EP1953004A1 - Spitzerklinge - Google Patents

Spitzerklinge Download PDF

Info

Publication number
EP1953004A1
EP1953004A1 EP07001463A EP07001463A EP1953004A1 EP 1953004 A1 EP1953004 A1 EP 1953004A1 EP 07001463 A EP07001463 A EP 07001463A EP 07001463 A EP07001463 A EP 07001463A EP 1953004 A1 EP1953004 A1 EP 1953004A1
Authority
EP
European Patent Office
Prior art keywords
metal
sharpener blade
protective layer
steel
sharpener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07001463A
Other languages
English (en)
French (fr)
Other versions
EP1953004B1 (de
Inventor
Fritz Dr. Lüttgens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUM Ltd
Original Assignee
KUM Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUM Ltd filed Critical KUM Ltd
Priority to EP07001463A priority Critical patent/EP1953004B1/de
Priority to US12/019,334 priority patent/US20080178476A1/en
Publication of EP1953004A1 publication Critical patent/EP1953004A1/de
Application granted granted Critical
Publication of EP1953004B1 publication Critical patent/EP1953004B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43LARTICLES FOR WRITING OR DRAWING UPON; WRITING OR DRAWING AIDS; ACCESSORIES FOR WRITING OR DRAWING
    • B43L23/00Sharpeners for pencils or leads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B21/00Razors of the open or knife type; Safety razors or other shaving implements of the planing type; Hair-trimming devices involving a razor-blade; Equipment therefor
    • B26B21/54Razor-blades
    • B26B21/58Razor-blades characterised by the material
    • B26B21/60Razor-blades characterised by the material by the coating material

