EP1940564A1 - Sensorvorrichtung zum erkennen elektromagnetisch detektierbarer fördergutteile und sortiervorrichtung mit einer solchen sensorvorrichtung - Google Patents

Sensorvorrichtung zum erkennen elektromagnetisch detektierbarer fördergutteile und sortiervorrichtung mit einer solchen sensorvorrichtung

Info

Publication number
EP1940564A1
EP1940564A1 EP06805832A EP06805832A EP1940564A1 EP 1940564 A1 EP1940564 A1 EP 1940564A1 EP 06805832 A EP06805832 A EP 06805832A EP 06805832 A EP06805832 A EP 06805832A EP 1940564 A1 EP1940564 A1 EP 1940564A1
Authority
EP
European Patent Office
Prior art keywords
sensor
sensors
coils
sensor device
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06805832A
Other languages
English (en)
French (fr)
Other versions
EP1940564B1 (de
Inventor
Oliver Gurok
Alexander Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37442108&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1940564(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP1940564A1 publication Critical patent/EP1940564A1/de
Application granted granted Critical
Publication of EP1940564B1 publication Critical patent/EP1940564B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0036Sorting out metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0054Sorting of waste or refuse

Definitions

  • Sensor device for detecting electromagnetically detectable items to be conveyed and sorting device with such a sensor device
  • the invention relates to a sensor device according to the preamble of claim 1 and to a sorting device with such a sensor device according to claim 19.
  • an automated sorting of the recycling material as a conveyed material is required. It should not only process the largest possible fraudmengen per time, but the sorting should also be done with high yield and low error rate. It may be in the conveyed example, waste glass, in which there are metal fractions, such as bottle caps or other bottle or glass closures. It may be in the conveyed example also shredded in a shredded scrap cars with fractions of various metals or other valuable materials that are to be made available for recycling. A sorting of garbage would be a possible application, eg to sort out an aluminum fraction. Furthermore, it may also be conveyed with different mineralogical fractions, which have different electromagnetic properties and should be sorted for further processing. Not conclusively as applications are also mentioned the sorting of metal residues in wood recycling fractions in the fiberboard industry and the finding of metals in food streams in bulk form.
  • the devices have sensors, through whose sensory monitored area the conveyed material is moved.
  • the parts to be sorted out are detected by the sensors designed to be suitable for the sorting criteria, and a separating device is activated by means of the sensor information in order to selectively separate a part which is to be sorted out from the conveyed material.
  • a separating device is activated by means of the sensor information in order to selectively separate a part which is to be sorted out from the conveyed material.
  • glass e.g. is known to make a sorting on the glass color with optical sensors that detect the glass color, and e.g. Separate brown glass from white and green glass.
  • an electromagnetic alternating field is used, through which the material to be sorted is moved. A change of the alternating field through one of the parts is detected, and then the part sorted out.
  • a sorting device with a generic sensor device EP 0 353 457 Bl discloses.
  • the frequency of the alternating field is freely selectable within wide ranges, e.g. with a frequency between 5 kHz and 2MHz.
  • the sensors of the sensor device shown there consist of two detector coils wound in opposite directions, in which an external alternating field induces equal but opposite alternating voltages.
  • the AC voltages cancel each other out with suitable subtraction exactly to zero.
  • the homogeneous alternating field is superimposed by an inhomogeneous field induced by the alternating field in the metal parts. This represents a change of the alternating field for the sensors.
  • the alternating field which is initially generated as homogeneously as possible, now exhibits an inhomogeneous disturbance due to an induced magnetic field.
  • no equal-sized, canceling alternating voltages are now induced in the two detector coils of a sensor, but a difference in value results in a signal value that deviates significantly from zero.
  • the spatial resolution of these sensors of the generic sensor device is determined by the size of the individual sensors or by the size of the coil pairs contained therein.
  • the separator controlled by the sensors e.g. a series arrangement of exhaust nozzles, can only be controlled in this limited spatial resolution. This is particularly disadvantageous if the parts to be sorted may be smaller than the sensors, e.g. if the conveyed material is present as granules with a small grain size. It can then be e.g. a non-metal closely adjacent to a metal part accidentally be sorted out by the driven exhaust nozzle with. It creates an undesirable Kochsortmaschine. To achieve a higher resolution, the sensors would have to be downsized. This is expensive to manufacture and would make the sensors more expensive.
  • the detection range of the sensors would decrease with increasing miniaturization because the effective area for measuring changing electromagnetic field lines would become smaller.
  • the generic sensor device can not correctly detect large metal parts that extend over a plurality of adjacent sensors. Under unfavorable circumstances, the blow-off nozzles are activated incorrectly or not at all.
  • the sensor device comprises a plurality of sensors, the detector coils are arranged in pairs so that their standing parallel to the conveying plane cross-sectional areas against each other shifted center of gravity, and the connecting line between the centroids is oblique to the direction of movement of the transported material.
  • the detector coils can basically have any shape.
  • the invention requires only that the two detector coils of a pair react differently to the example of a metal part disturbed alternating field.
  • the sensor signal should also make the location of the crossing of the sensor detectable. This is achieved by the cross-sectional areas of the detector coils of a pair in a parallel to the conveying plane of the conveyed material at least partially do not overlap by the centroids of these cross-sectional areas are shifted from each other.
  • the connecting line between these centroids should be inclined to the direction of movement. This symmetry break can be used to distinguish between the easily evaluated sensor signal and, for example, whether a metal part on the left or right of the center of the sensor crosses the sensor.
  • the connecting line were parallel to the direction of movement, a part crossing the sensor to the left of the sensor center would not be able to be distinguished from a part crossing the sensor to the right of the sensor center.
  • two identical circular planar coils as a detector coil pair whose area vectors are oriented perpendicular to the conveying plane.
  • the two circular area centers of the detector coils are spaced from each other and the connecting line is oblique to the direction of movement, so that the two coils are not superimposed in their circular cross-sectional areas, but both offset in the direction of movement and transversely thereto.
  • a part that changes the alternating field due to its material property so for example. forming a secondary alternating magnetic field in response to the alternating field, or e.g. has a permanent magnetic field from home, and which is moved past the sensor, first in time sequence, the direction of movement further upstream detector coil influenced. In this coil, a voltage which does not lift away with suitable subtraction is first induced. Only then does the detector coil arranged in the direction of movement come into the influence of the field inhomogeneity. The suitably formed difference signal of the detector coil pair reflects this information.
  • the formation of the conveyor is largely arbitrary within the scope of the invention.
  • the sensor device may e.g. also be arranged at a drop distance, which is e.g. a conveyor such as a conveyor belt or a chute connects.
  • a drop distance which is e.g. a conveyor such as a conveyor belt or a chute connects.
  • the direction of movement and the orientation of the conveyor plane change in this special case on the fall path of winning presses.
  • Other conceivable delivery devices are known in the art.
  • a sensor has a plurality of pairs of detector coils, for example four detector coils.
  • a detector coil pair per sensor it is possible that a sensor has a plurality of pairs of detector coils, for example four detector coils.
  • one detector coil pair per sensor is also considered to be a preferred embodiment because all the required information can be obtained therewith.
  • the shape of the detector coils can be chosen arbitrarily.
  • the detector coils of a sensor may e.g. also have a different shape, size or orientation in space. If the sensor is e.g. Due to such differences in shape in the undisturbed alternating field should show a difference signal significantly different from zero, can e.g. a zero balance can be made electronically to optimize the sensitivity. Even inhomogeneities of the undisturbed alternating field could thus be matched, albeit with great effort.
  • the features of claim 2 are proposed. With essentially mirror-symmetrical design of the detector coil pair, the inductive coupling to the alternating field is largely identical for both detector coils.
  • Both coils are exposed to the same total magnetic flux, provided that the alternating field is approximately homogeneous from the point of view of the detector coils. Therefore, in the suitably chosen, that is, the signs of the detector coil voltages considering subtraction automatically adjust approximately a zero balance.
  • a total signal is first generated in pairs from the two detector coil voltages before evaluation, which can assume negative and positive values. It is for this purpose e.g. a measuring amplifier of conventional design used. The evaluation then takes place on the total signal of the sensor thus generated.
  • the time length of the positive, ie mitphasigen, and negative, ie opposite phase therebetween dwell time for large parts to the time that the detected part needed to cross the sensor or the individual detector coils. This time is greater with a central crossing than with crossing at the edge of the sensor. Due to the inclination can still be clearly distinguished whether the part left or right of the sensor center has crossed the sensor.
  • the position of the zero crossing also depends on the location of the crossing above the sensor. From this it can be calculated at which point the sensor was crossed.
