JP2001119913A - Self-cooled hydrodynamic pressure bearing brushless motor - Google Patents

Self-cooled hydrodynamic pressure bearing brushless motor

Info

Publication number
JP2001119913A
JP2001119913A JP29942199A JP29942199A JP2001119913A JP 2001119913 A JP2001119913 A JP 2001119913A JP 29942199 A JP29942199 A JP 29942199A JP 29942199 A JP29942199 A JP 29942199A JP 2001119913 A JP2001119913 A JP 2001119913A
Authority
JP
Japan
Prior art keywords
sleeve
rotor yoke
brushless motor
rotor
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29942199A
Other languages
Japanese (ja)
Inventor
Sukenao Yoshiike
祐尚 吉池
Hiromasa Masuda
博雅 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Precision Inc
Original Assignee
Canon Inc
Canon Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Precision Inc filed Critical Canon Inc
Priority to JP29942199A priority Critical patent/JP2001119913A/en
Publication of JP2001119913A publication Critical patent/JP2001119913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance high-speed hydrodynamic pressure bearing brushless motor which suppresses heat generation, and is hardly influenced by temperature. SOLUTION: By forming cooling fins on a rotor yoke and forming holes in a circuit board, outside air is taken in from a rotor. The outside air forcedly taken along a sleeve having a dynamic pressure generating groove inside is led, and temperature increase of the surface of the sleeve having a bearing and heat generation of inside oil as well are suppressed. Air flow from the rotor to the circuit board is established from the holes of the board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、P.P.Cやプリンタ
等のOA機器に使用される動圧流体軸受ブラシレスモー
タの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention P. The present invention relates to a structure of a dynamic pressure fluid bearing brushless motor used for OA equipment such as C and a printer.

【0002】[0002]

【従来の技術】近年、P.P.C等のOA機器は、ユー
ザーニーズに伴い、高機能、高精度、高速化の傾向があ
り、なおかつ安価な製品が要望されている。このような
市場動向にあって、OA機器の各部の機能を駆動するた
めに使用される動圧流体軸受ブラシレスモータにおいて
も、高機能、高精度、高速化、かつ安価な製品が要望さ
れている。
2. Description of the Related Art In recent years, P.I. P. OA devices such as C tend to have high functions, high accuracy, and high speed in response to user needs, and low-cost products are demanded. Under such market trends, there is a demand for a high-performance, high-precision, high-speed, and inexpensive hydrodynamic fluid bearing brushless motor used for driving the functions of various parts of the OA equipment. .

【0003】動圧流体軸受ブラシレスモータは、図1に
示すように、巻線を施したコア5に電磁作用により磁界
が発生する。この磁界とコア5に対向して配置したマグ
ネット9の磁界との間に、反発、吸引が働き、マグネッ
トを保持したロータヨーク3が回転軸1と一体となって
回転する。
As shown in FIG. 1, in a brushless motor of a hydrodynamic bearing, a magnetic field is generated by an electromagnetic action in a core 5 provided with a winding. Repulsion and attraction work between this magnetic field and the magnetic field of the magnet 9 disposed opposite the core 5, and the rotor yoke 3 holding the magnet rotates integrally with the rotating shaft 1.