Definitions

  • the invention relates to a sharpener blade made of steel.
  • the invention relates to a sharpener blade for a colored, lead or cosmetic pencil.
  • a sharpener blade inserted into the sharpener body must be able to cope with high mechanical loads.
  • the sharpener blade is usually made of a hard special steel with a high carbon content.
  • the sharpener blade must be able, for example, to remove hard graphite from a pencil lead without losing much sharpness.
  • the sharpener blade must comply with the desired cutting line over its entire life, especially in the case of cosmetic pencils.
  • a hard special steel with a high carbon content which meets the requirements placed on a sharpener blade, a relatively high susceptibility to corrosion.
  • Corrosion of a sharpener blade made of steel is further accelerated when the sharpener blade is in direct contact with the sharpener body as well as the screws or rivets used for attachment to the sharpener body, as usual.
  • the sharpener body or the fastening element consists of a metal that is more noble than iron or of a nobler metal alloy
  • the corrosion of the sharpener blade is accelerated by a local element interaction.
  • the corrosion is promoted even in the case of a sharpener body of non-metallic materials, such as plastic or wood, as well as these materials themselves or their constituents have a corrosive effect.
  • a sharpener blade made of steel with a chemically bonded inorganic protective layer comprising at least one element selected from the group comprising the metals of the main groups III and IV and the subgroups of the Periodic Table of the Elements, and oxides, ceramics, nitrides, carbides , Silicides and borides thereof.
  • the invention is based on the consideration that a paint for corrosion protection of the sharpener blade made of steel does not have sufficient connection to the steel. Especially with a sharpener body in constant use, this leads in particular to the sharpener blade to a rapid abrasion or bursting of the paint layer, so that the sharpener blade is unsightly overall and also the now exposed steel in turn tends to corrosion.
  • the invention now proceeds in a further step from the recognition that a chemical attachment is associated with stronger binding forces than a physical attachment.
  • a lacquer layer adheres to a body in particular by adhesion and / or by microscopic positive connection.
  • the disadvantages associated with such a physical connection are overcome by making the sharpener blade made of steel a protective layer obtained from an inorganic composition which is chemically bondable with the steel. Suitable for such a protective layer are the metals of the main groups III and IV and of the subgroups of the Periodic Table of the Elements, as well as oxides, ceramics, nitrides, silicides and borides thereof.
  • the invention has the further advantage that the chemically bonded protective layer is substantially thinner than a known lacquer with the same corrosion-inhibiting effect. Due to the high binding forces of a chemically bonded protective layer, a coating is additionally achieved which is able to cope with the high mechanical stresses of the sharpener blade during its service life. Overall, for example, less material is used compared to a lacquer layer, which is associated with a cost advantage. Furthermore, the materials used can easily be recycled.
  • the protective layer is connected to the sharpener blade via a metallic bond.
  • a mixed phase can occur between the steel and the metal applied as the protective layer.
  • Suitable metal layers can be produced, for example, by reductive electrodeposition of metal cations, metallates and / or metal complexes on the surface of the sharpener blade. By choosing suitable reaction media, such as complexing agents or solvents, such metal layers can be deposited by varying the electrochemical voltage series. The application can be done in particular by a simple dipping process.
  • a metal oxide or mixed metal oxide of the metals mentioned can be produced by the simultaneous addition of a suitable oxidizing agent or by the choice of suitable counteranions on the surface of the sharpener blade.
  • a metal oxide or a mixed metal oxide may be prepared by vapor deposition or by vapor deposition of a volatile oxygen-containing compound of the respective metal or by precipitation from a solution containing a metal salt and an oxidizing agent.
  • a metal layer can also be chemically bonded via a transition layer such as a metal oxide or a metal mixed oxide of the sharpener blade.
  • oxides denotes both oxides of the mentioned metals of alternating and combined oxidation states and also those mixed oxides which comprise several of these metals. Ceramics are understood to mean those materials which contain the metal oxides mentioned and which have a crystalline structure of at least 30% by volume. For example, an Al 2 O 3 layer deposited on the sharpener blade may also be referred to as a ceramic.
  • nitrides, carbides, silicides and borides are understood as meaning those chemical compositions or compounds of the metals mentioned which contain nitrogen, carbon, silicon or boron. It does not have to be a stoichiometric composition. A chemical connection to steel is possible directly or by means of transitional phases. Such compounds are particularly advantageous since they usually have a high hardness.
  • Both the protective layer as such and a transition phase or transition layer optionally present between the protective layer and the steel may be of stoichiometric or non-stoichiometric composition.
  • a chemical linkage can be made by occupying the lattice sites with foreign atoms or by incorporating them into the volume of existing lattice structures.
  • the steel is a carbon-rich steel with a Rockwell hardness of more than 61.
  • the Rockwell hardness is an internationally used unit of measure for the hardness of technical surfaces.
  • the Rockwell hardness indicates the penetration depth of a diamond cone into the measured surface.
  • a steel with a Rockwell hardness of more than 65 is used.
  • Such a special steel has a high content of carbon between 0.98 and 1.05 wt .-%, a content of silicon between 0.3 and 0.5 wt .-%, a content of manganese between 0.4 and 0, 6 wt .-% and other low-alloy components, such as aluminum, copper, chromium, nickel and molybdenum.
  • Such a steel has grown to the high mechanical loads of a sharpener blade, but in itself shows a high susceptibility to corrosion.
  • the protective layer comprises at least one element selected from the group comprising the metals of main groups III and IV, excluding In, Tl, Sn and Pb, and subgroups Ib, IVb, Vb, Vlb, VIIb and VIIIb, except Tc , Fe and Os, of the Periodic Table of the Elements and oxides, ceramics, nitrides, carbides, silicides and borides thereof.
  • the protective layer comprises at least one element selected from the group consisting of Cu, Ag, Au, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Pd and Pt and oxides, ceramics, Nitrides, carbides, silicides and borides thereof.
  • Cu, Ag, Au, Pd and Pt are suitable noble metals for protecting the steel from corrosion. If the sharpener body is made of a more noble metal than copper, the coating must be selected with Ag, Au, Pd or Pt. In particular, copper can also be connected via a transition phase from a copper oxide of the sharpener blade. The nobler metals Ag, Au, Pd and Pt can also be attached to the copper, and in particular to the copper oxide. This will accelerate the corrosion Local element interaction excluded. Titanium and chromium are useful because of their ability to form consistent oxidation layers and as a protective layer against corrosion. In addition to their metallic coloring, vanadium and chromium have a high mechanical strength.
  • Titanium, chromium, molybdenum and tungsten are particularly suitable in their shape as metal nitride for a protective layer, since such metal nitrides have a high hardness and durability. Also, because of its ability to form a passivation layer, niobium is useful as a protective layer.
  • niobium is known as a strong carbide former. Particularly in the case of oxides, ceramics, nitrides, carbides, silicides and borides, a protective layer of high mechanical strength and hardness can be achieved, wherein a high passivation of the steel against corrosion is additionally achieved by a transition phase into the metallic phase. Tungsten may also be applied as an alloying component and in particular in the form of a tungsten carbide of the sharpener blade. This makes the sharpener blade particularly resistant and hard.
  • the protective layer may also comprise a combination of different layers.
  • a mixed oxide layer may be combined with a nitride or boride layer to form a cure.
  • the protective layer comprises at least one layer of a metal and / or of a metal oxide.
  • the metal oxide can be used as a transition phase with decreasing metal content allow the connection of the metal to the steel of the sharpener blade.
  • the protective layer comprises at least one layer of a metal nitride, a metal carbide, a metal silicide, a metal oxide or a metal boride.
  • the indicated layers can each be connected individually or in combination with the sharpener blade.
  • the metal does not alloy with iron, the metal is preferably attached via a metal nitride, a metal carbide, a metal silicide, a metal oxide or a metal boride of the sharpener blade.
  • Such layers show a high hardness, so that the sharpener blade is additionally protected against mechanical wear. By such a protective layer, the sharpener blade is additionally hardened.
  • the layer of a metal, a metal nitride, a metal carbide, a metal silicide, a metal oxide or a metal boride so that it continuously transitions into the metallic phase of the steel over a transition phase.
  • a metal transition layer can be produced, for example, by targeted metal diffusion into the interior of the sharpener blade by thermal treatment, by vapor deposition with metals, metal salts or organometallic compounds, in particular metal carbonyls.