  • the location of the passage can be determined very accurately from the evaluation of the throughput times of a conveyed material part for one and / or the other of the detector coils of a pair, possibly linked to the position of the zero crossing and the knowledge of the inclination. It is thereby a resolution below the width of the sensor or the coil pair possible.
  • the resolution is no longer determined by the sensor or coil size, but essentially by the accuracy of the skew, the accuracy of the measurement of the sensor signals and the accuracy of the evaluation of the time course.
  • a multiple higher spatial resolution can be achieved, and e.g. several distributed to the sensor width and the sensor locally associated exhaust nozzles are controlled in a location-accurate due to the information of only one sensor.
  • the inventive sensors with appropriate design of the evaluation device, an illustration at least the To obtain contour of the part that crosses the sensor device.
  • the sensors are particularly sensitive to the entry or exit of a part in or out of the sensor area, while, for example, when the sensor is completely covered, the sensor delivers substantially no signal deviating from zero.
  • a detailed image of the detected part can be obtained.
  • the features of claim 17 are proposed.
  • the evaluation of the time profile of the signals of several adjacent sensors can provide a relatively detailed picture of the shape and size of the detected part.
  • a suitable or a plurality of suitably positioned discharge nozzles can be actuated, for example, not to blow an object at its edge, whereby the part would essentially only be rotated, but to act on the geometric center of gravity of the part.
  • the Ausblasimpuls can be adapted to the part size, eg application of a strong Ausblasimpulses for large parts and a smaller Ausblasimpulses for small parts. It can thereby minimize the energy expenditure.
  • the sensors could be arranged, for example, in any distribution in the sensor device. But this is disadvantageous for the evaluation and the control of the associated separation device.
  • the sensors of the sensor device are therefore arranged in a row according to claim 3, which is perpendicular to the direction of movement of the mecanicgutgescheweg winninggutstromes.
  • the term of the parts from the sensor to the effective range of the separator for all sensors in the line are the same and the control of the separator simplifies.
  • the detector coils could e.g. be designed as circular coils with offset focal points. It could e.g. several detector coil pairs per sensor may be provided. According to claim 4, however, each sensor has only two detector coils, which are advantageously wound in a D-shape and spaced from each other. The two coils of a pair can e.g. to be wound in opposite directions, but an adjustment can also be made with the measuring amplifier.
  • the alternating field could e.g. be generated by an excitation coil extending over all sensors.
  • an excitation coil extending over all sensors.
  • there is then no spatially very homogeneous field so that the voltages induced in the detector coils of a pair cancel out only inadequately.
  • Fe materials or other magnetizable materials in a larger alternating field comprising multiple sensors will result in significant field line constrictions which will also produce signals on adjacent but not traded detector coil pairs. Cross-sensitivity becomes unacceptable for some applications.
  • each sensor associated with an excitation coil.
  • an improvement of the field homogeneity over the sensor coils can be obtained.
  • the sensor device according to the invention could for example be composed of a suitable number of individual sensors.
  • a plurality of sensors are arranged together on a fine conductor board.
  • the coils can be designed very accurately, and also the production can be done with high precision.
  • the use of boards allows accurate and rapid positioning of the sensors in the sensor device.
  • the sensor device can be constructed, for example, from a single, all sensors supporting board. But it can also be composed of several smaller sensor boards.
  • An advantage of using smaller sensor boards is that variable widths of the conveyed stream or conveyor can be covered by the addition of further sensor boards.
  • a sensor board may have a linear array of five sensors.
  • a sensor device With eight boards, which are housed in a common housing, for example, so a sensor device can be constructed with a sensor array of two lines, each with twenty sensors. Furthermore, the use of smaller sensor boards, for example, allows a modular structure, the individual boards could, for example, be operated and evaluated modularly. Another advantage of the boards arises from the ability to produce the coils, so both the exciter and the detector coils, in modern fine conductor technology and thus very high geometric accuracy.
  • Disturbing interaction between the coils of adjacent sensors can be further reduced with the advantageous features of claim 10.
  • the excitation coils are operated in frequency and in phase, for example in a range between 5 kHz and 1 MHz. It is thereby ensured, for example, that no crosstalk between adjacent sensors is detected, among other things, because each sensor has largely identically acting sensor neighbors whose influence can essentially cancel out due to the pairwise arrangement of the detector coils in total. Less environmental interference means improved measurement accuracy and higher sensor sensitivity.
  • a possible interference by adjacent sensors is further reduced. Each sensor sees an identical neighborhood to the left and right of it, possibly in front of or behind it. Point symmetry at each sensor center would be optimal from a mathematical point of view. The ideal symmetry comes close to the features of claim 13.
  • the sensors could e.g. be arranged as close as possible.
  • the sensors are arranged according to claim 11 in a plurality of staggered rows, e.g. standing on a gap. Multiple rows of sensors can also be used to advantage to check results of the sensors in the one row for errors by comparison with results of the sensors in a second row.
  • the range and sensitivity of the sensors can be increased by having the detector coils and / or the exciting coils according to claim 12, a core, e.g. a ferrite core or a core of other suitable material.
  • Critical may be the edge regions of the sensor device, because the outermost sensors have only on one side of a neighboring sensor, the disturbance can not cancel so for reasons of symmetry.
  • the sensor located outside in the line is nevertheless exposed to approximately the same proximity influences because next to it a sensor-free exciter coil is also arranged.
  • the interference of adjacent exciter coils is much higher than the neighboring ones Detector coils. The additional effort would be in so far in no favorable ratio to additionally achieved parasitic reduction.
  • the senor can detect large or centrally over the sensor moving bainteilchen only very bad, because in both detector coils substantially equal voltages are induced, which can cancel to about zero.
  • a local resolution below the sensor width succeeds at the preferred 45 ° in an optimal manner.
  • the frequency of the alternating field can be selected within wide limits. For example, a monofrequent field can be selected.
  • the device for generating an electromagnetic alternating field for generating a multi-frequency alternating field is formed.
  • the alternating field then represents a superimposition of several fields of different frequencies. For example, several discrete frequencies or eg a frequency band can be used. The use of such a frequency-mixed alternating field ensures that regardless of redesignteiliere, and redesign thereof always reliable detection takes place.
  • FIG. 1 is a schematic representation of an embodiment of a sorting device according to the invention in side view
  • FIG. 2a, 2b is a schematic diagram of the operation of an embodiment of a sensor of the sensor device according to the invention ( Figure 2a) with a plurality of signal waveforms of the signal supplied by the sensor ( Figure 2b),
  • Fig. 3 is a schematic diagram of a possible circuit arrangement for the embodiment of a sensor according to Figure 2a.
  • FIG. 4 shows a detail in plan view of an embodiment of a sensor device according to the invention in a schematic representation.
  • Fig. 1 shows in a graphically greatly simplified form the basic structure of a sorting device 10 for sorting out a metallic fraction 15, 15 ', 15 "from a speciallygutstrom 13.
  • a conveyor belt 12 which is fed in a manner not shown with conveyed material 13, for example via a upstream chute, which in turn is fed, for example, from a winninggutvorrat transported conveyed material 13 at a uniform speed over a disposed below the belt 12 sensor device 14. Details of the sensor device 14 will be explained later with reference to FIGS 2-4.
  • the material to be conveyed 13 consists of a metallic fraction 15 and non-metallic spellgut turnover 16.
  • the individual parts of the conveyed significant differences in size.
  • e.g. be preceded by a screening step or the conveyed already present by a suitable treatment already in a uniform size.
  • the sensor device 14 is connected via a data bus 18 to a value from and control device 20.
  • the task of this evaluation and control device 20 is to expand the sensor data supplied by the sensor device 14 to determine whether a part to be sorted out passes through the sensor region detected by the sensor device. Furthermore, it is then appropriate time-delayed to control the separator 22, so that a detected metal part 15 'is sorted out.
  • the expansion and control device 20 may e.g. also be integrated into the sensor device 14.
  • the separating device 22 consists of an exhaust nozzle 24, which is arranged below the conveyor belt 12 to a drop distance. From the conveyor belt 12 falling constructively accelerating pulse on the baingutteil exercise and distract it from the undisturbed trajectory to another, eg wider flight parabola.
  • the exhaust nozzle 24 is dominated by a valve 26, for example by a solenoid valve. The control of the valve via control lines 28 of the evaluation and control device 20.
  • the valve 26 is a compressed air hose 32 dominantly formed, which compressed air from a compressed air reservoir 34 leads to the exhaust nozzle 24.
  • the discharge nozzles 24 can be designed and controlled in such a way that the intensity of the blowout pulses can be selected to suit the parts to be sorted out.
  • the conveyor belt 12 has a certain conveying width, and the conveyed material parts 13 are moved across the width across the sensor device 14. Therefore, the sensor device 14 extends across the width of the conveyor belt 12.
