssigkeit am Saugstutzen 2 ansteht, was ebenfalls ein häufiger Betriebsfehler ist, dann wird die Gleitlagerung 9, 10 immer noch mit der im Flüssigkeitsrückhalteraum (22) verbliebenen Flüssigkeitsvorlage ausreichend geschmiert und deren axiales Entweichen bei Rotation ebenfalls durch die Sperre verhindert.In the case of a - in practice frequent - malfunction of the pump over massive gas entry (air or evaporated fluid in consequence cavitation), the residual liquid remaining in the pump will accumulate as a thrown off ring on the outer circumference in the pump housing 1. In the case of a corresponding pump, the slide bearing 9, 10 is arranged exactly here, which can be operated as long as desired with the residual liquid with sufficient cooling. However, with very small residual amounts, which tend to occur at high delivery heights of the pump and low static counter-pressure, it can not be ruled out that these can escape axially in order to move to even higher radial levels in the impeller. This can be prevented via a lock in the form of a circulating ring 21. If the inner diameter of the circulating ring 21 is selected to be smaller than the contact diameter between the plain bearing halves 9 and 10, then the enclosed and rotating liquid ring 23 will always wet the plain bearing 9, 10. Another advantage of this design results in the stoppage of the pump, namely, when the circulation ring 21 prevents complete emptying of the pump in the region of the sliding bearing 9, 10. If the pump is then restarted without a liquid is present at the suction nozzle 2, which is also a frequent operating error, then the slide bearing 9, 10 is still sufficiently lubricated with the remaining liquid in the liquid retention chamber (22) liquid template and their axial escape during rotation also prevented by the lock.

Die Erfindung kann dazu ausgenutzt werden, die axiale Ausdehnung der Pumpe erheblich zu verkürzen. Dies ist möglich, indem der Magnettreiber 13 nicht im Pumpengehäuse 1 gelagert wird, sondern direkt auf den Wellenzapfen der Antriebsmaschine gesetzt wird, also letztlich durch die Antriebsmaschine gelagert wird. Dies ist in aller Regel ein Elektromotor. Dabei wird der Elektromotor direkt an die Pumpe geflanscht, was als "Blockbauweise" bekannt ist.The invention can be exploited to significantly shorten the axial extent of the pump. This is possible by the magnetic driver 13 is not stored in the pump housing 1, but is placed directly on the shaft journal of the engine, so is ultimately stored by the prime mover. This is usually an electric motor. The electric motor is flanged directly to the pump, which is known as "block construction".

Vorteil dieser Konstruktion ist neben dem Effekt der axialen Verkürzung die Ersparnis der beiden Wälzlager 16. Nachteil dieser Konstruktion ist, dass der Magnettreiber 13 nicht mehr zur Pumpe gehörig ist und damit eine vollständige Montage der Pumpe erst dann erfolgen kann, wenn auch der antreibende Motor vorhanden ist. Dessen Baugröße ist aber zumindest bei industriellen Pumpen zunächst eine unbekannte Größe und wird erst aufgrund der Kundenangaben bestimmbar. Damit wird der Zeitpunkt der Endmontage der Pumpe zwingend hinter diesen Zeitpunkt verlegt und wird zudem noch zu einer individuellen Montage mit den bekannten wirtschaftlichen Nachteilen.Advantage of this construction is in addition to the effect of axial shortening the savings of the two bearings 16. The disadvantage of this design is that the magnet driver 13 is no longer part of the pump and thus complete assembly of the pump can only be done if the driving motor present is. However, its size is initially at least in industrial pumps an unknown size and will be determined only on the basis of customer information. Thus, the time of final assembly of the pump is necessarily relocated behind this time and is also still an individual assembly with the known economic disadvantages.

Auf dem Wege zu einer besseren Lösung wird gemäß Figur 1 zunächst ein, vorzugsweise lösbarer, Spalttopf 12 eingeführt, wie er bei industriellen Pumpen stets Verwendung findet. In der Praxis sind diese Spalttöpfe am Umfang sehr dünnwandig ausgeführt, um einen möglichst geringen radialen Spalt zwischen Magnetrotor 6 und Magnettreiber 13 verwirklichen zu können. Aufgrund der Bauart nach kann der Spalttopf 12 mit einer glatten Abschlusswand ausgeführt werden und muss mit seiner größeren Öffnung in Richtung der Antriebsseite weisen. Zwar sollte der Spalttopf 12 wegen seiner Dünnwandigkeit selbst nicht zur Abstützung einer Wälzlagerung herangezogen werden, bietet nun aber gemäß Figur 1 in seinem Innenbereich 24 ausreichend Platz für eine axial großzügig bemessene Wälzlagerung 16 des Magnettreibers 13. Damit kann das axiale Baumass der Pumpe auf das der herkömmlichen Blockbauweise verkürzt werden, jedoch bleibt hier der Magnettreiber 13 Bestandteil der Pumpe, was eine vollständige Serienmontage und Vorratshaltung der Pumpe erlaubt.Towards a better solution is in accordance with FIG. 1 initially a, preferably detachable, split pot 12 introduced, as it always finds use in industrial pumps. In practice, these splitters are made very thin-walled on the circumference in order to realize the smallest possible radial gap between the magnet rotor 6 and magnet driver 13 can. Due to the design of the split pot 12 can be performed with a smooth end wall and must point with its larger opening in the direction of the drive side. Although the split pot 12 itself should not be used to support a rolling bearing because of its thinness, but now offers according FIG. 1 in its inner region 24 sufficient space for an axially generously sized rolling bearing 16 of the magnet driver 13. Thus, the axial Baumass the pump can be reduced to that of the conventional block design, however Here, the magnetic driver 13 is part of the pump, which allows a complete series assembly and stockpiling of the pump.