  • a metal oxide, metal boride, metal nitride, metal carbide or metal silicide transfer layer may be formed by targeted metal diffusion into the interior of the sharpener blade by thermal treatment, vapor deposition with metals, metal salts or organometallic compounds, especially metal carbonyls, with simultaneous oxidation or by treating the sharpener blade in one Nitrogen plasma and / or concurrent, preceding and / or downstream thermal treatment and / or gas phase vapor deposition and / or from solution with borides, borates, silicides, silicates and / or covalent boron and / or silicon compounds.
  • a metal layer having an insulating intermediate layer of a metal oxide may in turn be formed by reductive electrodeposition of metal cations, metallates and / or metal complexes from a solution on the surface of the sharpener blade under the control of pH and with the simultaneous addition of an oxidizing agent.
  • this has a protective layer, wherein a layer of Cu, Ag, Au, Pt or Pd passes over an iron-containing mixed oxide phase in the metallic phase of the steel.
  • the metal layer is preferably prepared by immersing the sharpener blade in a solution of salts of said metals in the simultaneous presence of a sufficiently weakly acting oxidant at a controlled pH with simultaneous formation of an oxide interlayer by reductive direct deposition in one step.
  • an iron oxide layer forms on the dipped sharpener blade, on which the metal is then chemically deposited.
  • Copper can also occur as copper oxide.
  • Silver, gold, palladium and platinum are metallic. The latter can be applied in particular for optical reasons or as corrosion protection against a sharpener body made of a nobler metal than copper of the copper and in particular a copper oxide layer of the sharpener body.
  • solvents for the metal salts water or alcohols, in particular ethanol, methanol or isopropanol, can be used. The salts used were successfully nitrates, sulfates, acetates, propionates, citrates and acetonitrile complexes.
  • the metal layer can be applied wholly or in part to the sharpener blade. Since the sharpener blade is arranged, in particular on its cutting edge, away from the sharpener body, it is sufficient to coat the sharpener blade in the region of its attachment points with the sharpener body in order to avoid local element formation. In particular, the cutting edge of the sharpener blade can after the Dipping be removed again without causing a demolition of the protective layer. Thus, the sharpener blade is sufficiently sharp and yet safely protected against a local element interaction.
  • the protective layer may in particular comprise a metal nitride or metal carbide, in particular the metals Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and / or W.
  • a metal layer in particular applied by a galvanic dipping method on the sharpener blade.
  • the galvanically applied metal is chemically bonded to the steel.
  • the metal nitride or metal carbide is then subsequently achieved by targeted introduction of nitrogen or carbon. This can be achieved, for example, by treating the coated sharpener blade by means of a plasma.
  • the plasma can be generated by means of an electrical discharge, for example via an arc.
  • the metal nitride or the metal carbide is produced by a plasma deposition.
  • the sharpener blade is used as a cathode, wherein the metal to be applied is used as an anode or is added as a volatile compound to the gas space.
  • a nitrogen plasma for example, the metal of the anode or of the volatile compound with embedded nitrogen atoms is deposited on the surface of the sharpener blade.
  • a transition phase is formed between the steel and the metal nitride, in which nitrogen atoms occupy lattice sites of the metal.
  • a metal carbide can be produced by plasma deposition, for example, creating a methane atmosphere.
  • the metal nitride or metal carbide is formed such that the protective layer has a composition of decreasing concentration of the metal toward the metallic phase of the steel.
  • a nitride or carbide layer is applied in a first phase of the sharpener blade in a nitrogen or carbon-containing atmosphere.
  • the gas atmosphere is then added to the metal or more metals each as a volatile compound, so that the metal, the metals or the Metal compounds are deposited together with nitrogen or carbon atoms on the sharpener blade.
  • a final phase of the nitrogen or carbon content of the gas atmosphere can then be reduced or completely withdrawn.
  • the concentration gradient of the metal in the protective layer can be adjusted continuously or in stages.
  • the layer thickness can be further adjusted specifically, so that when a desired corrosion protection, the sharpener blade is cured, while maintaining the required sharpness.
  • Particularly suitable for the plasma sipping process are the compounds: boric acid esters, boranes, alkyl and / or arylboranes, silicon tetrachloride, 1-4-fold substituted alkyl and / or aryl derivatives thereof, eg.
  • Trimethylsilyl chloride titanium alcoholates, titanium tetrachloride and 1-4-fold substituted alkyl, alkyloxy, aryl and / or aryloxy derivatives thereof, biscyclopentadienyltitanium dichloride, vanadyl acetylacetonate, vanadine oxychloride, vanadium (III) chloride tetrahydrofuran, vanadyl naphthenate, cyclopentadienyl niobium (V) tetrachloride, niobium (V) bromide, niobium (V) ethoxide, niobium (IV) 2-ethylhexanoate, niobium (V) fluoride, pentakis (dimethylamino) tantalum (V), cyclopentadienyltantaltene chloride, tantalum (V) bromide, tantalum (V) chloride,
  • the plasma deposition process can be carried out at temperatures below 800 ° C, especially at temperatures below 300 ° C.
  • the hardness of the carbon-rich, low alloy steel is significantly deteriorated at temperatures above 800 ° C, since this phase changes occur.
  • the protective layer is used for dyeing the sharpener blade.
  • a titanium nitride can achieve a golden color of the sharpener blade.
  • Suitable volatile compounds can also be deposited from nitrogen-free gas phase on the steel surface as mixed oxides, by decomposing the starting compounds.
  • the colors can be derived from the oxidation states of the metals used.
  • the different oxidation states of niobium, tantalum or vanadium can be used here.
  • Such a colored inorganic protective layer which is chemically bonded to the steel of the sharpener blade, is durable, insensitive to mechanical stresses and in particular does not affect the sharpness of the blade.
  • colored sharpener blades can be created whose properties are not deteriorated, unlike a paint applied, but improved.
  • sharpener bodies can be provided with colored sharpening blades, so that aesthetically pleasing office supplies with a high utility value are available.
  • Fig. 1 is schematically a sharpener blade 1 made of an alloyed stainless steel.
  • the sharpener blade 1 is intended for use in a sharpener body, and for this purpose has a bore 2, via which it can be locked, for example by means of a screw or a rivet on the sharpener body.
  • the sharpener blade 1 has for sharpening a colored or pencil or a cosmetic pencil on a cutting edge 3, in which the material of the sharpener blade 1 tapers to form a tip.
  • the sharpener blade 1 was first coated with a chromium nitride as a cathode in a nitrogen atmosphere by plasma deposition with the addition of a chromium carbonyl.
  • the plasma was generated at a voltage of about 1000 V and a temperature between 200 and 250 ° C.
  • a titanium alcoholate was added to the headspace to control the morphology and coloration.
  • a niobium (IV) 2-ethylhexanoate was added, which decomposes and precipitates to form niobium oxide and / or niobium nitride on the surface.
  • the proportion of niobium oxide can be adjusted in the resulting protective layer.
  • the color of the protective layer can be varied.
  • the surface of the thus treated sharpener blade 1 is shown schematically. It can be seen the surface of the steel 5 and the resulting applied protective layer 7, which is chemically bonded to the metallic phase of the steel 5. It can be seen that the protective layer 7 essentially comprises a layer 8 of a chromium and titanium nitride, which rests on the steel 5. The nitrogen atoms of the metal nitride with changing valences occupy lattice sites in the metallic steel compound. It can further be seen that the layer of chromium and titanium nitride 8 has a further niobium oxide and niobium nitride-containing layer 9 attached to it. From this last layer 9 results in a color of the treated sharpener blade 1, which can be set almost arbitrarily by the choice of suitable process parameters leaves. In addition or separately, the already mentioned tantalum or vanadium compounds can be used to produce the layer 9.
  • a sharpener blade By coating with a chromium / titanium nitride, which is chemically bonded to the steel of the sharpener blade 1, hardening is additionally achieved in addition to the coloring. This protects the steel from abrasion or wear. Overall, using a low-cost stainless steel, a sharpener blade can be realized that can withstand the peaking conditions of hardness, wear and corrosion. In addition, the sharpener blade 1 can be provided with a coloring by the coating.
  • a sharpener blade 1 with the bore 2 and the cutting edge 3 is shown.
  • the sharpener blade 1 is hereby made of a carbon-rich steel.
  • the steel has a Rockwell hardness of 65
  • the sharpener blade 1 is immersed in an aqueous solution of copper nitrate and nitric acid.
  • the pH is set between 1 and 4.
  • the copper is chemically bound to form a mixed oxide transition phase, in particular of iron oxide, to the steel of the sharpener blade 1.
  • the protective layer 7 comprises a surface layer 10 of copper, wherein between the copper of the layer 10 and the steel 5, a transition phase 11 is formed from a mixed oxide. Along this transition phase 11, the layer 10 of copper with a continuously decreasing proportion of copper merges into the metallic phase of the steel 5. Although copper and iron do not form an alloy, it is possible by the given surprisingly simple method to chemically bond a copper layer 10 to the steel 5.
  • the sharpener blade 1 is permanently protected from corrosion.
  • the copper layer 10 has a visually appealing coloring.
  • a layer of silver, gold, palladium or platinum can now be applied to the copper layer 10 or a copper oxide layer in a dipping process as an additional layer.