  • a plurality of sensors 100 are arranged distributed over its width, so that the width position of a metal part 15 on the conveyor belt 12 can be determined.
  • the separator 22 has a plurality of arranged in a row transversely to the direction of fall discharge nozzles 24, which are arranged covering the Fallwegumble suitably.
  • the evaluation and control device 20 is designed to control that or those multiple exhaust nozzles 24 which are to be assigned to the position of the sensor or sensors in the sensor device 14 which have detected a conveyed material part 15.
  • the evaluation and sensor device 20 takes into account the transit time of a particle from the sensor arrangement 14 to the blow-off position, ie until reaching the effective range of the blow-out nozzles 24.
  • a measuring device communicating with the evaluation and control device 20 for detecting the belt speed can be provided for this purpose be.
  • an angle encoder 29 is arranged on the guide roller 27 of the conveyor belt 12, which measures the instantaneous speed of the guide roller, from which results in the conveyor belt speed.
  • the evaluation and control device 20 calculates with this instantaneous speed the correct time for the triggering of the exhaust nozzle 24th
  • conveyor belts 12, 40 and 42 could be replaced individually or all by means of transport chutes or other conveying means, instead of the conveyor belts 40 and 42, containers could also be provided.
  • FIGS. 2 a and 2 b show, in a basic representation, the mode of operation of a sensor 100 consisting of an exciter coil 102 and two detector coils 104, 106 wound in opposite directions.
  • all the coils 102, 104, 106 have two windings. However, the number of turns can be chosen differently, wherein the detector coils 104 and 106 should have the same number of turns. Not shown are the electrical lines through which these coils 102, 104, 106 are energized.
  • the contact surfaces associated with the coils 102, 104, 106 are designated by reference numerals 112, 114 and 116.
  • the two detector coils 104 and 106 are concentrically surrounded as a coil pair of the exciter coil 102, which serves to generate an alternating field.
  • This alternating field magnetic fields are induced in metal parts 15A, 15B, 15C which enter the effective range of the alternating field and the sensor 100.
  • the exciter coil 102 is charged with a high-frequency alternating voltage, so it generates an electromagnetic alternating field with the same frequency. Typical frequencies can be e.g. in the kHz range. Frequency mixtures can also be used.
  • Material items 13 made of a non-conductive material show no interaction with the alternating field.
  • 15 A, 15 B and 15 C induced an electromagnetic alternating field according to typical, material-corresponding transfer function in conductive spellgutieri.
  • the two detector coils 104 and 106 are arranged mirror-symmetrically to a mirror plane 115.
  • This mirror plane 115 is inclined to the direction of movement 116 of the conveyed items 15A, 15B, 15C.
  • the angle enclosed between the direction of movement 116 and the mirror plane 115 is 45 °.
  • the centroid M of the detector coil 104 and the area center of gravity M 'of the detector coil 106 are connected by an imaginary connecting line L, which is oriented perpendicular to the mirror plane due to the 45 ° inclination.
  • Fig. 2b three waveforms A, B, C of the signal supplied by the sensor 100 to the three metal parts 15 A, 15 B, 15 C are shown, these three parts pass through the sensor 100 at different locations.
  • Part 15A traverses the sensor 100 in the center, while the parts 15B and 15C cross the sensor 100 farther out, in the case of part 15C only at the outer edge.
  • the detector coil 104 located further in the direction of movement 116. As can be seen from the upper waveform A of FIG. 2b, this leads to an increase in the signal, that is to say the phase difference measurable between the two Detector coils 104 and 106 increase because the detector coil 106 further in the direction of movement 116 is not yet influenced by the alternating field induced in metal part 15A. Without limiting the generality, let it be assumed that the detector coil 104 delivers a positive signal component, while the detector coil 106 supplies a negative signal component. Under this assumption, the total signal A increases as soon as the metal part 15 A penetrates into the detection area of the detector coil 104.
  • the signal A then reaches a constant value and then falls after a certain time, corresponding to the duration of the crossing of the detector coil 104, again to after a zero crossing, which corresponds to the crossing of the plane of symmetry 115 through the metal part 15 A, in the negative Area to go.
  • a zero crossing which corresponds to the crossing of the plane of symmetry 115 through the metal part 15 A, in the negative Area to go.
  • the signal A falls back to zero.
  • the waveforms B and C shown in the metal parts 15B and 15C are the same ones.
  • Metal part 15B reaches the area of influence of detector coil 104 somewhat later than part 15A.
  • the transit time for detector coil 104 is also shorter than for metal part 15A, and symmetry plane 115 is reached sooner, so that the zero crossing also occurs earlier in time.
  • the negative part of the total signal B is longer in time because the metal part 15B has to travel a longer distance across the detector coil 106. After metal particles 15B has also completely crossed over the second detector coil 106, here again the signal B drops back to zero, wherein metal part 15B leaves the sensor region in a shorter time than metal part 15 A. Therefore signal B is also shorter in time than signal A.
  • metal part 15C the special case is that the detector coil 104 is not crossed at all. Therefore, the signal curve labeled B does not show a positive total signal component. It is therefore missing at a zero crossing. As metal part 15C reaches detector coil 106, the total signal goes into the negative signal region. The metal part 15C leaves after a relatively short time detector coil 106, so that the negative total signal duration is shorter than in the waveforms A and B shown to the metal parts 15A and 15B.
  • the dash-dot lines shown parallel to the direction of movement 116 correspond to positions of the exhaust nozzles 24 assigned to the sensor 100, which were shown in FIG. Distributed over the width of the sensor 100 are seven of these blow-off nozzles 24, wherein the two outermost lying lying partially associated with this sensor 100, but in part also the left or right neighbor sensor.
  • FIG. 3 shows in a block diagram a possible wiring of a sensor 100, the circuit being of exemplary nature only, and in particular in FIG Use of multiple sensors 100 of which looks differently designed.
  • ADC chains or multiplexers, a row logic and parallel computers can be used.
  • the architecture of the evaluation electronics is largely freely selectable and unaffected by the sensor structure.
  • Such circuits are also generally known in the art, so it is not discussed further below.
  • the control could e.g. via a conventional computer with suitable interfaces for communication with the sensor 100, the angle sensor 27 and the exhaust nozzles 24 done.
  • the data volumes generated by the sensors will be so significant that computers and interfaces will reach their performance limits.
  • the control, supply and signal evaluation of the sensor 100 is therefore taken over by an integrated, powerful microcontroller ( ⁇ C) 302.
  • ⁇ C microcontroller
  • This microcontroller 302 can also take over the control of the exhaust nozzles 24, we is about an interface and a bus line 303 with the valves to be switched 26 in conjunction. But a microcontroller solution is only one of several possibilities.
  • the excitation coil 102 is acted upon by a power amplifier 305 with a suitable high-frequency AC voltage to produce an alternating field. It can also be given a frequency-mixed AC voltage to the exciter coil.
  • the power amplifier 305 in turn is supplied by an upstream digital-to-analog converter (DAC) 307, which in turn is controlled by the microcontroller 302.
  • DAC digital-to-analog converter
  • the alternating voltage signal which can be tapped off at the detector coils 104 and 106 is fed to a measuring amplifier 309, which is designed as a differential amplifier, and an analogue alternating signal to an analogue amplifier.
  • Digital Converter (ADC) 311 provides, via which the signal of the sense amplifier 309 in turn passes back to the microcontroller 302. There or in another computer device, the signal is evaluated as described above for Fig. 2b, for example.
  • the tasks of the microcontroller 302 could also be extended to the expansion and overall control of the sorter 10 by proper training, and may be e.g. be integrated into the sensor device 14 as digital hardware and firmware. Because of the parallel requirement of the same real-time mathematics for the multiple sensors 100 and the data streams generated thereby, the use of parallel computing and digital signal processors is beneficial.
  • FIG. 4 shows a top view of a detail of a sensor device 14 with two rows of sensors 100, which correspond to the embodiment shown in FIG. 2a.
  • these sensors 100 are arranged in groups on a circuit board 402. Without loss of generality, e.g. each five sensors 100 per board 402 may be provided.
  • the sensors 100 are within the rows at equal intervals, the sensors 100 of the one line are in gap to the sensors 100 of the other line. All sensors 100 show the same inclination of the plane of symmetry 115 relative to the direction of movement 116, which here corresponds to the direction of the dotted lines, which, as already in Fig. 2a, the local arrangement of the exhaust nozzles V1-V20 (24), depending on the sensor signals for blowing a detected metal part 15 are driven.
  • the distances between the sensors 100 within a row are smaller than the diameter of the detector coils 104, 106, so that due to the offset th arrangement of the two rows results in an overlap in width.