Das Wellenende 25 bei einer solchen axial verkürzten Bauweise kann vorteilhaft gemäß Figur 2 so ausgeführt werden, dass wahlweise über eine herkömmliche Pumpenkupplung (dargestellt ist nur das Zapfenteil 27 der Pumpenkupplung) der direkte Anschluss eines Motors möglich wird (der über einen Zwischenring auch direkt an die Pumpe angeflanscht werden könnte) oder ein Wellenzapfen 28 wieder zur konventionellen Pumpe mit freiem Wellenende führt (z.B. um vorgegebene Normmaße einzuhalten). Auch sollte ein solches Wellenende 25 die Möglichkeit bieten, eine zusätzliche Schwungmasse 26 zu befestigen, um den erwähnten Nachteil der hier gewählten Bauart B beim Anfahren der Pumpe kompensieren zu können. Alles dies wäre Bestandteil der Endmontage des Pumpenaggregates (die auch beim Anwender der Pumpen selbst durchführbar wäre) und würde dennoch eine weitgehende Serienmontage und günstige Vorratshaltung der Pumpe beim Hersteller wie oben beschrieben ermöglichen.The shaft end 25 in such an axially shortened construction can advantageously according to FIG. 2 be carried out so that either via a conventional pump clutch (shown only the pin portion 27 of the pump clutch) the direct connection of a motor is possible (which could be flanged via an intermediate ring also directly to the pump) or a shaft journal 28 again with the conventional pump free shaft end leads (eg to comply with specified standard dimensions). Also, such a shaft end 25 should provide the opportunity to attach an additional flywheel 26 to compensate for the mentioned disadvantage of the type B chosen here when starting the pump can. All this would be part of the final assembly of the pump unit (which would also be carried out by the user of the pump itself) and would still allow a large-scale series assembly and cheap stockpiling of the pump at the manufacturer as described above.

Der rotierende Teil 9 der Gleitlagerung muss nicht notwendigerweise aus zwei definierten Lagerhülsen a und b bestehen oder aus dem Magnetrotor 6 selbst, sondern kann Figur 3 auch als axial durchgängige Hülse 29 (Figur 3, obere Hälfte) oder Formmasse 30 (Figur 3, untere Hälfte) ausgeführt werden.The rotating part 9 of the plain bearing need not necessarily consist of two defined bearing sleeves a and b or from the magnet rotor 6 itself, but can FIG. 3 also as an axially continuous sleeve 29 (FIG. FIG. 3 , upper half) or molding compound 30 ( FIG. 3 , lower half).

Dies bietet wirtschaftliche Vorteile, insbesondere dann, wenn diese Bauteile gemäß Figur 4 auch noch zum Schutz und zur Abdichtung des radial tiefer gelegenen Magnetrotors 6 und der Permanentmagnete 7 dienen. Es ist nämlich je nach Anwendungsgebiet der Pumpe durchaus üblich, dass auch der Magnetrotor 6 als ferromagnetischer Träger der Permanentmagnete 7 vor dem Angriff der zu fördernden Flüssigkeit geschützt werden muss und nicht etwa wie das Pumpen-Laufrad (4) mit der Flüssigkeit in Kontakt kommen darf. Die nun angenommene Unterschiedlichkeit der Werkstoffe zwischen Pumpen-Laufrad (4) und Magnetrotor 6 kommt in einer unterschiedlichen Schraffur zum AusdruckThis offers economic advantages, especially if these components according to FIG. 4 also still serve to protect and seal the radially lower magnet rotor 6 and the permanent magnets 7. Namely, it is quite common, depending on the field of application of the pump, that the magnet rotor 6 as ferromagnetic carrier of the permanent magnets 7 must be protected from the attack of the liquid to be conveyed and not as the pump impeller (4) may come into contact with the liquid , The now assumed difference of the materials between pump impeller (4) and magnet rotor 6 is expressed in a different hatching