【0004】この回転軸1には、軸方向に対して回転軸
1を軸受するための動圧流体軸受(スリーブ)7が配置
されており、回転軸1またはスリーブ7のいずれかに動
圧発生溝が設けられている。スリーブ7と回転軸1とそ
の間に介在する潤滑流体とで回転中に発生する動圧によ
り、ロータヨーク3と一体となった回転軸1がスリーブ
7内で潤滑流体を介して保持される。回転中にこの保持
力(動圧)は、回転数が増すとともに大きくなる。ま
た、高速化に伴い回転数を増加させることは、保持力を
大きくしなければならない。スリーブの内部で発熱し、
介在する潤滑流体の温度上昇を導く。これに伴い、ロー
タ内部に存在する各部品の昇温をも導き、動圧流体軸受
ブラシレスモータのモータとしての特性を低下させてし
まう。
A dynamic pressure fluid bearing (sleeve) 7 for bearing the rotary shaft 1 in the axial direction is disposed on the rotary shaft 1, and a dynamic pressure is generated on either the rotary shaft 1 or the sleeve 7. A groove is provided. The rotating shaft 1 integrated with the rotor yoke 3 is held in the sleeve 7 via the lubricating fluid by the dynamic pressure generated during rotation by the sleeve 7, the rotating shaft 1 and the lubricating fluid interposed therebetween. During the rotation, the holding force (dynamic pressure) increases as the number of rotations increases. In addition, increasing the number of revolutions with an increase in speed requires increasing the holding force. It generates heat inside the sleeve,
This leads to an increase in the temperature of the interposed lubricating fluid. With this, the temperature rise of each component existing inside the rotor is also led, and the characteristics of the brushless motor of the hydrodynamic bearing are reduced.

【0005】[0005]

【発明が解決しようとする課題】保持力は、回転による
オイルのせん断力やオイルの粘性による摩擦力によっ
て、スリーブの内部で発熱を起こし、介在するオイルの
温度上昇を導く。これに伴い、保持力の低下、動圧発生
溝を内部に設けられたスリーブ自体の昇温によるロータ
内部に存在する各部品の昇温をも導き、動圧流体軸受ブ
ラシレスモータのモータとしての特性を低下させてしま
う。
The holding force generates heat inside the sleeve due to the shearing force of the oil due to the rotation and the frictional force due to the viscosity of the oil, leading to an increase in the temperature of the intervening oil. Along with this, the holding force is reduced, and the temperature rise of the parts inside the rotor due to the temperature rise of the sleeve itself provided with the dynamic pressure generating groove is also led, and the characteristics of the motor as a dynamic pressure fluid bearing brushless motor Is reduced.

【0006】したがって、本発明の目的は、発熱を抑え
た、温度による影響の少ない、高性能で高速な動圧流体
軸受ブラシレスモータを提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-performance, high-speed hydrodynamic bearing brushless motor that suppresses heat generation, is less affected by temperature, and has high performance.

【0007】[0007]

【課題を解決するための手段】冷却フィンをロータヨー
クに設け、また、回路基板に孔を設けることにより、ロ
ータから外気を取り込み、強制的に動圧発生溝を内部に
持つスリーブに沿って取り込んだ外気を導き、軸受を有
するスリーブの表面の昇温を抑え、内部のオイルの発熱
も抑制することができる。回路基板の孔よりロータから
基板への空気の流れをつくる。
A cooling fin is provided on a rotor yoke and a hole is provided in a circuit board to take in outside air from a rotor and forcibly take it in along a sleeve having a dynamic pressure generating groove therein. It can guide outside air, suppress the temperature rise on the surface of the sleeve having the bearing, and also suppress the heat generation of the oil inside. Create a flow of air from the rotor to the board through the holes in the circuit board.

【0008】[0008]

【実施例】動圧流体軸受ブラシレスモータの発熱源の1
つで、スリーブ7の内部の動圧発生溝内で動圧を発生さ
せるための潤滑流体は、板金のロータヨーク3の上面に
プレス加工により形成される冷却フィン2と、この冷却
フィン2に設けられた孔10により、モータ外部の外気
を取り込む。なお、動圧発生溝は、スリーブの軸受面ま
たは回転軸の外周面のいずれに形成されてもよいもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the heat sources of a hydrodynamic fluid bearing brushless motor
The lubricating fluid for generating dynamic pressure in the dynamic pressure generating groove inside the sleeve 7 is provided on the cooling fin 2 formed on the upper surface of the sheet metal rotor yoke 3 by press working and the cooling fin 2. The outside air outside the motor is taken in by the hole 10. The dynamic pressure generating groove may be formed on either the bearing surface of the sleeve or the outer peripheral surface of the rotating shaft.