  • a metal part running, for example, along that trajectory which can be assigned to the blow-off valve V5 passes over both sensor 100 'and sensor 100 ".
  • the evaluation and control device 20 can, for example, adjust to that effect make sure that the detection of a metal part by sensor 100 'at a certain location coincides with the detection message of sensor 100 "that is offset in time. Furthermore, in such an arrangement, a plausibility check can be performed on parts which are wider than the valve spacing.
  • a part that covers the valve line V1 and V2 can be calculated in its contour: the first sensor 100 of the upper line responds with the same positive and negative signal time. The sweeping at the level of the line V2 could not be measured by the first sensor 100. Since, however, the first sensor 100 "of the lower line now reacts exclusively and with a positive signal, the part along the lines V1 and V2 must have crossed the sensors 100 and 100". If the part is even larger, so it sweeps over the sensors 100 and 100 "eg along the lines V1, V2 and V3, so the first sensor 100" of the lower line reacts with a long positive signal and a short negative. It can therefore be concluded that the sensors have been swept across the width of the lines V1, V2 and V3. It can be interpolated according to this principle, almost every conceivable part width, which is larger than the sensors themselves.
  • the sensor device 10 permits high-resolution locating of electromagnetically detectable parts which are moved over the sensor device 14.
  • suitable evaluation of the sensor signals for example by the signals of several adjacent sensors or even all sensors and by adding interpolation according to the just described principle, a complete image of the detected parts can be obtained.
  • the Sensor device 14 shown by way of example functions reliably for a very wide range of sizes of the parts to be detected, that is to say both for parts which are smaller than the diameter of sensors 100 and for parts which run over a plurality of sensors 100 at the same time.

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Control Of Conveyors (AREA)
  • Discharge Of Articles From Conveyors (AREA)
  • Sorting Of Articles (AREA)

Description

Oliver Gurok 04041pct
Alexander Braun
Sensorvorrichtung zum Erkennen elektromagnetisch detektierbarer Fördergutteile und Sortiervorrichtung mit einer solchen Sensorvorrichtung
Die Erfindung betrifft eine Sensorvorrichtung nach dem Oberbegriff des Anspruch 1 sowie eine Sortiervorrichtung mit einer solchen Sensorvorrichtung nach Anspruch 19.
In vielen Bereichen des Recycling ist eine automatisierte Sortierung des als Fördergut vorliegenden Recyclingmaterials erforderlich. Es sollen dabei nicht nur möglichst große Fördergutmengen pro Zeit verarbeitet werden, sondern die Sortierung soll auch mit großer Ausbeute und geringer Fehlerquote erfolgen. Es kann sich bei dem Fördergut z.B. um Altglas handeln, in dem sich noch Metallfraktionen befinden, z.B. Kronkorken oder andere Flaschen- oder Glasverschlüsse. Es kann sich bei dem Fördergut z.B. auch um in einem Shredder zerkleinerte Altautos handeln mit Fraktionen verschiedenster Metalle oder anderer Wertstoffe, die einer Wiederverwertung zugänglich gemacht werden sollen. Auch eine Sortierung von Müll wäre eine mögliche Anwendung, z.B. um eine Aluminium- Fraktion auszusortieren. Weiterhin kann es sich auch um Fördergut mit unterschiedlichen mineralogischen Fraktionen handeln, die unterschiedliche elektromagnetische Eigenschaften haben und die zur weiteren Verarbeitung sortiert werden sollen. Nicht abschließend seien als Anwendungen auch noch erwähnt das Aussortieren von Metallrückständen in Holzrecyclingfraktionen in der Faserplattenindustrie und das Auffinden von Metallen in Lebensmittelströmen in Schüttgutform.
Es sind im Stand der Technik verschiedene automatisierte Vorrichtungen und Verfahren bekannt, die diese Sortieraufgaben übernehmen. Die Vorrichtungen weisen dazu Sensoren auf, durch deren sensorisch überwachten Bereich das Fördergut bewegt wird. Die auszusortierenden Teile werden von den für die Sortierkriterien geeignet ausgebildeten Sensoren erfasst, und mittels der Sensorinformationen wird eine Trenneinrichtung angesteuert, um gezielt ein als auszusortierend erkanntes Teil aus dem Fördergut herauszutrennen. Bei Glas ist z.B. bekannt, eine Sortierung nach der Glasfarbe mit optischen Sensoren vorzunehmen, die die Glasfarbe erkennen, und z.B. Braunglas von Weiß- und Grünglas trennen.
Es sind insbesondere auch Vorrichtungen und Verfahren bekannt, die einzelne Fraktionen nach ihren unterscheidbaren elektromagnetischen Eigenschaften trennen. Es wird dazu ein elektromagnetisches Wechselfeld verwendet, durch das das Sortiergut bewegt wird. Eine Veränderung des Wechselfeldes durch eines der Teile wird erkannt, und das Teil daraufhin aussortiert. Eine solche Sortiervorrichtung mit einer gattungsgemäßen Sensorvorrichtung offenbart die EP 0 353 457 Bl. Die Frequenz des Wechselfeldes ist in weiten Bereichen frei wählbar, z.B. mit einer Frequenz zwischen 5 kHz und 2MHz.
Die dort gezeigten Sensoren der Sensorvorrichtung bestehen aus zwei gegensinnig gewickelten Detektorspulen, in denen ein externes Wechselfeld gleich große, aber gegensinnige Wechselspannungen induziert. Im ungestörten Zustand heben sich die Wechselspannungen bei geeigneter Differenzbildung genau zu Null auf. Wenn allerdings metallische Teile in den Meßbereich der Detektorspulen gelangen, überlagert sich dem homogenen Wechselfeld ein inhomogenes Feld, das vom Wechselfeld in den Metallteilen induziert wird. Für die Sensoren stellt dies eine Veränderung des Wechselfeldes dar. Das zunächst z.B. möglichst homogen erzeugte Wechselfeld weist nun eine inhomogene Störung durch ein induziertes Magnetfeld auf. In Konsequenz werden in den beiden Detektorspulen eines Sensors nunmehr keine gleich großen, sich aufhebenden Wechselspannungen mehr induziert, sondern bei Differenzbildung ergibt sich ein signifikant von Null abweichender Signalwert.
Die Ortsauflösung dieser Sensoren der gattungsgemäßen Sensorvorrichtung ist durch die Größe der einzelnen Sensoren bzw. durch die Größe der darin enthaltenen Spulenpaare bestimmt. Auch die über die Sensoren gesteuerte Trenneinrichtung, z.B. eine Reihenanordnung von Ausblasdüsen, kann nur in dieser eingeschränkten Ortsauflösung angesteuert werden. Das ist insbesondere dann von Nachteil, wenn die zu sortierenden Teile kleiner als die Sensoren sein können, z.B. wenn das Fördergut als Granulat mit geringer Korngröße vorliegt. Es kann dann z.B. ein eng benachbart zu einem Metallteil liegendes Nichtmetall versehentlich von der angesteuerten Ausblasdüse mit aussortiert werden. Es entsteht eine unerwünschte Übersortierung. Um eine höhere Auflösung zu erreichen, müssten die Sensoren verkleinert werden. Das ist zum einen in der Herstellung aufwendig und würde die Sensoren dadurch verteuern. Zudem würde die Nachweisreichweite der Sensoren mit zunehmender Miniaturisierung abnehmen, weil die effektive Fläche zur Messung sich ändernder elektromagnetischer Feldlinien kleiner werden würde. Weiterhin kann die gattungsgemäße Sensorvorrichtung große Metallteile, die sich über mehrere benachbarte Sensoren erstrecken, nicht korrekt detektieren. Unter ungünstigen Umständen werden die Ausblasdüsen falsch oder gar nicht angesteuert.
Es ist daher die Aufgabe der vorliegenden Erfindung, auf eine konstruktiv einfache und kostengünstige Art eine Sensorvorrichtung mit Sensoren höherer Auflö- sung zu schaffen, die zuverlässig Teile verschiedenster Größe detektiert. Weiterhin soll eine Sortiervorrichtung zur Verfügung gestellt werden, mit der bessere und zuverlässigere Sortierergebnisse erzielt werden können.
Diese Aufgabe wird mit einer gattungsgemäßen Sensorvorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 sowie mit einer Sortiervorrichtung nach Anspruch 19 gelöst.
Danach weist die erfindungsgemäße Sensorvorrichtung mehrere Sensoren auf, deren Detektorspulen paarweise so angeordnet sind, dass ihre parallel zur Förderebene stehenden Querschnittsflächen gegeneinander verschobene Flächenschwerpunkte haben, und die Verbindungslinie zwischen den Flächenschwerpunkten schräg zur Bewegungsrichtung des Fördergutes steht.