Der angestrebten völlig kontaktfreien und damit verschleißfreien und reibungsarmen Gleitung des Laufrad-Magnetrotor-Systems 19 im Pumpengehäuse 1 kommt die hohe Umfangsgeschwindigkeit dieser Anordnung entgegen. Durch zusätzliche grübchenartige Ausnehmungen oder Erhöhungen auf der Oberfläche der rotierenden Gleitlagerung 9, z.B. also auf der Hülse 29 oder der Formmasse 30 können so genannte Taylor-Wirbel im Gleitspalt und im angrenzenden Rotationsraum der Flüssigkeit erzeugt werden, die zur Stabilisierung und zur Kontaktfreiheit der Gleitlagerung beitragen.The desired completely contact-free and thus wear-free and low-friction sliding of the impeller magnetic rotor system 19 in the pump housing 1 is opposed by the high peripheral speed of this arrangement. By additional dimple-like recesses or elevations on the surface of the rotating plain bearing 9, e.g. So on the sleeve 29 or the molding compound 30 so-called Taylor vortex in the sliding gap and in the adjacent rotational space of the liquid can be generated, which contribute to the stabilization and the contact freedom of the sliding bearing.

Insbesondere wenn in der Pumpe im Falle einer Betriebsstörung nur noch ein Flüssigkeitsring 23 rotiert und ein Strom an frischer Schmierflüssigkeit ausbleibt, wird sich diese Restflüssigkeit in der Gleitlagerung aufgrund von Reibung soweit erhitzen, bis ein Wärmetransportgleichgewicht mit dem Pumpengehäuse 1 erreicht ist. Aufgrund des direkten Kontaktes der Gleitlagerung 9, 10 mit dem Pumpengehäuse 1 besteht hier durch Anbringung von äußeren Kühlrippen 32 (Figur 6) eine direkt wirksame Möglichkeit einer erhöhten konvektiven Wärmeabfuhr und damit der Verringerung der stationären Temperatur des Flüssigkeitsringes 23 bei einer länger andauernden Betriebsstörung. In der oberen Hälfte von Figur 6 ist eine Querverrippung dargestellt, in der unteren eine Längsverrippung. Diese letztere dürfte in der Praxis sinnvoller sein, da hiermit günstig der ohnehin vorhandene Kühlluftstrom des antreibenden Elektromotors ausgenutzt werden kann, der immer in Richtung zur Pumpe hin erfolgt.In particular, if in the case of a malfunction in the pump only a liquid ring 23 rotates and a stream of fresh lubricant fails, this residual liquid will heat up in the plain bearing due to friction until a heat transfer equilibrium with the pump housing 1 is reached. Due to the direct contact of the sliding bearing 9, 10 with the pump housing 1 is here by attachment of outer cooling fins 32 (FIG. FIG. 6 ) a directly effective way of increased convective heat dissipation and thus the reduction of the stationary temperature of the liquid ring 23 at a prolonged malfunction. In the upper half of FIG. 6 is a Querverrippung shown in the lower longitudinal ribbing. This latter should be more useful in practice, since this can be used to advantage the already existing cooling air flow of the driving electric motor, which always takes place in the direction of the pump.

Um die Mangelschmierung der Gleitlagerung 9, 10 auch im Falle einer entsprechenden Betriebsstörung zu verhindern, wird die Versorgung mit externer Schmierflüssigkeit (Figur 7) und/oder eine sensorische Überwachung (z.B. Temperatur, Vibration, Körperschall) der Gleitlagerung 9, 10 laut Figur 8 vorgeschlagen. Hier wirkt sich die Nähe der Gleitlagerung 9, 10 zum Pumpengehäuse 1 so aus, dass dieser Zugang denkbar einfach erfolgen kann.In order to prevent the lack of lubrication of the sliding bearing 9, 10 even in the case of a corresponding malfunction, the supply of external lubricating fluid ( FIG. 7 ) and / or a sensory monitoring (eg temperature, vibration, structure-borne noise) of the slide bearing 9, 10 loud FIG. 8 proposed. Here, the proximity of the slide bearing 9, 10 to the pump housing 1 acts so that this access can be done very easily.