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Es wird eine Spitzerklinge (1) aus Stahl (5), insbesondere für einen Bunt-, Blei- oder Kosmetikstift, angegeben, auf den eine chemisch angebundene anorganische Schutzschicht (7) umfassend wenigstens ein Element ausgewählt aus der Gruppe, die die Metalle der Hauptgruppen III und IV und der Nebengruppen des Periodensystems der Elemente sowie Oxide, Keramiken, Nitride, Carbide, Silizide und Boride hiervon enthält. Eine derartige Spitzerklinge (1) weist einen dauerhaften Korrosionsschutz bei hoher Schärfe und Härte auf. Gleichzeitig lässt sich eine Färbung erzielen.

Description

  • Die Erfindung betrifft eine Spitzerklinge aus Stahl. Insbesondere betrifft die Erfindung eine Spitzerklinge für einen Bunt-, Blei- oder Kosmetikstift.
  • Um möglichst dauerhaft eine hohe Funktionsqualität eines Spitzerwerkzeuges zum Spitzen von Stiften, wie Blei-, Bunt- oder Kosmetikstiften, zu erzielen, muss eine in den Spitzerkörper eingesetzte Spitzerklinge hohen mechanischen Belastungen gewachsen sein. Um über die Lebensdauer des Spitzerkörpers eine möglichst gleichbleibend hohe Schärfe und Fixierungsstabilität der eingesetzten Spitzerklinge zu erhalten, ist die Spitzerklinge üblicherweise aus einem harten Spezialstahl mit hohem Kohlenstoffgehalt gefertigt. Die Spitzerklinge muss in der Lage sein, beispielsweise harten Graphit einer Stiftmine abzutragen, ohne wesentlich an Schärfe zu verlieren. Auch muss die Spitzerklinge über ihre gesamte Lebensdauer insbesondere im Falle von Kosmetikstiften die gewünschte Schnittlinie einhalten.
  • Nachteiligerweise zeigt ein harter Spezialstahl mit einem hohen Kohlenstoffgehalt, der die an eine Spitzerklinge gestellten Anforderungen erfüllt, eine relativ hohe Korrosionsanfälligkeit. Die Korrosion einer aus Stahl gefertigten Spitzerklinge wird weiter beschleunigt, wenn die Spitzerklinge wie üblich in direktem Kontakt mit dem Spitzerkörper sowie den zur Befestigung am Spitzerkörper eingesetzten Schrauben oder Nieten steht. Besteht beispielsweise der Spitzerkörper oder das Befestigungselement aus einem gegenüber Eisen edleren Metall oder aus einer edleren Metalllegierung, so wird die Korrosion der Spitzerklinge durch eine Lokalelement-Wechselwirkung beschleunigt. Andererseits wird die Korrosion auch im Falle eines Spitzerkörpers aus nichtmetallischen Materialien, wie Kunststoff oder Holz gefördert, da auch diese Materialien selbst oder einzelne deren Bestandteile korrodierend wirken.
  • Versuche, die Oberfläche einer aus Stahl gefertigten Spitzerklinge vor Korrosion durch Auftragen eines Lackes zu schützen, liefern keine brauchbare Lösung.
    Durch den häufigen und Material verschleißenden Einsatz einer Spitzerklinge wird ein derartiger auf organischen Substanzen beruhender Lack rasch abgetragen. Eine Passivierung des Stahls, wie beispielsweise durch Zulegieren von Chrom, ist aber nicht möglich, da der Stahl dann die für eine Spitzerklinge geforderte hohe Härte verliert.
  • Es ist Aufgabe der Erfindung, eine Spitzerklinge aus Stahl, insbesondere für einen Bunt-, Blei- oder Kosmetikstift anzugeben, die eine möglichst lange Lebensdauer aufweist.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine Spitzerklinge aus Stahl mit einer chemisch angebundenen anorganischen Schutzschicht, umfassend wenigstens ein Element ausgewählt aus der Gruppe, die die Metalle der Hauptgruppen III und IV und der Nebengruppen des Periodensystems der Elemente, sowie Oxide, Keramiken, Nitride, Karbide, Silizide und Boride hiervon enthält.
  • Die Erfindung geht dabei von der Überlegung aus, dass ein Lack zum Korrosionsschutz der aus Stahl gefertigten Spitzerklinge keine genügende Anbindung an den Stahl aufweist. Gerade bei einem sich in ständigem Gebrauch befindlichen Spitzerkörper führt dies insbesondere an der Spitzerklinge zu einem raschen Abrieb oder Aufplatzen der Lackschicht, so dass die Spitzerklinge insgesamt unansehnlich wird und zudem der nun freiliegende Stahl wiederum zu einer Korrosion neigt.
  • Die Erfindung geht nun in einem weiteren Schritt von der Erkenntnis aus, dass eine chemische Anbindung gegenüber einer physikalischen Anbindung mit stärkeren Bindungskräften verbunden ist. Eine Lackschicht haftet jedoch einem Körper insbesondere durch Adhäsion und/oder durch mikroskopischen Formschluss an. Die mit einer solchen physikalischen Anbindung verbundenen erkannten Nachteile werden dadurch überwunden, dass die Spitzerklinge aus Stahl eine Schutzschicht aus einer anorganischen Zusammensetzung erhält, die mit dem Stahl chemisch verbindbar ist. Für eine derartige Schutzschicht eignen sich die Metalle der Hauptgruppen III und IV und der Nebengruppen des Periodensystems der Elemente sowie Oxide, Keramiken, Nitride, Silizide und Boride hiervon.
  • Die Erfindung hat den weiteren Vorteil, dass die chemisch angebundene Schutzschicht bei gleicher korrosionshemmender Wirkung wesentlich dünner als ein bekannter Lack ist. Infolge der hohen Bindungskräfte einer chemisch angebundenen Schutzschicht wird zudem eine Beschichtung erzielt, die den hohen mechanischen Belastungen der Spitzerklinge während der Lebensdauer gewachsen ist. lnsgesamt wird beispielsweise gegenüber einer Lackschicht weniger Material eingesetzt, was mit einem Kostenvorteil verbunden ist. Ferner können die eingesetzten Materialien leicht einem Recycling-Prozess zugeführt werden.
  • Im Falle eines Metalles ist die Schutzschicht über eine metallische Bindung mit der Spitzerklinge verbunden. Dabei kann insbesondere zwischen dem Stahl und dem als Schutzschicht aufgebrachten Metall auch eine Mischphase auftreten. Geeignete Metallschichten können beispielsweise durch reduktiv-galvanische Abscheidungen von Metallkationen, Metallaten und/oder Metallkomplexen auf der Oberfläche der Spitzerklinge hergestellt werden. Durch die Wahl geeigneter Reaktionsmedien, wie Komplexbildnern oder Lösungsmitteln, können derartige Metallschichten durch Variierung der elektrochemischen Spannungsreihe abgeschieden werden. Das Aufbringen kann insbesondere durch ein einfaches Tauchverfahren geschehen.
  • Ein Metalloxid oder ein Metallmischoxid der erwähnten Metalle kann hierbei durch die gleichzeitige Zugabe eines geeigneten Oxidationsmittels oder durch die Wahl geeigneter Gegenanionen auf der Oberfläche der Spitzerklinge erzeugt werden. Auch kann ein Metalloxid oder ein Metallmischoxid durch Aufdampfen oder durch Gasphasenabscheidung einer flüchtigen sauerstoffhaltigen Verbindung des jeweiligen Metalls oder durch Abscheiden aus einer ein Metallsalz und ein Oxidationsmittel enthaltenden Lösung hergestellt werden. Für die Schutzschicht kann insbesondere auch eine Metallschicht über eine Übergangsschicht wie einem Metalloxid oder einem Metallmischoxid der Spitzerklinge chemisch angebunden sein.
  • Mit dem Begriff "Oxide" sind sowohl Oxide der erwähnten Metalle wechselnder und kombinierter Oxidationsstufen als auch solche Mischoxide, die mehrere dieser Metalle umfassen, bezeichnet. Unter Keramiken werden solche die erwähnten Metalloxide enthaltenden Werkstoffe verstanden, die zu wenigstens 30 Vol.-% eine kristalline Struktur aufweisen. Beispielsweise kann auch eine auf der Spitzerklinge aufgebrachte Al2O3-Schicht als eine Keramik bezeichnet werden.
  • Unter der Bezeichnung Nitride, Carbide, Silizide und Boride werden solche chemischen Zusammensetzungen oder Verbindungen der erwähnten Metalle verstanden, die Stickstoff, Kohlenstoff, Silizium bzw. Bor enthalten. Es muss sich dabei nicht um eine stöchiometrische Zusammensetzung handeln. Eine chemische Anbindung an Stahl ist direkt oder mittels Übergangsphasen möglich. Derartige Verbindungen sind insbesondere vorteilhaft, da sie gewöhnlich eine hohe Härte aufweisen.
  • Sowohl die Schutzschicht als solche als auch eine gegebenenfalls zwischen der Schutzschicht und dem Stahl vorhandene Übergangsphase oder Übergangsschicht kann stöchiometrischer oder nicht-stöchiometrischer Zusammensetzung sein. Somit kann eine chemische Anbindung durch Besetzen der Gitterplätze mit Fremdatomen oder durch Einbau derselben in das Volumen vorhandener Gitterstrukturen erfolgen.
  • Durch die chemische Anbindung der anorganischen Schutzschicht an den Stahl der Spitzerklinge wird ein dauerhafter und abriebfester Korrosionsschutz erzielt. Die Stand-, Schneid- und Abnutzungsfestigkeit einer derart beschichteten Spitzerklinge wird wesentlich erhöht. Die Kontaktwechselwirkung zwischen dem Stahl der Spitzerklinge mit den verwandten Trägermaterialien z.B. des Spitzerkörpers oder der Befestigungselemente wird minimiert.
  • In einer vorteilhaften Ausgestaltung der Erfindung ist der Stahl ein kohlenstoffreicher Stahl mit einer Rockwell-Härte von mehr als 61. Die Rockwell-Härte ist eine international gebräuchliche Maßeinheit für die Härte technischer Oberflächen. Als Kürzel wird in der Regel HRC verwendet, wobei HR für Hardness Rockwell und C für Cone steht. Die Rockwell-Härte gibt die Eindringtiefe eines Diamantkegels in die vermessene Oberfläche an. Insbesondere wird ein Stahl mit einer Rockwell-Härte von mehr als 65 eingesetzt. Ein derartiger Spezialstahl weist einen hohen Gehalt an Kohlenstoff zwischen 0,98 und 1,05 Gew.-%, einen Gehalt an Silizium zwischen 0,3 und 0,5 Gew.-%, einen Gehalt an Mangan zwischen 0,4 und 0,6 Gew.-% und weitere niedrig legierte Komponenten, wie Aluminium, Kupfer, Chrom, Nickel und Molybdän auf. Ein derartiger Stahl ist den hohen mechanischen Belastungen einer Spitzerklinge gewachsen, zeigt jedoch an sich eine hohe Korrosionsanfälligkeit.