Die Detektorspulen können dabei grundsätzlich eine beliebige Form haben. Die Erfindung setzt nur voraus, dass die beiden Detektorspulen eines Paares unterschiedlich auf das z.B. von einem Metallteil gestörte Wechselfeld reagieren. Weiterhin soll das Sensorsignal auch den Ort der Überquerung des Sensors feststellbar machen. Dies wird erreicht, indem sich die Querschnittsflächen der Detektorspulen eines Paares in einer parallel zur Förderebene des Fördergutes stehenden Ebene zumindest teilweise nicht überdecken, indem die Flächenschwerpunkte dieser Querschnittsflächen gegeneinander verschoben sind. Weiterhin soll die Verbindungslinie zwischen diesen Flächenschwerpunkten schräg zur Bewegungsrichtung stehen. Mit diesem Symmetriebruch kann am einfach auszuwertenden Sensorsignal unterschieden werden, ob z.B. ein Metallteil links oder rechts von der Sensormitte den Sensor überquert. Würde die Verbindungslinie beispielsweise parallel zur Bewegungsrichtung stehen, würde ein links von der Sensormitte den Sensor überquerendes Teil nicht von einem rechts von der Sensormitte den Sensor überquerenden Teil unterschieden werden können. Man stelle sich zur Veranschaulichung zwei identische kreisförmige Planarspulen als Detektorspulenpaar vor, deren Flächenvektoren senkrecht zur Förderebene ausgerichtet sind. Nach der Erfindung sind die beiden Kreisflächenmittelpunkte der Detektorspulen beabstandet voneinander angeordnet und die Verbindungslinie steht schräg zur Bewegungsrichtung, so dass die beiden Spulen nicht in ihren kreisförmigen Querschnittsflächen übereinanderliegen, sondern sowohl in Bewegungsrichtung als auch quer dazu versetzt zueinander angeordnet sind.
Es wird mit der erfindungsgemäßen Ausgestaltung mit Vorteil erreicht, daß ein Teil, das aufgrund seiner Materialeigenschaft das Wechselfeld verändert, also z.B. als Reaktion auf das Wechselfeld ein sekundäres magnetisches Wechselfeld ausbildet oder z.B. von Hause aus ein Permanentmagnetfeld besitzt, und das an dem Sensor vorbeibewegt wird, in zeitlicher Abfolge zunächst die in Bewegungsrichtung weiter vorne angeordnete Detektorspule beeinflußt. In diese Spule wird zuerst eine sich bei geeigneter Differenzbildung nicht weghebende Spannung induziert. Erst danach kommt die in Bewegungsrichtung dahinter angeordnete Detektorspule in den Einfluß der Feldinhomogenität. Das geeignet gebildete Differenzsignal des Detektorspulenpaares spiegelt diese Information wieder.
Die Ausbildung der Fördereinrichtung ist im Rahmen der Erfindung weitgehend beliebig. Die Sensorvorrichtung kann z.B. auch an einer Fallstrecke angeordnet sein, die sich z.B. einer Fördereinrichtung wie einem Förderband oder einer Rutsche anschließt. Die Bewegungsrichtung und die Orientierung der Förderebene ändern sich in diesem Spezialfall auf dem Fallweg des Fördergutteiles. Weitere denkbare Fördereinrichtungen sind im Stand der Technik bekannt.
Es ist möglich, daß ein Sensor mehrere Detektorspulenpaare aufweist, z.B. vier Detektorspulen. Im nachfolgenden wird aber zur Vereinfachung der Erläuterun- gen und ohne Beschränkung der Allgemeinheit von einem Detektorspulenpaar pro Sensor ausgegangen. Ein Detektorspulenpaar pro Sensor wird im übrigen auch als bevorzugte Ausführungsform angesehen, weil damit alle erforderlichen Information gewonnen werden können.
Wie bereits eingangs ausgeführt, kann die Form der Detektorspulen beliebig gewählt werden. Die Detektorspulen eines Sensors können z.B. auch eine unterschiedliche Form, Größe oder Orientierung im Raum haben. Wenn der Sensor z.B. aufgrund solcher Formunterschiede im ungestörten Wechselfeld ein Differenzsignal signifikant abweichend von Null zeigen sollte, kann z.B. elektronisch ein Nullabgleich hergestellt werden, um die Empfindlichkeit zu optimieren. Auch Inhomogenitäten des ungestörten Wechselfeldes ließen sich so abgleichen, wenn auch mit Aufwand. Mit Vorteil werden allerdings die Merkmale des Anspruch 2 vorgeschlagen. Bei im wesentlichen spiegelsymmetrischer Ausbildung des Detektorspulenpaares ist die induktive Kopplung an das Wechselfeld für beide Detektorspulen weitgehend identisch. Beide Spulen sind einem gleichen magnetischen Gesamtfluß ausgesetzt, vorausgesetzt das Wechselfeld ist näherungsweise homogen aus Sicht der Detektorspulen. Daher wird sich bei der geeignet gewählten, dass heißt die Vorzeichen der Detektorspulenspannungen berücksichtigenden Differenzbildung automatisch näherungsweise ein Nullabgleich einstellen.
Bevorzugt wird vor der Auswertung zunächst aus den beiden Detektorspulenspannungen paarweise ein Gesamtsignal erzeugt, das negative und positive Werte annehmen kann. Es wird dazu z.B. ein Messverstärker üblicher Bauart verwendet. Die Auswertung erfolgt dann am so erzeugten Gesamtsignal des Sensors.
Es kann z.B. aus der zeitlichen Länge der positiven, d.h. mitphasigen, und negativen, d.h. gegenphasigen, Signalanteile des Gesamtsignals und der evtll. dazwi- schenliegenden Verweilzeit bei großen Teilen auf die Zeit geschlossen werden, die das detektierte Teil benötigte, um den Sensor bzw. die einzelnen Detektorspulen zu überqueren. Diese Zeit ist bei zentraler Überquerung größer als bei Überquerung am Rand des Sensors. Aufgrund der Schrägstellung kann weiterhin eindeutig unterschieden werden, ob das Teil links oder rechts von der Sensormitte den Sensor überquert hat. Zusätzlich zu der zeitlichen Länge des positiven bzw. negativen Signalanteils, die bei Schrägstellung z.B. unterschiedlich sein kann, hängt auch die Lage des Nulldurchgangs vom Ort der Überquerung über dem Sensor ab. Auch daraus kann errechnet werden, an welcher Stelle der Sensor überquert wurde.
Erfindungsgemäß kann also aus der Auswertung der Durchlaufzeiten eines Fördergutteiles für die eine und/oder die andere der Detektorspulen eines Paares, ggf. verknüpft mit der Lage des Nulldurchgangs und unter Kenntnis der Schrägstellung, der Ort des Durchgangs sehr genau bestimmt werden. Es ist dadurch eine Auflösung unterhalb der Breite des Sensors bzw. des Spulenpaares möglich. Die Auflösung ist nunmehr nicht mehr durch die Sensor- bzw. Spulengröße bestimmt, sondern im wesentlichen durch die Genauigkeit der Schrägstellung, die Genauigkeit der Messung der Sensorsignale und der Genauigkeit der Auswertung des zeitlichen Verlaufs. Auf diese Weise kann mit Sensoren ansonsten gleicher Baugröße eine mehrfach höhere Ortsauflösung erreicht werden, und es können z.B. mehrere auf die Sensorbreite verteilte und dem Sensor örtlich zugeordnete Ausblasdüsen aufgrund der Information lediglich eines Sensors ortsgenau angesteuert werden.
Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
Insbesondere ist es mit den erfindungsgemäßen Sensoren bei entsprechender Ausbildung der Auswerteinrichtung möglich, eine Abbildung zumindest der Kontur des Teiles zu erhalten, das die Sensorvorrichtung überquert. Die Sensoren sprechen nämlich besonders empfindlich auf das Ein- bzw. Auslaufen eines Teiles in bzw. aus den Sensorbereich an, während z.B. der Sensor bei vollständiger Abdeckung im wesentlichen kein von Null abweichendes Signal mehr liefert. Bei zeitlicher Verfolgung der Entwicklung des Sensorsignales und durch Anwendung aus anderen Bereichen bekannter Interpolationsverfahren und Plausibilitätsprü- fungen kann ein detailliertes Abbild des detektierten Teiles gewonnen werden. Mit Vorteil werden daher die Merkmale des Anspruch 17 vorgeschlagen. Die Auswertung des zeitlichen Verlaufs der Signale mehrerer benachbarter Sensoren vermag ein relativ detailliertes Bild der Form und der Größe des detektierten Teiles zu liefern. Es kann so z.B. zuverlässig erkannt werden, ob ein großer, flächiger Gegenstand die Sensorvorrichtung überstreicht, oder z.B. eine langer, dünner Gegenstand. Dies birgt erhebliche Vorteile gegenüber der bisher üblichen einzelsensororientierten Auswertung. Basierend auf diesen bildhaften Informationen können nämlich z.B. eine geeignete oder eine Mehrzahl geeignet positionierter Ausblasdüsen angesteuert werden, um z.B. einen Gegenstand nicht an dessen Rand anzublasen, wodurch das Teil im wesentlichen nur in Drehung versetzt würde, sondern um auf den geometrischen Schwerpunkt des Teils einzuwirken. Durch geeignet steuerbare Ausbildung der Ausblasdüsen kann z.B. auch der Ausblasimpuls an die Teilgröße angepaßt werden, also z.B. Anwendung eines starken Ausblasimpulses für große Teile und eines kleineren Ausblasimpulses für kleine Teile. Es läßt sich dadurch der Energieaufwand minimieren.