Viele ausgeführte Magnetkupplungspumpen, die aufgrund der hermetischen Abdichtung des Pumpeninneren gerade zur Förderung aggressiver, abrasiver und gefährlicher Flüssigkeiten besonders geeignet sind, sind im benetzten Bereich des Pumpengehäuses 1 mit etwa einer Kunststoffschicht ausgekleidet oder aus mehreren - in der Regel zwei - Werkstoffschalen aufgebaut. Letztlich muss dann die innerste Materialschicht 35 die gewünschten Eigenschaften gegenüber der Flüssigkeit aufweisen, während die äußeren Schalen eher der Formgebung und Stabilität gegenüber dem Innendruck der Pumpe dienen. Figur 9 macht diese Bauweise auch für die vorliegende Erfindung geltend. Da insbesondere die erwähnten Kunststoffwerkstoffe (z.B. PTFE oder PE) ganz hervorragend als Gleitlagerwerkstoff auch im Mischreibungsgebiet eingesetzt werden können, wird eine Konstruktion vorgeschlagen, wie sie Figur 15 in der unteren Hälfte zeigt. Ist hingegen der Werkstoff der innersten Materialschicht 35 nicht für Gleitlager geeignet, ist auf die Konstruktion in der oberen Hälfte von Figur 15 zurückzugreifen.Many designed magnetic coupling pumps, which are particularly suitable for conveying aggressive, abrasive and hazardous liquids due to the hermetic seal of the pump interior, are in the wetted area of the pump housing. 1 lined with about a plastic layer or composed of several - usually two - material shells. Ultimately, then the innermost layer of material 35 must have the desired properties with respect to the liquid, while the outer shells serve more the shape and stability to the internal pressure of the pump. FIG. 9 makes this construction also for the present invention. Since in particular the mentioned plastic materials (eg PTFE or PE) can be used very well as a sliding bearing material in mixed friction region, a construction is proposed, as shown in Figure 15 in the lower half. If, on the other hand, the material of the innermost material layer 35 is not suitable for plain bearings, the construction in the upper half of FIG. 15 must be used.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Pumpengehäusepump housing
22
Saugstutzensuction
33
Druckstutzenpressure port
44
Pumpen-LaufradImpeller
55
Laufradwelleimpeller shaft
66
Magnetrotormagnet rotor
77
Permanentmagnet (Rotor)Permanent magnet (rotor)
88th
Schutzmantelmantle
99
rotierendes Gleitlagerrotating plain bearing
9a9a
rotierendes Gleitlager, laufradseitigrotating plain bearing, impeller side
9b9b
rotierendes Gleitlager, antriebsseitigrotating plain bearing, drive side
1010
feststehendes Gleitlagerfixed plain bearing
10a10a
feststehendes Gleitlager, laufradseitigFixed plain bearing, impeller side
10b10b
feststehendes Gleitlager, antriebsseitigFixed slide bearing, drive side
1111
Lagereinsatzbearing insert
1212
Spalttopfcontainment shell
1313
Magnettreibermagnetic driver
1414
Permanentmagnet (Treiber)Permanent magnet (driver)
1515
Antriebswelledrive shaft
16a16a
Wälzlager, laufradseitigRolling bearing, impeller side
16a16a
Wälzlager, antriebsseitigRolling bearing, drive side
1717
Achseaxis
1818
Strömungsrippenflow ribs
1919
Laufrad-Magnetrotor-EinheitImpeller-magnetic rotor unit
2020
Innenseitige Wand des PumpengehäusesInside wall of the pump housing
2121
Umlaufringcircumferential ring
2222
FlüssigkeitsrückhalteraumFluid retention area
2323
rotierende Menge von Restflüssigkeitrotating amount of residual fluid
2424
Innenbereich des SpalttopfesInterior of the containment shell
2525
Wellenendeshaft end
2626
SchwungmasseInertia
2727
Zapfenteil einer PumpenkupplungSpigot part of a pump coupling
2828
Wellenzapfenshaft journal
2929
Hülseshell
3030
Formmassemolding compound
3131
Ausnehmungenrecesses
3232
Kühlrippencooling fins
3333
Zugang für SchmierflüssigkeitAccess for lubricating fluid
3434
Zugang für SensorenAccess for sensors
3535
Innerste MaterialschichtInnermost material layer
3636
Dichtmittelsealant
3737
Anfahr- bzw. NotlagerApproach or emergency camp
3838
Außenumfang des Laufrad-Magnetrotor-SystemsOuter circumference of the impeller magnetic rotor system
3939
Kragzapfencollar journal
39a39a
Verjüngungrejuvenation
39b39b
Verjüngungrejuvenation
LITERATURLITERATURE

  • [1]
    Broschüre der
    Firma WERNERT-PUMPEN GMBH
    D-45476 Mülheim an der Ruhr
    Chemienormpumpe aus Kunststoff mit Magnetkupplung - Typenreihe NM
    Ausgabe 687/02
    [1]
    Brochure of
    Company WERNERT-PUMPEN GMBH
    D-45476 Mülheim an der Ruhr
    Standardized chemical pump made of plastic with magnetic coupling - NM series
    Issue 687/02
  • [2]
    Broschüre der
    Firma IWAKI Pumpen
    lwaki magnetgetriebene Pumpen - Serie MDM
    printed in Japan 99.11.ITN
    [2]
    Brochure of
    Company IWAKI pumps
    lwaki magnet driven pumps - MDM series
    printed in Japan 99.11.ITN
  • [3]
    Broschüre der
    Firma CP-Pumpen AG
    CH-4800 Zofingen:
    Magnetkupplungspumpe MKP, metallisch
    [3]
    Brochure of
    Company CP-Pumpen AG
    CH-4800 Zofingen:
    Magnetic coupling pump MKP, metallic
  • [4]
    Robert Neumaier: Hermetische Pumpen Verlag und Bildarchiv W.H. Faragallah, 1994 ISBN-3-929682-05-2
    Kapitel 3.7.12 Wellenlose Magnetkupplungs-Kreiselpumpen S. 356 ff
    [4]
    Robert Neumaier: Hermetic pumps publishing house and image archive WH Faragallah, 1994 ISBN-3-929682-05-2
    Chapter 3.7.12 Wave-less magnetic-coupling centrifugal pumps p. 356 ff