  • Bevorzugt umfasst die Schutzschicht wenigstens ein Element, welches ausgewählt ist aus der Gruppe, die die Metalle der Hauptgruppen III und IV, ausgenommen In, Tl, Sn und Pb, und der Nebengruppen Ib, IVb, Vb, Vlb, VIIb und VIIIb, ausgenommen Tc, Fe und Os, des Periodensystems der Elemente sowie Oxide, Keramiken, Nitride, Carbide, Silizide und Boride hiervon enthält.
  • In einer weiter bevorzugten Ausgestaltung umfasst die Schutzschicht wenigstens ein Element, welches ausgewählt ist aus der Gruppe, die Cu, Ag, Au, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Pd und Pt sowie Oxide, Keramiken, Nitride, Carbide, Silizide und Boride hiervon enthält.
  • Cu, Ag, Au, Pd und Pt eignen sich als edle Metalle zum Schutz des Stahls vor Korrosion. Ist der Spitzerkörper aus einem edleren Metall als Kupfer ist die Beschichtung mit Ag, Au, Pd oder Pt zu wählen. Insbesondere kann Kupfer auch über eine Übergangsphase aus einem Kupferoxid der Spitzerklinge angebunden werden. Die edleren Metall Ag, Au, Pd und Pt können auch dem Kupfer, und insbesondere dem Kupferoxid angebunden sein. Damit wird eine die Korrosion beschleunigende Lokalelementwechselwirkung ausgeschlossen. Titan und Chrom eignen sich aufgrund ihrer Fähigkeit, beständige Oxidationsschichten zu bilden, und als Schutzschicht gegen eine Korrosion. Neben ihrer metallischen Färbung weisen Vanadium und Chrom eine hohe mechanische Festigkeit auf. Titan, Chrom, Molybdän und Wolfram eignen sich insbesondere in ihrer Form als Metallnitrid gut für eine Schutzschicht, da derartige Metallnitride eine hohe Härte und Beständigkeit aufweisen. Ebenfalls wegen seiner Eigenschaft, eine Passivierungsschicht auszubilden, eignet sich Niob als Schutzschicht. Darüber hinaus ist Niob als ein starker Carbidbildner bekannt. Insbesondere im Falle von Oxiden, Keramiken, Nitriden, Carbiden, Siliziden und Boriden kann eine Schutzschicht hoher mechanischer Festigkeit und Härte erzielt werden, wobei über eine Übergangsphase in die metallische Phase zusätzlich eine hohe Passivierung des Stahls gegenüber einer Korrosion erreicht wird. Auch Wolfram kann als eine Legierungskomponente und insbesondere in Form eines Wolframcarbids der Spitzerklinge aufgebracht werden. Dies macht die Spitzerklinge insbesondere widerstandsfähig und hart.
  • Die Erfindung ist nicht eingeschränkt auf die Ausbildung einer einzigen Schicht. Vielmehr kann die Schutzschicht auch eine Kombination unterschiedlicher Schichten umfassen. So kann beispielsweise eine Mischoxidschicht mit einer Nitrid- oder Boridschicht zur Ausbildung einer Härtung kombiniert werden.
  • Vorteilhafterweise umfasst die Schutzschicht wenigstens eine Schicht aus einem Metall und/oder aus einem Metalloxid. Insbesondere das Metalloxid kann als Übergangsphase mit abnehmendem Metallgehalt die Anbindung des Metalls an den Stahl der Spitzerklinge ermöglichen. Weiter vorteilhaft ist es wenn die Schutzschicht wenigstens eine Schicht aus einem Metallnitrid, einem Metallcarbid, einem Metallsilizid, einem Metalloxid oder einem Metallborid umfasst. Die angegebenen Schichten können jeweils einzeln oder in Kombination der Spitzerklinge angebunden sein. Bildet insbesondere das Metall keine Legierung mit Eisen, so ist das Metall vorzugsweise über ein Metallnitrid, ein Metallcarbid, ein Metallsilizid, ein Metalloxid oder ein Metallborid der Spitzerklinge angebunden. Derartige Schichten zeigen eine hohe Härte, so dass die Spitzerklinge zusätzlich vor einem mechanischen Verschleiß geschützt ist. Durch eine derartige Schutzschicht wird die Spitzerklinge zusätzlich gehärtet.
  • Bezüglich der genannten Schichten ist es für die Korrosionsbeständigkeit des Stahls förderlich, die Schicht aus einem Metall, einem Metallnitrid, einem Metallcarbid, einem Metallsilizid, einem Metalloxid oder einem Metallborid derart auszubiklden, dass diese über eine Übergangsphase kontinuierlich in die metallische Phase des Stahls übergeht. Hierdurch wird eine besonders gute Anbindung der Schutzschicht sowie ein hoher Korrosionsschutz erzielt.
  • Eine Metallübergangsschicht läßt sich beispielsweise durch eine gezielte Metalldiffusion ins Innere der Spitzerklinge durch eine thermische Behandlung, durch eine Gasphasenaufdampfung mit Metallen, Metallsalzen oder Organometallverbindungen, insbesondere mit Metallcarbonylen, erzeugen.
  • Eine Metalloxid-, Metallborid- Metallnitrid, Metallcarbid- oder Metallsilizidübergangsschicht kann durch eine gezielte Metalldiffusion ins Innere der Spitzerklinge durch eine thermische Behandlung, durch eine Gasphasenaufdampfung mit Metallen, Metallsalzen oder Organometallverbindungen, insbesondere mit Metallcarbonylen, unter gleichzeitiger Oxidation oder durch Behandeln der Spitzerklinge in einem Stickstoffplasma und/oder gleichzeitiger, vorausgehender und/oder nachgeschalteter thermischer Behandlung und/oder Gasphasenaufdampfung und/oder aus Lösung mit Boriden, Boraten, Siliziden, Silikaten und/oder kovalentem Bor und/oder Siliziumverbindungen erzeugt werden.
  • Eine Metallschicht mit einer isolierenden Zwischenschicht aus einem Metalloxid kann wiederum durch eine reduktiv-galvanische Abscheidung von Metallkationen, Metallaten und/oder Metallkomplexen aus einer Lösung auf der Oberfläche der Spitzerklinge unter Kontrolle des pH-Wertes und unter gleichezeitiger Zugabe eines Oxidationsmittels erzeugt werden.
  • In einer bevorzugten Ausbildung der Spitzerklinge weist diese eine Schutzschicht auf, wobei eine Schicht aus Cu, Ag, Au, Pt oder Pd über eine Eisen enthaltende Mischoxidphase in die metallische Phase des Stahls übergeht. Die Metallschicht wird dabei bevorzugt durch Eintauchen der Spitzerklinge in eine Lösung aus Salzen der genannten Metalle in gleichzeitiger Anwesenheit eines hinreichend schwach wirkenden Oxidationsmittels bei kontrolliertem pH-Wert unter gleichzeitiger Ausbildung einer Oxidzwischenschicht durch reduktive Direktabscheidung in einem Arbeitsschritt hergestellt.
  • Bei dieser Vorgehensweise bildet sich auf der eingetauchten Spitzerklinge zunächst eine Eisenoxidschicht, auf der dann das Metall chemisch abgeschieden wird. Kupfer kann dabei auch als Kupferoxid auftreten. Silber, Gold, Palladium und Platin liegen metallisch vor. Letztere können insbesondere aus optischen Gründen oder als Korrosionsschutz gegenüber einem Spitzerkörper aus einem edleren Metall als Kupfer der Kupfer- und insbesondere einer Kupferoxidschicht des Spitzerkörpers aufgebracht sein. Als Lösungsmittel für die Metallsalze können Wasser oder Alkohole, insbesondere Ethanol, Methanol oder Isopropanol, eingesetzt werden. Als Salze konnten erfolgreich Nitrate, Sulfate, Acetate, Propionate, Zitrate und Acetonitril-Komplexe eingesetzt werden.
  • In einem einzigen Arbeitsschritt, nämlich dem Eintauchen der Spitzerklinge in die beschriebene Lösung, gelingt es somit, die Spitzerklinge mit einer korrosionshemmenden Schutzschicht aus einem Metall zu beschichten, wobei dieses über eine Metalloxidschicht dem Stahl angebunden ist. Damit werden die bislang unumgänglichen Vorbeschichtungen eines Stahls mit Zinn, Blei oder Zink hinfällig, um eine korrosionshemmende Metallschicht aufzubringen.
  • Die Metallschicht kann ganz- oder teilflächig der Spitzerklinge aufgetragen sein. Da die Spitzerklinge insbesondere an ihrer Schneidkante entfernt vom Spitzerkörper angeordnet ist, genügt es zur Vermeidung einer Lokalelementbildung die Spitzerklinge im Bereich ihrer Befestigungspunkte mit dem Spitzerkörper zu beschichten. Inbsbesondere kann die Schneidkante der Spitzerklinge nach dem Tauchvorgang erneut abgezogen werden, ohne dass es zu einem Abbruch der der Schutzschicht kommt. Damit ist die Spitzerklinge genügend scharf und dennoch sicher vor einer Lokalelementwechselwirkung geschützt.
  • Die Schutzschicht kann insbeondere ein Metallnitrid oder Metallcarbid, insbesondere der Metalle Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W, umfassen. Dazu wird beispielsweise zunächst eine Metallschicht, insbesondere durch ein galvanisches Tauchverfahren auf die Spitzerklinge aufgebracht. Das galvanisch aufgebrachte Metall ist dabei mit dem Stahl chemisch verbunden. Das Metallnitrid oder das Metallcarbid wird dann nachfolgend durch gezielte Einbringung von Stickstoff oder Kohlenstoff erzielt. Dies kann beispielsweise durch Behandlung der beschichteten Spitzerklinge mittels eines Plasmas erreicht werden. Das Plasma kann mittels einer elektrischen Entladung beispielsweise über einen Lichtbogen erzeugt werden.
  • Vorteilhafterweise wird das Metallnitrid oder das Metallcarbid durch eine Plasma-Abscheidung hergestellt. Dabei wird die Spitzerklinge als Kathode eingesetzt, wobei das aufzubringende Metall als Anode verwendet ist oder als flüchtige Verbindung dem Gasraum zugegeben wird. Durch Zünden eines Stickstoff-Plasmas schlägt sich beispielsweise das Metall der Anode oder aus der flüchtigen Verbindung mit eingelagerten Stickstoffatomen auf der Oberfläche der Spitzerklinge nieder. Dabei bildet sich zwischen dem Stahl und dem Metallnitrid eine Übergangsphase aus, in der Stickstoffatome Gitterplätze des Metalls besetzen. Auch ein Metallcarbid kann durch Plasma-Abscheidung hergestellt werden, wobei beispielsweise eine Methan-Atmosphäre geschaffen wird.