【0009】孔10から取り込んだ外気を冷却フィン2
によりスリーブ7の外周面へ導き、スリーブ7の表面の
昇温抑制と、動圧流体軸受(溝)6に介在する潤滑流体
の発熱を抑制する。
The outside air taken in from the holes 10 is cooled by the cooling fins 2.
Accordingly, the temperature rise of the surface of the sleeve 7 is suppressed and the heat generation of the lubricating fluid interposed in the hydrodynamic bearing (groove) 6 is suppressed.

【0010】スリーブ7の表面に導かれた外気は、スリ
ーブの取付付近の回路基板4に設けられた孔8よりモー
タ外部へ放出され、空気の流路を確保するものである。
冷却フィン2の形状は、板金ロータヨーク3の上面に、
ロータ中心に対し角度45度毎に垂直面を設け、その面
に外気取り込みのための孔10を配置する。垂直面上部
から次の垂直面へは、回転方向と逆方向に羽根を形成
し、垂直面上部は水平で、次の垂直面には、フィン形成
部の内側の円から角度45度となるようなR面形状でつ
ながれている。
The outside air guided to the surface of the sleeve 7 is discharged to the outside of the motor through a hole 8 provided in the circuit board 4 near the attachment of the sleeve 7 to secure an air flow path.
The shape of the cooling fin 2 is formed on the upper surface of the sheet metal rotor yoke 3.
A vertical plane is provided at an angle of 45 degrees with respect to the center of the rotor, and a hole 10 for taking in outside air is arranged on the plane. From the upper part of the vertical surface to the next vertical surface, a blade is formed in the direction opposite to the rotation direction, the upper part of the vertical surface is horizontal, and the next vertical surface is at an angle of 45 degrees from the circle inside the fin forming part They are connected by an appropriate R-plane shape.

【0011】[0011]

【発明の効果】冷却フィンとフィン部に設けられた孔に
より、モータ内部より低い温度の外気を取り込むこと
で、スリーブの外周面及び動圧を発生させるための潤滑
流体の昇温を抑えることができ、温度上昇による潤滑流
体の劣化と、それに付随したモータ特性低下とを抑制す
ることが可能である。
The cooling fins and the holes provided in the fin portions take in outside air at a temperature lower than the inside of the motor, thereby suppressing the outer peripheral surface of the sleeve and the temperature rise of the lubricating fluid for generating dynamic pressure. As a result, it is possible to suppress the deterioration of the lubricating fluid due to the temperature rise and the accompanying decrease in the motor characteristics.

【0012】冷却フィンは、回転体であるロータと一体
で形成されるため、昇温抑制の効率は回転数に比例す
る。また、冷却フィン部は、ロータヨーク形成時にプレ
スにより同時形成することにより、部品点数は増加しな
いため、安価に機能を増やすことができる。
Since the cooling fin is formed integrally with the rotor, which is a rotating body, the efficiency of suppressing the temperature rise is proportional to the number of rotations. Also, since the cooling fins are formed simultaneously by pressing when forming the rotor yoke, the number of components does not increase, so that the function can be increased at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例のモータの断面図であ
る。
FIG. 1 is a sectional view of a motor according to an embodiment of the present invention.

【図2】図2は、ロータヨークの断面図、平面図および
斜視図である。
FIG. 2 is a sectional view, a plan view, and a perspective view of a rotor yoke.

【符号の説明】[Explanation of symbols]

1 回転軸 2 冷却フィン 3 ロータヨーク 4 回路基板 5 コア 6 動圧発生溝 7 動圧流体軸受(スリーブ) 8 孔 9 マグネット 10 孔 DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Cooling fin 3 Rotor yoke 4 Circuit board 5 Core 6 Dynamic pressure generating groove 7 Dynamic pressure fluid bearing (sleeve) 8 Hole 9 Magnet 10 Hole