Claims (8)

Kreiselpumpe - mit einer statischen und geschlossenen Einfassung der Förderflüssigkeit im Inneren der Pumpe in Gestalt eines Gehäuses (1), - mit einer berührungslosen, permanentmagnetischen koaxialen Drehkupplung (6, 7; 13 ,14) zur Übertragung eines Antriebsmomentes in das Innere des Pumpengehäuses - mit einem Pumpen-Laufrad (4), das zusammen mit einem, Permanentmagnete (7) tragenden, Magnetrotor (6) eine gleitgelagerte, zur Antriebsseite hin offene, topfförmige Baueinheit (Laufrad-Magnetrotor-Einheit 19) bildet, - und bei der die magnetischen Wirklinien des antreibenden Teils der Drehkupplung (Magnettreiber 13 und Permanentmagnete 14) radial nach außen weisen und die magnetischen Wirklinien des mit dem Pumpen-Laufrad (4) verbundenen Teils der Drehkupplung (Magnetrotor 6 und Permanentmagnete 7) radial nach innen weisen, - bei der zwischen dem Magnetrotor (6) und Magnettreiber (13) eine Trennwand angeordnet ist, die mit ihrer Öffnung der Antriebsseite der Pumpe zugewandt ist und die Flüssigkeit im Inneren der Pumpe vom Magnettreiber (13) trennt, und bei der - der Magnettreiber (13) in mindestens einem mit der Pumpe verbundenen Lager, wie einem Wälzlager (16), gelagert ist, und bei der - sich mindestens ein laufradseitiges Lager, wie ein Wälzlager (16a), im Innenbereich (24) des Pumpengehäuses befindet und - die Lagerung des Magnettreibers (13) ohne Kontakt zu der Trennwand erfolgt. dadurch gekennzeichnet, dass sich das mindestens eine laufradseitige Lager im Innenbereich eines innen hohlen Magnetreibers (13) befindet.rotary pump - With a static and closed enclosure of the pumped liquid inside the pump in the form of a housing (1), - With a non-contact, permanent magnetic coaxial rotary joint (6, 7, 13, 14) for transmitting a drive torque in the interior of the pump housing - With a pump impeller (4), which together with a, permanent magnets (7) carrying, magnetic rotor (6) forms a sliding, open to the drive side, cup-shaped structural unit (impeller magnetic rotor unit 19), - And in which the magnetic lines of action of the driving part of the rotary joint (magnetic driver 13 and permanent magnets 14) facing radially outward and the magnetic lines of action of the pump impeller (4) connected to the rotary coupling part (magnet rotor 6 and permanent magnets 7) radially inwardly point, - In which between the magnetic rotor (6) and magnet driver (13) a partition wall is arranged, which faces with its opening the drive side of the pump and the liquid inside the pump from the magnetic driver (13) separates, and in the - The magnet driver (13) in at least one bearing connected to the pump, such as a rolling bearing (16) is mounted, and in the - At least one impeller side bearing, such as a roller bearing (16 a), in the inner region (24) of the pump housing is located and - The storage of the magnetic driver (13) takes place without contact with the partition. characterized in that the at least one impeller-side bearing is located in the interior of an inside hollow magnetic drive (13). Kreiselpumpe nach dem Oberbegriff von Anspruch 1, dadurch gekennzeichnet, dass vom laufradseitigen Lager der Innenring festgesetzt ist und der zugehörige Außenring mit dem gelagerten Magnetreiber (13) rotiert.Centrifugal pump according to the preamble of claim 1, characterized in that the impeller-side bearing of the inner ring is fixed and rotates the associated outer ring with the mounted magnetic driver (13). Kreiselpumpe nach Anspruch 2, dadurch gekennzeichnet, dass ein antriebsseitiges Lager, wie Wälzlager (16b) vorgesehen ist, dessen Innenring mit der gelagerten Antriebswelle (15) rotiert und der zugehörige Außenring festgesetzt ist.Centrifugal pump according to claim 2, characterized in that a drive-side bearing, such as roller bearings (16b) is provided, whose inner ring rotates with the mounted drive shaft (15) and the associated outer ring is fixed. Kreiselpumpe nach dem Oberbegriff von Anspruch 1 dadurch gekennzeichnet, dass ein durchgehend hohler, in das Pumpengehäuse (1) von der Antriebsseite her hineinragender Kragzapfen (39) zur Aufnahme der Antriebswelle (15) vorgesehen und mit dem Pumpengehäuse verbunden oder verbindbar ist.Centrifugal pump according to the preamble of claim 1, characterized in that a continuous hollow, in the pump housing (1) from the drive side protruding Kragzapfen (39) is provided for receiving the drive shaft (15) and connected to the pump housing or connectable. Kreiselpumpe nach Anspruch 4 dadurch gekennzeichnet, dass der hohle Kragzapfen (39) zumindest in einem seiner Endbereiche ein Verjüngung (39a; 39b) aufweist.Centrifugal pump according to claim 4, characterized in that the hollow cantilever (39) has a taper (39a, 39b) at least in one of its end regions. Kreiselpumpe nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass der Bereich des antriebsseitigen Endes (25) der Antriebswelle (15) so ausgebildet ist, dass er eine Schwungmasse (26) aufweist oder damit versehbar ist.Centrifugal pump according to one of claims 1 to 5, characterized in that the region of the drive-side end (25) of the drive shaft (15) is formed so that it has a flywheel (26) or is providable. Kreiselpumpe nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass der Bereich des antriebseitigen Endes (25) der Antriebswelle (15) so ausgebildet ist, dass er wahlweise mit einer Schwungmasse (26), einem Zapfenteil (27) einer Pumpenkupplung und/oder einem Wellenzapfen (28) lösbar verbindbar ist.Centrifugal pump according to one of claims 1 to 6, characterized in that the region of the drive-side end (25) of the drive shaft (15) is designed such that it optionally with a flywheel (26), a pin member (27) of a pump clutch and / or a Shaft journal (28) is releasably connectable. Kreiselpumpe nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass der Magnettreiber (13) eine zur Antriebsseite hin offene Topfform aufweist.Centrifugal pump according to one of claims 1 to 7, characterized in that the magnetic driver (13) has an open towards the drive side cup shape.
EP08003862A 2006-03-31 2007-03-29 Centrifugal pump with coaxial magnetic coupling Not-in-force EP1965081B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006005189U DE202006005189U1 (en) 2006-03-31 2006-03-31 Centrifugal pump with coaxial magnetic coupling
EP07723756A EP2002126B1 (en) 2006-03-31 2007-03-29 Rotary pump with coaxial magnetic coupling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP07723756A Division EP2002126B1 (en) 2006-03-31 2007-03-29 Rotary pump with coaxial magnetic coupling