  • Bevorzugt wird das Metallnitrid oder das Metallcarbid derartig erzeugt, dass die Schutzschicht zur metallischen Phase des Stahls hin eine Zusammensetzung mit abnehmender Konzentration des Metalls aufweist. Insbesondere wird hierzu in einer ersten Phase der Spitzerklinge in einer Stickstoff oder Kohlenstoff enthaltenden Atmosphere eine Nitrid- oder Carbidschicht aufgebracht. Anschließend wird der Gasatmosphere dann das Metall oder mehrere Metalle jeweils als eine flüchtige Verbindung zugegeben, so dass das Metall, die Metalle oder die Metallverbindungen zusammen mit Stickstoff- oder Kohlenstoffatomen auf der Spitzerklinge abgeschieden werden. In einer abschließenden Phase kann dann der Stickstoff- oder Kohlenstoffanteil der Gasatmosphere reduziert oder ganz zurückgenommen werden. Der Konzentrationsgradient des Metalls in der Schutzschicht kann hierbei kontinuierlich oder stufig eingestellt werden.
  • Durch das Plasma-Abscheideverfahren kann weiter die Schichtdicke spezifisch eingestellt werden, so dass bei einem gewünschten Korrosionsschutz die Spitzerklinge gehärtet wird, wobei gleichzeitig die benötigte Schärfe erhalten bleibt.
  • Für das Plasmanascheideverfahren eignen sich insbesondere die Verbindungen: Borsäureester, Borane, Alkyl und/oder Arylborane, Siliziumtetrachlorid, 1-4 fach substituierte Alkyl und/oder Arlderivate hiervon, z.b. Trimethylsilylchlorid, Titanalkoholate, Titantetrachlorid sowie 1-4 fach substituierte Alkyl-, Alkyloxy- , Aryl und/oder Aryloxyderivate hiervon, Biscyclopentadienyltitandichlorid, Vanadylacetylacetonat, Vanadinoxychlorid, Vanadium(III)chlorid-Tetrahydrofuran, Vanadylnaphthenat, Cyclopentadienylniob(V)tetrachlorid, Niob(V)bromid, Niob(V)ethoxid, Niob(IV)-2-ethylhexanoat, Niob(V)fluorid, Pentakis-(dimethylamino)tantal(V), Cyclopentadienyltantaltetrachlorid, Tantal(V)bromid, Tantal(V)chlorid, Tantal(V)ethoxid, Tantal(V)tetraethoxyacetylacetonat, Chromcarbonyl, Chrom(III)-2-ethylhexanoat, Chrom(III)acetylacetonat, Chrom(III)naphthenat, Chromylchlorid, den angegebenen Chromverbindungen bis auf Chromylchlorid entsprechende Molybdän- und Wolframverbindungen, sowie den angegebenen Titanverbindungen entsprechende Zirkon- und Hafniumverbindungen.
  • Es hat sich überraschend gezeigt, dass bei Anwendung des Plasmaabscheidens auch günstiger Stahl geringerer Härte, insbesondere ein günstiger Edelstahl, verwendet werden kann. Die Härte und der Korrosionschutz der Spitzerklinge wird hierbei durch die aufgebrachte Schutzschicht realisiert. Bei Verwendungen eines harten Stahls kann das Plasma-Abscheideverfahren bei Temperaturen unterhalb 800°C, insbesondere bei Temperaturen unterhalb von 300°C, durchgeführt werden. Die Härte des kohlenstoffreichen, niedrig legierten Stahls wird bei Temperaturen oberhalb von 800°C maßgeblich verschlechtert, da hierbei Phasenänderungen auftreten.
  • In einer besonders vorteilhaften Ausgestaltung wird die Schutzschicht zum Färben der Spitzerklinge eingesetzt. So lässt sich beispielsweise mit einem Titannitrid eine goldene Färbung der Spitzerklinge erzielen. Durch entsprechende Mischungen aus Übergangsmetallen lassen sich intensive Farbtönungen unterschiedlichster Nuancen einstellen. Geeignet flüchtige Verbindungen können auch aus stickstofffreier Gasphase auf der Stahloberfläche als Mischoxide, durch Zersetzen der Ausgangsverbindungen abgeschieden werden. Bei der Verwendung von Mischoxiden können die Farben aus den Oxidationsstufen der eingesetzten Metalle abgeleitet werden. Insbesondere können hierbei die unterschiedlichen Oxidationstufen von Niob, Tantal oder Vanadium eingesetzt werden. Eine derartige farbige anorganische Schutzschicht, die chemisch an den Stahl der Spitzerklinge angebunden ist, ist dauerhaft, gegen mechanische Belastungen unempfindlich und beeinflusst insbesondere die Schärfe der Klinge nicht. Auf diese Weise können farbige Spitzerklingen geschaffen werden, deren Eigenschaften im Unterschied zu einem aufgetragenen Lack nicht verschlechtert, sondern verbessert sind. Auf diese Weise können Spitzerkörper mit farbigen Spitzerklingen versehen werden, so dass ästhetisch ansprechende Büroartikel mit einem hohen Gebrauchswert vorliegen.
  • Ausführungsbeispiele der Erfindung werden zunächst anhand einer Zeichnung näher erläutert. Dabei zeigen:
  • Fig. 1
    eine Spitzerklinge aus Stahl mit einer Schutzschicht aus einem Chromnitrid und einer Nioboxidschicht,
    Fig. 2
    eine Spitzerklinge mit einer Schutzschicht aus einer Kupferschicht und Mischoxidübergangsphase.
  • In Fig. 1 ist schematisch eine Spitzerklinge 1 aus einem legierten Edelstahl. Die Spitzerklinge 1 ist zum Einsatz in einen Spitzerkörper gedacht, und weist hierzu eine Bohrung 2 auf, über die sie beispielsweise mittels einer Schraube oder einer Niete an dem Spitzerkörper arretiert werden kann. Die Spitzerklinge 1 weist zum Anspitzen eines Bunt- oder Bleistiftes oder auch eines Kosmetikstiftes eine Schneidkante 3 auf, in der sich das Material der Spitzerklinge 1 zum Ausbilden einer Spitze verjüngt.
  • Zum Aufbringen einer Schutzschicht wurde die Spitzerklinge 1 als Kathode in einer Stickstoff-Atmosphäre durch Plasma-Abscheidung unter Zugabe eines Chromcarbonyls zunächst mit einem Chromnitrid beschichtet. Das Plasma wurde bei einer Spannung von etwa 1000 V und einer Temperatur zwischen 200 und 250°C erzeugt. Anschließend wurde zur Steuerung der Morphologie und Färbung dem Gasraum ein Titanalkoholat zugegeben. Abschließend wurde unter Reduzierung des Stickstoffgehalts ein Niob(IV)-2-ethylhexanoat zugegeben, welches sich zersetzt und unter Bildung von Nioboxid und/oder Niobnitrid auf der Oberfläche abscheidet. Unter Steuerung des Stickstoffanteils lässt sich in der entstehenden Schutzschicht der Anteil an Nioboxid einstellen. Über die resultierenden Oxidationsstufen kann die Färbung der Schutzschicht variiert werden.
  • In einem vergrößerten Abschnitt ist die Oberfläche der derart behandelten Spitzerklinge 1 schematisch dargestellt. Man erkennt die Oberfläche des Stahls 5 sowie die darauf aufgebrachte resultierende Schutzschicht 7, die an die metallische Phase des Stahls 5 chemisch angebunden ist. Man erkennt, dass die Schutzschicht 7 im wesentlichen eine Schicht 8 aus einem Chrom- und Titannitrid aufweist, die dem Stahl 5 aufliegt. Dabei besetzen die Stickstoff-Atome des Metallnitrids mit wechselnden Valenzen Gitterplätze in der metallischen Stahlverbindung. Man erkennt weiter, dass der Schicht aus dem Chrom- und Titannitrid 8 eine weitere Nioboxid und Niobnitrid enthaltende Schicht 9 angebunden ist. Aus dieser letzten Schicht 9 resultiert eine Farbigkeit der behandelten Spitzerklinge 1, die sich durch die Wahl geeigneter Verfahrensparameter nahezu beliebig einstellen lässt. In Ergänzung oder separat können zur Herstellung der Schicht 9 auch die bereits erwähnten Tantal- oder Vanadiumverbindungen eingesetzt werden.
  • Durch die Beschichtung mit einem Chrom-/Titannitrid, welches dem Stahl der Spitzerklinge 1 chemisch angebunden ist, wird neben der Färbung zusätzlich eine Härtung erzielt. Hierdurch ist der Stahl vor einem Abrieb oder einem Verschleiß sicher geschützt. Insgesamt kann unter Verwendung eines günstigen Edelstahls eine Spitzerklinge realisiert werden, die den beim Spitzen auftretenden Bedingungen hinsichtlich Härte, Verschleiß und Korrosion gewachsen ist. Zusätzlich kann die Spitzerklinge 1 durch die Beschichtung mit einer Färbung versehen werden.
  • In Fig. 2 ist wiederum eine Spitzerklinge 1 mit der Bohrung 2 und der Schneidkante 3 gezeigt. Die Spitzerklinge 1 ist hierbei aus einem kohlenstoffreichen Stahl hergestellt. Der Stahl weist eine Rockwell-Härte von 65 auf
  • Zur Beschichtung wird die Spitzerklinge 1 in eine wässrige Lösung aus Kupfernitrat und Salpetersäure getaucht. Dabei ist der pH-Wert zwischen 1 und 4 eingestellt. Unter gleichzeitiger Oxidation des Eisens zu einem Eisenoxid gelingt es, Kupfer auf dem Stahl der Spitzerklinge abzuscheiden. Das Kupfer wird unter Bildung einer Mischoxidübergangsphase insbesondere aus Eisenoxid dem Stahl der Spitzerklinge 1 chemisch angebunden.
  • Aus der Detailansicht wird der Aufbau der resultierenden Schutzschicht 7 ersichtlich. Die Schutzschicht 7 umfasst eine oberflächliche Schicht 10 aus Kupfer, wobei zwischen dem Kupfer der Schicht 10 und dem Stahl 5 eine Übergangsphase 11 aus einem Mischoxid ausgebildet ist. Entlang dieser Übergangsphase 11 geht die Schicht 10 aus Kupfer mit kontinuierlich abnehmendem Anteil an Kupfer in die metallische Phase des Stahls 5 über. Obschon Kupfer und Eisen keine Legierung bilden, gelingt es durch das angegebene überraschend einfache Verfahren, eine Kupferschicht 10 dem Stahl 5 chemisch anzubinden.
  • Durch die chemisch an den Stahl angebundene Kupferschicht 10 ist die Spitzerklinge 1 dauerhaft vor einer Korrosion geschützt. Zudem weist die Kupferschicht 10 eine optisch ansprechende Färbung auf. Weiter kann nun der Kupferschicht 10 oder einer Kupferoxidschicht in einem Tauchvorgang als zusätzliche Schicht eine Schicht aus Silber, Gold, Palladium oder Platin aufgebracht werden.
  • Bezugszeichenliste
  • 1
    Spitzerklinge
    2
    Bohrung
    3
    Schneidkante
    5
    Stahl
    7
    Schutzschicht
    8
    Schicht aus Chrom-/Titannitrid
    9
    Schicht aus Nioboxid/Niobnitrid
    10
    Schicht aus Kupfer
    11
    Übergangsphase Mischoxid