Die Sensoren könnten z.B. in beliebiger Verteilung in der Sensorvorrichtung angeordnet sein. Für die Auswertung und die Ansteuerung der zugeordneten Trenneinrichtung ist dies aber nachteilig. Mit Vorteil sind nach Anspruch 3 die Sensoren der Sensorvorrichtung deshalb in einer Zeile angeordnet, die senkrecht zur Bewegungsrichtung des vorbeibewegten Fördergutstromes steht. Dadurch ist die Laufzeit der Teile vom Sensor bis zum Wirkbereich der Trenneinrichtung für alle Sensoren in der Zeile gleich und die Steuerung der Trenneinrichtung vereinfacht sich.
Die Detektorspulen könnten z.B. als Kreisspulen mit versetzten Schwerpunkten ausgebildet sein. Es könnten z.B. mehrere Detektorspulenpaare pro Sensor vorgesehen sein. Nach Anspruch 4 weist jeder Sensor jedoch nur zwei Detektorspulen auf, die mit Vorteil D-förmig gewickelt und voneinander beabstandet angeordnet sind. Die beiden Spulen eines Paares können z.B. gegensinnig gewickelt sein, ein Abgleich kann aber auch mit dem Meßverstärker erfolgen.
Das Wechselfeld könnte z.B. erzeugt werden von einer sich über alle Sensoren erstreckenden Erregerspule. In der Regel liegt dann allerdings kein räumlich sehr homogenes Feld vor, so daß sich die in den Detektorspulen eines Paares induzierten Spannungen nur unzulänglich aufheben. Weiterhin werden z.B. Fe- Materialien oder andere magnetisierbare Materialien in einem größeren, mehrere Sensoren umfassenden Wechselfeld zu erheblichen Feldlinieneinschnürungen führen, die an benachbarten, aber nicht überquerten Detektorspulenpaaren ebenfalls Signale erzeugen. Die Querempfindlichkeit wird dadurch für manche Anwendungen inakzeptabel. Vorteilhaft ist daher nach Anspruch 5 jedem Sensor eine Erregerspule zugeordnet. Insbesondere mit den weiteren vorteilhaften Merkmalen der Ansprüche 6 und 7 kann so eine Verbesserung der Feldhomogenität über die Sensorspulen hinweg erhalten werden.
Dem gleichen Ziel dienen die vorteilhaften Merkmale des Anspruch 8. Bei Anordnung aller Spulen in derselben Ebene verringern sind mögliche störende Einflüsse durch Sensorspulen benachbarter Sensoren.
Die erfindungsgemäße Sensorvorrichtung könnte z.B. aus einer geeigneten Anzahl einzelner Sensoren zusammengesetzt sein. Nach Anspruch 9 ist aber mit Vorteil vorgesehen, daß mehrere Sensoren zusammengefasst auf einer Feinleiter- Platine angeordnet sind. Beim Layout der Platine können die Spulen sehr genau entworfen werden, und auch die Fertigung kann mit hoher Präzision erfolgen. Die Verwendung von Platinen erlaubt eine exakte und schnelle Positionierung der Sensoren in der Sensorvorrichtung. Die Sensorvorrichtung kann z.B. aus einer einzigen, alle Sensoren tragenden Platine aufgebaut sind. Sie kann aber auch aus mehreren kleineren Sensorplatinen zusammengesetzt sein. Ein Vorteil bei der Verwendung von kleineren Sensorplatinen besteht darin, daß variable Breiten des Fördergutstromes bzw. der Fördereinrichtung abgedeckt werden können durch Hinzufügung weiterer Sensorplatinen. Eine Sensorplatine kann z.B. eine lineare Anordnung von fünf Sensoren aufweisen. Mit acht Platinen, die z.B. in einem gemeinsamen Gehäuse untergebracht werden, kann so z.B. eine Sensorvorrichtung mit einem Sensorarray aus zwei Zeilen mit jeweils zwanzig Sensoren aufgebaut werden. Weiterhin erlaubt die Verwendung kleinerer Sensorplatinen z.B. einen modularen Aufbau, die einzelnen Platinen könnten z.B. modular betrieben und ausgewertet werden. Ein weiterer Vorteil der Platinen ergibt sich aus der Möglichkeit, die Spulen, also sowohl die Erreger- als auch die Detektorspulen, in moderner Feinleitertechnik und damit sehr hoher geometrischer Genauigkeit herzustellen.
Störende Wechselwirkung zwischen den Spulen benachbarter Sensoren lassen sich mit den vorteilhaften Merkmalen des Anspruch 10 weiter verringern. Die Erregerspulen werden frequenz- und phasengleich betrieben, z.B. in einem zwischen 5kHz und 1 MHz gewählten Bereich. Es ist dadurch z.B. gewährleistet, dass kein Übersprechen zwischen benachbarten Sensoren festgestellt wird, unter anderem auch weil jeder Sensor weitgehend gleichwirkende Sensornachbarn hat, deren Einfluß sich wegen der paarweisen Anordnung der Detektorspulen in Summe im wesentlichen aufheben kann. Weniger Umgebungsstörungen bedeutet gleichzeitig verbesserte Messgenauigkeit und höhere Sensorempfindlichkeit. Mit den Merkmalen des Anspruch 13 wird eine mögliche Störung durch benachbarte Sensoren weiter verringert. Jeder Sensor sieht links und rechts neben sich, möglicherweise auch vor oder hinter sich, eine identische Nachbarschaft. Punktsymmetrie an jedem Sensormittelpunkt wäre aus mathematischer Sicht optimal. Der Idealsymmetrie kommt man mit den Merkmalen des Anspruch 13 nahe.
Um über die gesamte Breite der Sensorvorrichtung eine möglichst lückenlose Erfassung z.B. von Metallteilen zu gewährleisten, könnten die Sensoren z.B. so dicht wie möglich angeordnet werden. Vorteilhaft sind die Sensoren aber nach Anspruch 11 in mehreren gegeneinander versetzten Zeilen angeordnet, z.B. auf Lücke stehend. Mehrere Zeilen von Sensoren können auch vorteilhaft dazu verwendet werden, Ergebnisse der Sensoren in der einen Zeile auf Fehler zu prüfen durch Abgleich mit Ergebnissen der Sensoren in einer zweiten Zeile.
Die Reichweite und Empfindlichkeit der Sensoren kann gesteigert werden, indem gemäß Anspruch 12 die Detektorspulen und/oder die Erregerspulen einen Kern aufweisen, z.B. einen Ferritkern oder einen Kern aus anderem geeignetem Material.
Kritisch können die Randbereiche der Sensorvorrichtung sein, weil die ganz außen angeordneten Sensoren nur noch auf einer ihrer Seiten einen benachbarten Sensor haben, der Störeinfluß sich also aus Symmetriegründen nicht aufheben kann. Mit den vorteilhaften Merkmalen des Anspruch 14 wird allerdings erreicht, dass der außen in der Zeile liegende Sensor gleichwohl annähernd gleichen Nachbarschaftseinflüssen ausgesetzt ist, weil daneben noch eine sensorleere Erregerspule angeordnet wird. Man könnte in diese Randerregerspule auch einen weiteren Sensor einbauen, der z.B. nicht zur Auswertung verwendet wird. Der Störeinfluß benachbarter Erregerspulen ist wesentlich höher als der benachbarter Detektorspulen. Der Mehraufwand stünde insofern in keinem günstigen Verhältnis zur zusätzlich erreichten Störeinflußverminderung.