Publications (2)

Publication Number Publication Date
EP1965081A1 true EP1965081A1 (en) 2008-09-03
EP1965081B1 EP1965081B1 (en) 2009-11-18

Family

ID=38375284

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08003862A Not-in-force EP1965081B1 (en) 2006-03-31 2007-03-29 Centrifugal pump with coaxial magnetic coupling
EP07723756A Not-in-force EP2002126B1 (en) 2006-03-31 2007-03-29 Rotary pump with coaxial magnetic coupling

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07723756A Not-in-force EP2002126B1 (en) 2006-03-31 2007-03-29 Rotary pump with coaxial magnetic coupling

Country Status (9)

Country Link
US (1) US8162630B2 (en)
EP (2) EP1965081B1 (en)
JP (1) JP5461172B2 (en)
KR (1) KR101410628B1 (en)
CN (1) CN101415950B (en)
AT (2) ATE472060T1 (en)
DE (3) DE202006005189U1 (en)
ES (1) ES2335946T3 (en)
WO (1) WO2007112938A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352848A (en) * 2011-10-31 2012-02-15 神华集团有限责任公司 Magnetic pump

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054233B4 (en) 2007-11-12 2010-06-10 Ika-Werke Gmbh & Co. Kg Device for dispersing or homogenizing
MX2010005552A (en) 2007-11-21 2010-06-02 Smith & Nephew Wound dressing.
DE102008008290A1 (en) 2008-02-07 2009-08-20 H. Wernert & Co. Ohg Impeller arrangement for pump, has plate or ring-like impeller body with two front sides, where multiple shovels are provided, which are fixed on former front surface
JP4681625B2 (en) 2008-02-22 2011-05-11 三菱重工業株式会社 Blood pump and pump unit
EP2180583B1 (en) * 2008-10-24 2012-08-08 Biazzi Sa Device with mixing vessel
KR100935707B1 (en) * 2009-04-30 2010-01-07 케이이티주식회사 Magnetic drive-type sealless pump
KR100990096B1 (en) 2009-06-04 2010-10-29 강선희 Transport system with magnetic module
DE102009060549A1 (en) * 2009-12-23 2011-06-30 Wilo Se, 44263 EC motor centrifugal pump
MX341039B (en) * 2010-04-19 2016-08-04 Kolektor Magnet Tech Gmbh Electric motor-vehicle coolant pump.
JP4875783B1 (en) 2011-09-15 2012-02-15 三菱重工業株式会社 Magnetic coupling pump and pump unit equipped with the same
TW201317459A (en) * 2011-10-26 2013-05-01 Assoma Inc Permanent magnet canned pump structure improvement
TW201320547A (en) * 2011-11-03 2013-05-16 Assoma Inc Structural improvement for magnetic driven pump
PL2604863T3 (en) * 2011-12-13 2017-12-29 Eagleburgmann Germany Gmbh & Co. Kg Rotary compessor
US8651240B1 (en) 2012-12-24 2014-02-18 United Technologies Corporation Pressurized reserve lubrication system for a gas turbine engine
US8905729B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with electro-magnet coupling inside the impeller
US8905728B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with permanent magnet coupling inside the impeller
CN102931810A (en) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 Interaxial permanent magnet coupling mechanism
CN102931809A (en) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 Interaxial permanent magnet coupling mechanism