Claims (15)

  1. Spitzerklinge (1) aus Stahl (5) insbesondere für einen Bunt-, Blei- oder Kosmetikstift, mit einer chemisch angebundenen anorganischen Schutzschicht (7) umfassend wenigstens ein Element ausgewählt aus der Gruppe, die die Metalle der Hauptgruppen III und IV und der Nebengruppen des Periodensystems der Elemente sowie Oxide, Keramiken, Nitride, Carbide, Silizide und Boride hiervon enthält.
  2. Spitzerklinge (1) nach Anspruch 1,
    wobei der Stahl (5) ein kohlenstoffreicher Stahl mit einer Rockwell Härte von mehr als 61 ist.
  3. Spitzerklinge (1) nach Anspruch 1 oder 2,
    wobei die Schutzschicht (7) wenigstens ein Element umfasst, welches ausgewählt ist aus der Gruppe, die die Metalle der Hauptgruppen III und IV, ausgenommen In, TI, Sn und Pb, und der Nebengruppen Ib, IVb, Vb, Vlb, VIIb und VIIIb, ausgenommen Tc, Fe und Os, des Periodensystems der Elemente sowie Oxide, Keramiken, Nitride, Carbide, Silizide und Boride hiervon enthält.
  4. Spitzerklinge (1) nach einem der vorhergehenden Ansprüche,
    wobei die Schutzschicht (7) wenigstens ein Element umfasst, welches ausgewählt ist aus der Gruppe, die Cu, Ag, Au, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pd und Pt sowie Oxide, Keramiken, Nitride, Carbide, Silizide und Boride hiervon enthält.
  5. Spitzerklinge (1) nach einem der vorhergehenden Ansprüche,
    wobei die Schutzschicht (7) wenigstens eine Schicht aus einem Metall umfasst.
  6. Spitzerklinge (1) nach einem der vorhergehenden Ansprüche,
    wobei die Schutzschicht (7) wenigstens eine Metalloxidschicht umfasst.
  7. Spitzerklinge (1) nach einem der vorhergehenden Ansprüche,
    wobei die Schutzschicht (7) wenigstens eine Schicht aus einem Metallnitrid, einem Metallcarbid, einem Metallsilizid, einem Metalloxid oder einem Metallborid umfasst.
  8. Spitzerklinge (1) nach einem der Ansprüche 5 bis 7,
    wobei die Schutzschicht (7) aus einem Metall, einem Metallnitrid, einem Metallcarbid, einem Metallsilizid, einem Metalloxid oder einem Metallborid über eine Übergangsphase kontinuierlich in die metallische Phase des Stahls (5) übergeht.
  9. Spitzerklinge (1) nach Anspruch 8,
    wobei eine Schicht aus Cu, Ag, Au, Pt oder Pd über eine Eisen enthaltende Mischoxidphase in die metallische Phase des Stahls (5) übergeht.
  10. Spitzerklinge (1) nach Anspruch 7 oder 8,
    wobei die Schutzschicht (7) ein durch Plasma-Abscheidung hergestelltes Metallnitrid oder Metallcarbid, insbesondere der Metalle Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W, umfasst.
  11. Spitzerklinge (1) nach Anspruch 10,
    wobei die Schutzschicht (7) aus Metallnitrid oder Metallcarbid zur metallischen Phase des Stahls (5) hin eine Zusammensetzung mit abnehmender Konzentration des Metalls aufweist.
  12. Spitzerklinge (1) nach Anspruch 10 oder 11,
    wobei die Schutzschicht (7) ein durch Plasma-Nitrierung hergestelltes Metallnitrid eines oder mehrerer der Metalle Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und W umfasst.
  13. Spitzerklinge (1) nach Anspruch 12,
    wobei die Nitride unter Verwendung einer Anode oder unter Verwendung von flüchtigen Verbindungen des ausgewählten Metalls oder der ausgewählten Metalle durch Abscheidung aus einem Stickstoffplasma erzeugt sind.
  14. Spitzerklinge (1) nach einem der Ansprüche 6 bis 13,
    wobei die Metalloxidschicht der Schutzschicht (7) durch Aufdampfen und Zersetzen einer flüchtigen sauerstoffhaltigen Verbindungen des Metalls oder durch Abscheiden aus einer ein Metallsalz und ein Oxidationsmittel enthaltenden Lösung hergestellt ist.
  15. Spitzerklinge (1) nach einem der vorhergehenden Ansprüche,
    wobei die Schutzschicht (7) farbig ist.
EP07001463A 2007-01-24 2007-01-24 Spitzerklinge Expired - Fee Related EP1953004B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07001463A EP1953004B1 (de) 2007-01-24 2007-01-24 Spitzerklinge
US12/019,334 US20080178476A1 (en) 2007-01-24 2008-01-24 Sharpener Blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07001463A EP1953004B1 (de) 2007-01-24 2007-01-24 Spitzerklinge