Es erweist sich als vorteilhaft, den Winkel zwischen der Bewegungsrichtung des Fördergutes und der Verbindungslinie der Flächenschwerpunkte bzw. der Symmetrieebene der Detektorspulen eines Paares zwischen 30° und 60° zu wählen, insbesondere die Schrägstellung mit 45° zu wählen. Wenn dieser Winkel sehr klein gewählt würde, wenn also die erste Detektorspule in Bewegungsrichtung nahezu komplett vor der zweiten Detektorspule liegt, kann nur schwer unterschieden werden, ob das detektierte Teil links oder rechts von der Sensormitte den Sensor überquert hat. Diese Unterscheidung ist gar nicht möglich, wenn die Symmetrieebene exakt senkrecht zur Bewegungsrichtung steht. Für den anderen Extremfall, dass nämlich die Symmetrieebene parallel zur Bewegungsrichtung steht kann der Sensor große oder mittig über den Sensor laufende Fördergutteilchen nur sehr schlecht detektieren, weil in beiden Detektorspulen im wesentlichen gleiche Spannungen induziert werden, die sich etwa zu Null aufheben können. Eine örtliche Auflösung unterhalb der Sensorbreite gelingt bei den bevorzugten 45° in optimaler Weise.
Die Frequenz des Wechselfeldes kann in weiten Grenzen gewählt werden. Es kann z.B. ein monofrequentes Feld gewählt werden. Bevorzugt ist aber die Einrichtung zur Erzeugung eines elektromagnetischen Wechselfeldes zur Erzeugung eines multifrequenten Wechselfeldes ausgebildet ist. Das Wechselfeld stellt dann also eine Überlagerung mehrerer Felder unterschiedlicher Frequenz dar. Es können z.B. mehrere diskrete Frequenzen oder z.B. ein Frequenzband verwendet sein. Durch die Verwendung eines solche frequenzgemischten Wechselfeldes wird sichergestellt, daß unabhängig von Fördergutteilgröße und Fördergutteilmaterial stets eine zuverlässige Detektion erfolgt. Als Grundregel kann nämlich festgestellt werden, daß zur Detektion kleiner filigraner Teile, z.B. von Drähten, höhere Frequenzen vorteilhaft sind, z.B. zwischen 150 und 500 kHz, während die Detektion insbesondere von Eisenteilen bevorzugt mit niedrigeren Frequenzen gelingt, z.B. kleiner 20 kHz. Zur Erzeugung solcher frequenzgemischten Felder werden die Erregerspulen mit entsprechenden Signalen beaufschlagt.
Die Vorteile der erfindungsgemäßen Sortiervorrichtung nach Anspruch 19 resultieren aus den vorteilhaften Merkmalen der verwendeten Sensorvorrichtung. Die Merkmale der Ansprüche 20 bis 22 betreffen weitere vorteilhafte Ausgestaltungen.
Nachfolgend soll die Erfindung anhand von Ausführungsbeispielen weiter erläutert werden, die in den Figuren schematisch und prinzipienhaft dargestellt sind. Gleiche Bezugszeichen stehen dabei für gleiche Teile. Es zeigen:
Fig. 1 eine Prinzipdarstellung eines Ausführungsbeispiels einer erfindungsgemäßen Sortiervorrichtung in Seitenansicht,
Fig. 2a, 2b eine Prinzipskizze zur Funktionsweise eines Ausführungsbeispieles eines Sensors der erfindungsgemäßen Sensorvorrichtung (Figur 2a) mit mehreren Signalverläufen des vom Sensor gelieferten Signals ( Figur 2b),
Fig. 3 eine Prinzipdarstellung einer möglichen Schaltungsanordnung für das Ausführungsbeispiel eines Sensors nach Figur 2a, und
Fig. 4 einen Ausschnitt in Draufsicht auf ein Ausführungsbeispiel einer erfindungsgemäßen Sensorvorrichtung in prinzipienhafter Darstellung. Fig. 1 zeigt in zeichnerisch stark vereinfachter Form den prinzipiellen Aufbau einer Sortiervorrichtung 10 zur Aussortierung einer metallischen Fraktion 15, 15', 15" aus einem Fördergutstrom 13. Ein Transportband 12, das in nicht gezeigter Weise mit Fördergut 13 beschickt wird, z.B. über eine vorgeschaltete Rutsche, die wiederum z.B. von einem Fördergutvorrat beschickt wird, transportiert Fördergut 13 mit gleichmäßiger Geschwindigkeit über eine unterhalb des Bandes 12 angeordnete Sensorvorrichtung 14 hinweg. Details zu der Sensorvorrichtung 14 werden anhand der Figuren 2-4 später noch erläutert werden.
Das Fördergut 13 besteht aus einer metallischen Fraktion 15 und nichtmetallischen Fördergutteilen 16. Im dargestellten Beispiel weisen die einzelnen Teile des Fördergutes erhebliche Größenunterschiede auf. In alternativen Ausführungsformen könnte z.B. auch ein Siebschritt vorgeschaltet werden oder das Fördergut durch eine geeignete Aufbereitung bereits im wesentlichen in einheitlicher Größe vorliegen.
Die Sensorvorrichtung 14 ist über einen Datenbus 18 an eine Aus wert- und Steuereinrichtung 20 angeschlossen. Die Aufgabe dieser Auswert- und Steuereinrichtung 20 besteht darin, die von der Sensorvorrichtung 14 gelieferten Sensordaten darauf hin auszuweiten, ob ein auszusortierendes Teil den von Sensorvorrichtung erfaßten Sensorbereich passiert. Weiterhin ist dann geeignet zeitverzögert die Trenneinrichtung 22 auszusteuern, so daß ein detektiertes Metallteil 15' aussortiert wird. Die Ausweit- und Steuereinrichtung 20 kann z.B. auch in die Sensorvorrichtung 14 integriert werden.
Im gezeigten Beispiel besteht die Trenneinrichtung 22 aus einer Ausblasdüse 24, die unterhalb des Förderbandes 12 an eine Fallstrecke angeordnet ist. Vom Förderband 12 herabfallende Fördergutteile 15' können von der Ausblasdüse 24 angeblasen werden, um einem quer beschleunigenden Impuls auf das Fördergutteil auszuüben und es von der ungestörten Bewegungsbahn auf eine andere, z.B. weiterreichende Flugparabel abzulenken. Die Ausblasdüse 24 ist von einem Ventil 26 beherrscht, z.B. von einem Magnetventil. Die Ansteuerung des Ventils erfolgt über Steuerleitungen 28 von der Auswert- und Steuereinrichtung 20. Das Ventil 26 ist einen Druckluftschlauch 32 beherrschend ausgebildet, welcher Druckluft aus einem Druckluftspeicher 34 zu der Ausblasdüse 24 führt. Durch zeitgenaue und kurzzeitige Öffnung des Ventils 26 wird ein an der Düse 24 vorbeifallendes Fördergutteilchen 15' mit einem Blasimpuls beaufschlagt, so daß es von seiner ungestörten Fallbahn abgelenkt wird und über eine Trennkante 36 hinwegfliegt, um von einem weiteren Förderband 40 wegtransportiert zu werden, z.B. zu einer weiteren Bearbeitung oder zu einer weiteren Sortierstufe. Auf diesem abtransportierenden Förderband 40 sind nur noch aussortierte Metallteile 15" anzutreffen. Die Ausblasdüsen 24 können z.B. so ausgebildet und angesteuert sein, daß die Intensität des Ausblasimpulse den gerade auszusortierenden Teilen angepaßt wählbar ist.
Nicht auszusortierende Fördergutteile 13' fallen ungestört auf ein drittes Förderband 42, das diese um die Metallfraktion verminderte Fördergutfraktion z.B. ebenfalls zu einer weiteren Bearbeitung oder Sortierung transportiert.
Das Förderband 12 weist eine gewisse Förderbreite auf, und die Fördergutteile 13 werden über diese Breite verteilt über die Sensorvorrichtung 14 hinwegbewegt. Daher erstreckt sich auch die Sensorvorrichtung 14 über die Breite des Förderbandes 12. Innerhalb der Sensorvorrichtung 14 sind über dessen Breite verteilt mehrere Sensoren 100 angeordnet, so daß die Breitenlage eines Metallteiles 15 auf dem Förderband 12 feststellbar ist. Entsprechend weist die Trenneinrichtung 22 mehrere in einer Reihe quer zur Fallrichtung angeordnete Ausblasdüsen 24 auf, die die Fallwegbreite geeignet abdeckend angeordnet sind. Die Auswert- und Steuereinrichtung 20 ist ausgebildet, diejenige oder diejenigen mehreren Ausblasdüsen 24 anzusteuern, die der Lage des Sensors oder der Sensoren in der Sensorvorrichtung 14 zuzuordnen sind, die ein Fördergutteil 15 de- tektiert haben. Weiterhin berücksichtigt die Auswert- und Sensoreinrichtung 20 die Laufzeit eines Teilchens von der Sensoranordnung 14 bis zu Ausblasposition, also bis zum Erreichen des Wirkbereiches der Ausblasdüsen 24. Es kann dazu z.B. eine mit der Auswert- und Steuereinrichtung 20 kommunizierend verbundene Meßeinrichtung zum Erfassen der Bandgeschwindigkeit vorgesehen sein. Im gezeigten Ausführungsbeispiel ist dazu an der Umlenkrolle 27 des Förderbandes 12 ein Winkelgeber 29 angeordnet, der die momentane Drehzahl der Umlenkrolle mißt, aus der sich die Förderbandgeschwindigkeit ergibt. Die Auswert- und Steuereinrichtung 20 berechnet mit dieser Momentangeschwindigkeit den korrekten Zeitpunkt für das Auslösen der Ausblasdüse 24.