フロントページの続き (72)発明者 増田 博雅 東京都目黒区中根2−4−19 キヤノン精 機株式会社内 Fターム(参考) 3J011 AA09 BA02 BA10 CA02 5H019 CC04 DD01 EE14 FF01 FF03 5H607 AA02 BB01 BB09 BB14 CC01 DD01 DD02 GG01 GG02 GG09 GG12 GG14 5H611 AA03 BB01 BB08 PP03 QQ04 5H621 GA01 GA04 HH01 JK01 JK07 JK11 JK13 JK14 JK19 Continuation of the front page (72) Inventor Hiromasa Masuda 2-4-19 Nakane, Meguro-ku, Tokyo F-term in Canon Seiki Co., Ltd. (reference) 3J011 AA09 BA02 BA10 CA02 5H019 CC04 DD01 EE14 FF01 FF03 5H607 AA02 BB01 BB09 BB14 CC01 DD01 DD02 GG01 GG02 GG09 GG12 GG14 5H611 AA03 BB01 BB08 PP03 QQ04 5H621 GA01 GA04 HH01 JK01 JK07 JK11 JK13 JK14 JK19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】マグネットとロータヨークと軸が一体で回
転し、その回転軸は軸方向に回転軸を覆うように動圧流
体軸受を有し、動圧流体軸受と回転軸とその間に介在す
る潤滑流体とで回転中に発生する動圧により回転軸が保
持される動圧流体軸受ブラシレスモータにおいて、ロー
タヨーク上面に回転方向と逆方向に冷却フィンを備える
ことと、回転基板に孔を設置することにより、ロータの
回転の際、動圧流体軸受表面とその内部の潤滑流体の自
己冷却と昇温抑制を行うこと特徴とする自冷動圧流体軸
受ブラシレスモータ。
A magnet, a rotor yoke and a shaft rotate integrally, and the rotating shaft has a hydrodynamic bearing so as to cover the rotating shaft in the axial direction, and the hydrodynamic bearing, the rotating shaft and lubrication interposed therebetween. In a dynamic pressure fluid bearing brushless motor in which a rotating shaft is held by dynamic pressure generated during rotation with a fluid, a cooling fin is provided on the upper surface of a rotor yoke in a direction opposite to a rotating direction, and a hole is provided in a rotating substrate. A self-cooling hydrodynamic bearing brushless motor characterized in that when the rotor rotates, the surface of the hydrodynamic bearing and the lubricating fluid therein are self-cooled and the temperature is suppressed.
【請求項2】内部に軸受面を有するスリーブと、 スリーブの半径方向外方に配置されたコアと、 該スリーブの軸受面に回転可能に軸受される回転軸、該
回転軸に取付けられたロータヨーク、および前記コアと
共に電磁力を生じさせるように前記ロータヨークに取付
けられたマグネットから成るロータと、 前記スリーブの軸受面または前記回転軸の外周面のいず
れかに形成された動圧発生溝と、 前記ロータの回転時に、前記ロータヨークの外部から前
記スリーブが存在するロータヨークの内部に空気を導入
するように構成された、前記ロータヨークに形成された
冷却フィンと、 を有することを特徴とする自冷動圧流体軸受ブラシレス
モータ。
2. A sleeve having a bearing surface therein, a core disposed radially outward of the sleeve, a rotating shaft rotatably bearing on the bearing surface of the sleeve, and a rotor yoke attached to the rotating shaft. A rotor comprising a magnet attached to the rotor yoke so as to generate an electromagnetic force together with the core; a dynamic pressure generating groove formed on either a bearing surface of the sleeve or an outer peripheral surface of the rotating shaft; A cooling fin formed on the rotor yoke, which is configured to introduce air from the outside of the rotor yoke into the inside of the rotor yoke where the sleeve is present when the rotor rotates, and a cooling fin formed on the rotor yoke. Fluid bearing brushless motor.
【請求項3】請求項2記載の自冷動圧流体軸受ブラシレ
スモータにおいて、 前記ロータヨークは前記回転軸に水平に固定されたリン
グ状のプレート部分と該プレート部分の外周縁から垂直
方向に垂下した円筒部分とから成り、 前記冷却フィンは前記プレート部分の中心に形成されて
おり、 前記スリーブは回路基板に支持されており、 前記回路基板には、前記冷却フィンによってロータヨー
ク内部に導入された空気を排出する孔が形成されてい
る、 ことを特徴とする自冷動圧流体軸受ブラシレスモータ。
3. The self-cooling hydrodynamic bearing brushless motor according to claim 2, wherein said rotor yoke vertically hangs from a ring-shaped plate portion fixed horizontally to said rotary shaft and an outer peripheral edge of said plate portion. The cooling fin is formed at the center of the plate portion, the sleeve is supported on a circuit board, and the circuit board receives air introduced into the rotor yoke by the cooling fin. A self-cooling hydrodynamic bearing brushless motor, characterized in that a hole for discharging is formed.
【請求項4】請求項1乃至3のいずれか1つに記載の自
冷動圧流体軸受ブラシレスモータにおいて、 前記冷却フィンはロータの回転時に空気を導入するよう
に形成された複数の孔と、該孔を通って導入された空気
をロータヨークの内部で前記スリーブの外周に向けるよ
うに傾斜して配列された複数の羽根部分と、から成る、 ことを特徴とする自冷動圧流体軸受ブラシレスモータ。
4. The self-cooling hydrodynamic bearing brushless motor according to claim 1, wherein said cooling fin has a plurality of holes formed to introduce air when the rotor rotates. A plurality of vanes arranged obliquely so that air introduced through the holes is directed toward the outer periphery of the sleeve inside the rotor yoke. .
JP29942199A 1999-10-21 1999-10-21 Self-cooled hydrodynamic pressure bearing brushless motor Pending JP2001119913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29942199A JP2001119913A (en) 1999-10-21 1999-10-21 Self-cooled hydrodynamic pressure bearing brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29942199A JP2001119913A (en) 1999-10-21 1999-10-21 Self-cooled hydrodynamic pressure bearing brushless motor