CN103023241A (en) * 2012-11-27 2013-04-03 镇江市江南矿山机电设备有限公司 Interaxial permanent magnet coupling mechanism
CN103401396B (en) * 2013-06-14 2016-07-06 宝鸡泰华磁机电技术研究所有限公司 Interior radiation ring type permanent magnet clutch
KR101828544B1 (en) * 2013-12-13 2018-03-29 한화파워시스템 주식회사 A compressor assembly
US9771938B2 (en) 2014-03-11 2017-09-26 Peopleflo Manufacturing, Inc. Rotary device having a radial magnetic coupling
US20170037854A1 (en) * 2015-08-05 2017-02-09 Wade Spicer Magnetic drive, seal-less pump
DE102016200013B4 (en) 2016-01-04 2022-11-03 Röchling Automotive SE & Co. KG pump
CN107327570B (en) * 2016-04-28 2018-10-19 哈尔滨歌瑞得莱机器人制造有限公司 Synchronize double magnet ring driving sealing devices
US11193493B2 (en) 2016-07-04 2021-12-07 Amotech Co., Ltd. Water pump
WO2018008896A1 (en) * 2016-07-04 2018-01-11 주식회사 아모텍 Water pump
DE202016105312U1 (en) * 2016-09-23 2018-01-09 Speck Pumpen Verkaufsgesellschaft Gmbh feed pump
MX2019004713A (en) 2016-11-01 2019-12-11 Psg Worldwide Inc Magnetically coupled sealless centrifugal pump.
NO344365B1 (en) * 2017-12-21 2019-11-18 Fsubsea As Magnetic coupling assembly
DE102017220437B8 (en) * 2017-11-16 2019-06-19 Eagleburgmann Germany Gmbh & Co. Kg Pump arrangement, in particular for supplying a mechanical seal assembly
DE102017127736A1 (en) * 2017-11-23 2019-05-23 Manfred Sade Magnetic pump with mechanical seal
US10047717B1 (en) * 2018-02-05 2018-08-14 Energystics, Ltd. Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof
DE102018102740A1 (en) 2018-02-07 2019-08-08 Lsp Innovative Automotive Systems Gmbh External stator for a rotary field machine (electric motor) with an inner rotor, with Statorzahngruppen, each having two mutually adjacent stator teeth
CN108462366A (en) * 2018-03-30 2018-08-28 湖南铁路科技职业技术学院 Cylinder and circular cone mixed type coaxial-type magnetic sealing device suitable for railway freight-car
US10947986B2 (en) 2018-07-11 2021-03-16 Ch Biomedical (Usa) Inc. Compact centrifugal pump with magnetically suspended impeller
CN109067138A (en) * 2018-08-27 2018-12-21 广西科技大学 A kind of novel mixed permanent magnetic transmission device
DE102018129613A1 (en) * 2018-11-23 2020-05-28 Ebm-Papst St. Georgen Gmbh & Co. Kg Radial fan with integrated cooling function
GB2581339A (en) * 2019-02-08 2020-08-19 Hmd Seal/Less Pumps Ltd Containment shell for a magnetic pump
DE102019122042A1 (en) * 2019-08-16 2021-02-18 HELLA GmbH & Co. KGaA Pumping device
EP3795836A1 (en) * 2019-09-18 2021-03-24 Levitronix GmbH Centrifugal pump and pump housing
DE102020202781A1 (en) * 2020-03-04 2021-09-09 Siemens Aktiengesellschaft 8Electric motor with can
DE202020101750U1 (en) * 2020-03-31 2020-04-15 Speck Pumpen Verkaufsgesellschaft Gmbh Counter current swimming system
CN114263637B (en) * 2021-12-30 2024-01-02 浙江启尔机电技术有限公司 Magnetic coupling temperature control system and magnetic pump adopting same
WO2023238507A1 (en) * 2022-06-08 2023-12-14 パナソニックIpマネジメント株式会社 Magnetic-geared motor and magnetic gear