Publications (2)

Publication Number Publication Date
EP1953004A1 true EP1953004A1 (de) 2008-08-06
EP1953004B1 EP1953004B1 (de) 2012-03-07

Family

ID=38134858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07001463A Expired - Fee Related EP1953004B1 (de) 2007-01-24 2007-01-24 Spitzerklinge

Country Status (2)

Country Link
US (1) US20080178476A1 (de)
EP (1) EP1953004B1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7934319B2 (en) * 2002-10-28 2011-05-03 Acme United Corporation Pencil-sharpening device
US8505414B2 (en) 2008-06-23 2013-08-13 Stanley Black & Decker, Inc. Method of manufacturing a blade
US20110213394A1 (en) * 2008-12-31 2011-09-01 Slaughter Eva M T Pigmentary glaucoma iris scraping treatment method and the iris T aluminum scraping scalpel tool
US20140296890A1 (en) * 2008-12-31 2014-10-02 Eva M. T. Slaughter Secondary pigmentary glaucoma iris scraping treatment method and iris scraping tool
US8769833B2 (en) 2010-09-10 2014-07-08 Stanley Black & Decker, Inc. Utility knife blade
CN107107362B (zh) * 2014-12-22 2020-08-04 比克-维尔莱克 剃须刀片
JP2018123353A (ja) * 2017-01-30 2018-08-09 新明和工業株式会社 刃物の製造方法
CN108357265B (zh) * 2018-04-04 2024-02-23 三木控股集团有限公司 一种卷笔刀架
AT520930B1 (de) * 2018-06-29 2019-09-15 Voestalpine Prec Strip Gmbh Verfahren zur Herstellung eines Bandstahlmessers und Bandstahlmesser für Werkzeuge

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH261380A (de) 1943-05-15 1949-05-15 Gillette Industries Ltd Verfahren zum Schützen von Schneiden gegen Korrosion.
US3829969A (en) 1969-07-28 1974-08-20 Gillette Co Cutting tool with alloy coated sharpened edge
GB1416887A (en) 1972-06-07 1975-12-10 Gillette Industries Ltd Coating of razor blade cutting edges gas flow regulation
US4981756A (en) 1989-03-21 1991-01-01 Vac-Tec Systems, Inc. Method for coated surgical instruments and tools
EP1075909A1 (de) * 1999-08-12 2001-02-14 C. & E. Fein Gmbh & Co. KG Schneidmesser
EP1079909A1 (de) 1998-05-12 2001-03-07 Commissariat A L'energie Atomique Verfahren zur reinigung und konzentrierung einer nebenkomponente eines gasgemisches, verfahren zum nachweis derselben und anlage
WO2005005110A1 (en) 2003-07-15 2005-01-20 Koninklijke Philips Electronics N.V. A coated cutting member having a nitride hardened substrate
US20050268470A1 (en) 2004-06-03 2005-12-08 Skrobis Kenneth J Colored razor blades
WO2007056751A2 (en) 2005-11-08 2007-05-18 Acme United Corporation Pencil-sharpening device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU485283B2 (en) * 1971-05-18 1974-10-03 Warner-Lambert Company Method of making a razorblade

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH261380A (de) 1943-05-15 1949-05-15 Gillette Industries Ltd Verfahren zum Schützen von Schneiden gegen Korrosion.
US3829969A (en) 1969-07-28 1974-08-20 Gillette Co Cutting tool with alloy coated sharpened edge
GB1416887A (en) 1972-06-07 1975-12-10 Gillette Industries Ltd Coating of razor blade cutting edges gas flow regulation
US4981756A (en) 1989-03-21 1991-01-01 Vac-Tec Systems, Inc. Method for coated surgical instruments and tools
EP1079909A1 (de) 1998-05-12 2001-03-07 Commissariat A L'energie Atomique Verfahren zur reinigung und konzentrierung einer nebenkomponente eines gasgemisches, verfahren zum nachweis derselben und anlage
EP1075909A1 (de) * 1999-08-12 2001-02-14 C. & E. Fein Gmbh & Co. KG Schneidmesser
WO2005005110A1 (en) 2003-07-15 2005-01-20 Koninklijke Philips Electronics N.V. A coated cutting member having a nitride hardened substrate
US20050268470A1 (en) 2004-06-03 2005-12-08 Skrobis Kenneth J Colored razor blades
WO2007056751A2 (en) 2005-11-08 2007-05-18 Acme United Corporation Pencil-sharpening device

Also Published As

Publication number Publication date
EP1953004B1 (de) 2012-03-07
US20080178476A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
EP1953004B1 (de) Spitzerklinge
DE2727250C2 (de) Oberflächenbeschichteter Sintercarbidgegenstand und Verfahren zu dessen Herstellung
DE2435989C2 (de) Verfahren zur Herstellung eines verschleißfesten, beschichteten Hartmetallkörpers für Zerspanungszwecke
EP1902155B1 (de) Hartstoffbeschichtete körper und verfahren zu deren herstellung
DE2917348B1 (de) Verbundkoerper und seine Verwendung
DE102016108734B4 (de) Beschichteter Körper und Verfahren zur Herstellung des Körpers
DE2253745A1 (de) Hartmetallkoerper
DE19962056A1 (de) Schneidwerkzeug mit mehrlagiger, verschleissfester Beschichtung
DE3234931A1 (de) Ueberzugsmasse und beschichtungsverfahren
EP2132358A1 (de) Mehrlagige cvd-schicht
DE2366512C2 (de) Gesinterter Hartmetallkörper
AT5008U1 (de) Hartmetallverschleissteil mit mischoxidschicht
DE2306504B2 (de) Beschichteter Sinterhartmetallkörper
DE3332260A1 (de) Beschichteter hartmetallkoerper
DE2730355A1 (de) Verschleissteil aus hartmetall, insbesondere fuer werkzeuge
EP0832993A1 (de) Schichtsystem, Verfahren zur Herstellung desselben und Metallsubstrat mit einem derartigen Schichtsystem
WO2003104507A1 (de) Hartmetall-substratkörper und verfahren zu dessen herstellung
EP0031805B1 (de) Hartkörper, insbesondere Hartmetallverschleissteil, und Verfahren zu seiner Herstellung
DE3907693A1 (de) Verfahren zur herstellung von wolframcarbid durch chemische dampfabscheidung
DE2601896A1 (de) Verschleissteil fuer die spanabhebende und spanlose formgebung
EP1900842A1 (de) Pack auf Zwischenschicht
DE2912094A1 (de) Verfahren zur herstellung beschichteter hartmetallkoerper
EP1813441B1 (de) Büro- oder Kosmetikartikel aus einem Magnesiumwerkstoff
DE3590538T1 (de) Verfahren zum Aufbringen von Überzügen auf Metalle und dabei erhaltenes Erzeugnis
DE2531835C3 (de) Verfahren zur Bildung eines Überzugs auf der Grundlage von Nickel und/oder Kobalt auf Gegenständen aus hochwarmfesten Metallmaterialien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007009408

Country of ref document: DE

Effective date: 20120503

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007009408

Country of ref document: DE

Effective date: 20121210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007009408

Country of ref document: DE

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007009408

Country of ref document: DE

Owner name: LUETTGENS, FRITZ, DR., DE

Free format text: FORMER OWNER: KUM LIMITED, TRIM, CO. MEATH, IE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190123

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007009408

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801