Publications (1)

Publication Number Publication Date
JP2001119913A true JP2001119913A (en) 2001-04-27

Family

ID=17872356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29942199A Pending JP2001119913A (en) 1999-10-21 1999-10-21 Self-cooled hydrodynamic pressure bearing brushless motor

Country Status (1)

Country Link
JP (1) JP2001119913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531589A (en) * 2006-03-31 2009-09-03 エイチ.ベルネルト・ウント・コンパニー・オーハーゲー Rotary pump with coaxial magnetic coupling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531589A (en) * 2006-03-31 2009-09-03 エイチ.ベルネルト・ウント・コンパニー・オーハーゲー Rotary pump with coaxial magnetic coupling

Similar Documents

Publication Publication Date Title
JP6340798B2 (en) Blower fan
US20070020085A1 (en) Centrifugal fan
US10184492B2 (en) Axial flow fan
JP6575056B2 (en) Blower fan
US8092170B2 (en) Axial fan
JP6136318B2 (en) Blower fan
JP2009522997A (en) Configuration of blade and yoke for cooling stator coil
JP6376981B2 (en) Rotating device
JPWO2007043119A1 (en) Fan device
TW201251273A (en) Stator and cooling fan with the same
JP2005073378A (en) Fan motor
JPH11252858A (en) Electric motor and heat sink device using the same
JP2008154369A (en) Outer rotor type motor
JP4934850B2 (en) Scanner motor
JP2001124058A (en) Brushless motor with dynamic pressure fluid bearing of heat radiation type
JP5316665B2 (en) Fan device
JP2001119913A (en) Self-cooled hydrodynamic pressure bearing brushless motor
JP2002021782A (en) Centrifugal fan
JP2016125405A (en) fan
JP2020076330A (en) Blower device
JP6775715B1 (en) Rotor and rotary electric machine
JP2010001839A (en) Fan motor and electronic apparatus using the same
US11680584B2 (en) Fan having an external rotor motor and cooling duct for cooling the motor electronics and motor drive components
US20220399775A1 (en) Fan module
JP5516629B2 (en) Fan device