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29822717U1 (en) 1998-12-21 1999-03-18 Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen Centrifugal pump, in particular for pumping a coolant in a coolant circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1453760A1 (en) 1962-01-08 1969-01-09 Fuss Und Stahl Veredlung Gmbh Pump with a rapidly rotating impeller, in particular a centrifugal pump
FR2311201A1 (en) 1975-05-12 1976-12-10 Siebec Filtres Rotor support stub in magnetic pump - is retainable allowing stable seal fitment between stub and dividing wall
JPS5280101U (en) * 1975-12-11 1977-06-15
DE3560533D1 (en) * 1984-07-16 1987-10-08 Cp Pumpen Ag Centrifugal pump with an isolating tubular air gap cap
ATE32931T1 (en) 1984-07-16 1988-03-15 Cp Pumpen Ag CENTRIFUGAL PUMP WITH A CANNED TUBE.
JP2636097B2 (en) * 1991-08-08 1997-07-30 動力炉・核燃料開発事業団 Monitoring device for the amount of wear of thrust bearings in immersion type electric pumps
GB2263312A (en) * 1992-01-17 1993-07-21 Stork Pompen Vertical pump with magnetic coupling.
US5253986A (en) 1992-05-12 1993-10-19 Milton Roy Company Impeller-type pump system
FR2715442B1 (en) * 1994-01-26 1996-03-01 Lorraine Carbone Centrifugal pump with magnetic drive.
JPH09268994A (en) * 1996-03-30 1997-10-14 Yoshio Yano Pump with magnet used as power source without submerged bearing
GB9717866D0 (en) * 1997-08-23 1997-10-29 Concentric Pumps Ltd Improvements to rotary pumps
JP2001119913A (en) * 1999-10-21 2001-04-27 Canon Precision Inc Self-cooled hydrodynamic pressure bearing brushless motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29822717U1 (en) 1998-12-21 1999-03-18 Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen Centrifugal pump, in particular for pumping a coolant in a coolant circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352848A (en) * 2011-10-31 2012-02-15 神华集团有限责任公司 Magnetic pump

Also Published As

Publication number Publication date
CN101415950B (en) 2013-02-06
DE502007002031D1 (en) 2009-12-31
US20100028176A1 (en) 2010-02-04
US8162630B2 (en) 2012-04-24
KR101410628B1 (en) 2014-06-20
ATE472060T1 (en) 2010-07-15
CN101415950A (en) 2009-04-22
DE502007004191D1 (en) 2010-08-05
EP2002126A2 (en) 2008-12-17
JP2009531589A (en) 2009-09-03
WO2007112938A3 (en) 2008-04-10
ATE449263T1 (en) 2009-12-15
EP1965081B1 (en) 2009-11-18
WO2007112938A2 (en) 2007-10-11
KR20080108150A (en) 2008-12-11
EP2002126B1 (en) 2010-06-23
JP5461172B2 (en) 2014-04-02
ES2335946T3 (en) 2010-04-06
DE202006005189U1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
EP1965081B1 (en) Centrifugal pump with coaxial magnetic coupling
EP1801420A2 (en) Centrifugal pump with magnetic coupling
EP1897209B1 (en) Rotor comprising a fan wheel for an electronically commutated electric motor
DE69629323T2 (en) Permanent magnet excited synchronous motor
DE202008002617U1 (en) Arrangement for conveying fluids
DE202005003689U1 (en) Arrangement with an electronically commutated external rotor motor
WO2013127626A2 (en) Pump arrangement
DE3639719C3 (en) Canned magnet pump
EP1286055B1 (en) Wet rotor pump
EP1948938B1 (en) Pump with a cylindrical cooling bush
EP1979621B1 (en) Magnetically coupled centrifugal pump for corrosive media
DE4111466A1 (en) Centrifugal pump with split tube motor - has runner incorporating vane, wheel, motor rotor and at least two shaft pins, tubular housing connecting coaxial inlet and outlet connections
DE3941444C2 (en) Permanent magnet drive for a pump, an agitator or a valve
DE10240800A1 (en) Pump with non-metal surface in contact with feed medium circuit for fluid feed medium provided between feed chamber and clearance gap by means of first passage lying outside shaft and second passage lying inside shaft
DE102005008794A1 (en) Electromotive drive
DE102008017535B3 (en) Radial piston pump for pumping gear oil into closed circulation system, has particularly monolithic cylindrical block with two cylinders formed in cylinder block
EP4217610B1 (en) Motor-pump unit
DE10035578B4 (en) drive unit
DE29716110U1 (en) Magnetic clutch pump
EP3628873B1 (en) Rotor bearing
DE69801740T3 (en) Centrifugal pump with radial seal
DE69024118T2 (en) Magnetic coupling for the transmission of movement through the walls of closed vessels
EP0359136A1 (en) Sealless centrifugal pump suited for cleaning
DE102016003169A1 (en) Cooling device for a pump with wet-rotor motor
DE202016100655U1 (en) Magnetic drive pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2002126

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007002031

Country of ref document: DE

Date of ref document: 20091231

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2335946

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170327

Year of fee payment: 11

Ref country code: NL

Payment date: 20170323

Year of fee payment: 11

Ref country code: SE

Payment date: 20170327

Year of fee payment: 11

Ref country code: FR

Payment date: 20170323

Year of fee payment: 11

Ref country code: DE

Payment date: 20170327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170322

Year of fee payment: 11

Ref country code: GB

Payment date: 20170327

Year of fee payment: 11

Ref country code: BE

Payment date: 20170323

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170323

Year of fee payment: 11

Ref country code: ES

Payment date: 20170323

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007002031

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 449263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180329

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180329

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180329

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002