Es sind weitere alternative Ausgestaltungen dieses Ausführungsbeispieles einer Sortiervorrichtung 10 denkbar. So könnten z.B. die Förderbänder 12, 40 und 42 einzeln oder alle durch Transportrutschen oder andere Fördermittel ersetzt sein, statt der Förderbänder 40 und 42 können auch Container vorgesehen sein. Die Ausblasdüsen 24 könnten auch oberhalb eines Fallweges angeordnet sein, um eine Ablenkung der auszusortierenden Fraktion 15', 15" vom freien Fallweg weg nach unten zu bewirken. Die Trennkante 36 wäre dann an anderer Position anzuordnen, sie könnte auch ganz weggelassen werden, wenn auch ohne sie eine zuverlässige Auftrennung in einzelne Fraktionen gewährleistet ist. Weiterhin ist es möglich, zusätzliche Sensoren z.B. zur Beobachtung der Fallstrecke des Fördergutes 13 vorzusehen, um z.B. die von der Sensoranordnung 14 detektierten Metallteile 13' zusätzlich z.B. optisch zu erfassen, um die Ausblasdüsen 24 zeitlich noch exakter anzusteuern. Fig. 2a und 2b zeigen in einer prinzipienhaften Darstellung die Funktionsweise eines aus einer Erregerspule 102 und zwei gegensinnig gewickelten Detektorspulen 104, 106 bestehenden Sensors 100. Im gezeigten Beispiel weisen alle Spulen 102, 104, 106 zwei Wicklungen auf. Die Wicklungszahl kann aber beliebig anders gewählt werden, wobei die Detektorspulen 104 und 106 die gleiche Wicklungszahl haben sollten. Nicht gezeigt sind die elektrischen Leitungen, über die diese Spulen 102, 104, 106 strombeaufschlagt werden. Die den Spulen 102, 104, 106 zugeordneten Kontaktflächen sind mit den Bezugszeichen 112, 114 und 116 bezeichnet.
Die beiden Detektorspulen 104 und 106 sind als Spulenpaar konzentrisch von der Erregerspule 102 umgeben, welche der Erzeugung eines Wechselfeldes dient. Durch dieses Wechselfeld werden in Metallteile 15 A, 15B, 15C Magnetfelder induziert, die in den Wirkbereich des Wechselfeldes und des Sensors 100 eintreten. Die Erregerspule 102 wird dazu mit einer hochfrequenten Wechselspannung beaufschlagt, sie erzeugt also ein elektromagnetisches Wechselfeld mit gleicher Frequenz. Typische Frequenzen können z.B. im kHz-Bereich liegen. Es können auch Frequenzgemische verwendet werden.
Fördergutteile 13 aus einem nichtleitenden Material zeigen keine Wechselwirkung mit dem Wechselfeld. Demgegenüber wird in leitenden Fördergutteilen 15 A, 15B und 15C ein elektromagnetisches Wechselfeld nach typischer, materialentsprechender Übertragungsfunktion induziert.
Die beiden Detektorspulen 104 und 106 sind spiegelsymmetrisch zu einer Spiegelebene 115 angeordnet. Diese Spiegelebene 115 steht schräg zu der Bewegungsrichtung 116 der Fördergutteile 15A, 15B, 15C. Im gezeigten Beispiel beträgt der zwischen der Bewegungsrichtung 116 und der Spiegelebene 115 eingeschlossene Winkel 45°. Der Flächenschwerpunkt M der Detektorspule 104 und der Flachenschwerpunkt M' der Detektorspule 106 sind durch eine gedachte Verbindungslinie L verbunden, die aufgrund der 45° Schrägstellung senkrecht zur Spiegelebene orientiert ist.
In Fig. 2b sind drei Signalverläufe A, B, C des vom Sensor 100 gelieferten Signals zu den drei Metallteilen 15 A, 15B, 15C dargestellt, wobei diese drei Teile den Sensor 100 an unterschiedlichen Stellen passieren. Teil 15A überquert den Sensor 100 mittig, während die Teile 15B und 15C den Sensor 100 weiter außen überqueren, im Fall von Teil 15C nur noch am äußeren Rand.
Verfolgt man die Bewegungsbahn 116 des Teils 15 A, so überquert es zunächst die in Bewegungsrichtung 116 weiter vorne liegende Detektorspule 104. Wie aus dem oberen Signalverlauf A der Fig. 2b ersichtlich, führt dies zu einem Signalanstieg, d.h. die mitphasig messbare Differenzspannung zwischen den beiden Detektorspulen 104 und 106 nimmt zu, weil die in Bewegungsrichtung 116 weiter hinten liegende Detektorspule 106 noch nicht von dem in Metallteil 15A induzierten Wechselfeld beeinflußt ist. Ohne Einschränkung der Allgemeinheit sei dabei angenommen, daß die Detektorspule 104 einen positiven Signalanteil liefert, während Detektorspule 106 einen negativen Signalanteil liefert. Unter dieser Annahme steigt das Gesamtsignal A an, sobald das Metallteil 15 A in den Detek- tionsbereich der Detektorspule 104 eindringt. Das Signal A erreicht dann einen konstanten Wert und fällt dann nach einer gewissen Zeit, die der Dauer der Überquerung der Detektorspule 104 entspricht, wieder ab, um nach einem Nulldurchgang, der dem Überqueren der Symmetrieebene 115 durch das Metallteil 15 A entspricht, in den negativen Bereich zu gehen. Hier dominiert das negative Signal der Detektorspule 106. Nach Verlassen des Wirkbereiches der Detektorspule 106 fällt das Signal A wieder auf Null ab. Die zu den Metallteilen 15B und 15C gezeigten Signalverläufe B und C ergeben sich aus den gleichen Überlegungen. Metallteil 15B erreicht zeitlich etwas später als Teil 15A den Einflußbereich der Detektorspule 104. Die Überquerungsdauer für Detektorspule 104 ist auch kürzer als für Metallteil 15 A, und die Symmetrieebene 115 wird früher erreicht, so daß auch der Nulldurchgang zeitlich früher auftritt. Der negative Teil des Gesamtsignals B ist zeitlich länger, weil das Metallteil 15B einen längeren Weg über die Detektorspule 106 hinweg zurückzulegen hat. Nachdem Metallteilchen 15B auch die zweite Detektorspule 106 vollständig überquert hat, fällt auch hier das Signal B wieder auf Null ab, wobei Metallteil 15B den Sensorbereich in kürzerer Zeit verläßt als Metallteil 15 A. Deshalb ist Signal B auch zeitlich kürzer als Signal A.
Für Metallteil 15C liegt der Sonderfall vor, daß die Detektorspule 104 gar nicht überquert wird. Daher zeigt die mit B bezeichnete Signalkurve keinen positiven Gesamtsignalanteil. Es fehlt daher auch an einem Nulldurchgang. Sobald Metallteil 15C die Detektorspule 106 erreicht, geht das Gesamtsignal in den negativen Signalbereich. Das Metallteil 15C verläßt nach relativ kurzer Zeit Detektorspule 106, so daß auch die negative Gesamtsignaldauer kürzer ist als bei den zu den Metallteilen 15A und 15B gezeigten Signalverläufen A und B.
Die parallel zur Bewegungsrichtung 116 dargestellten Strichpunktlinien entsprechen Positionen dem Sensor 100 zugeordneter Ausblasdüsen 24, die in Fig. 1 dargestellt waren. Über die Breite des Sensors 100 verteilt befinden sich sieben dieser Ausblasdüsen 24, wobei die beiden ganz außen Liegenden teilweise diesem Sensor 100 zugeordnet sind, teilweise aber auch dem linken bzw. rechten Nachbarsensor.
Fig. 3 zeigt in einem Blockdiagramm eine mögliche Beschaltung eines Sensors 100, wobei die Schaltung nur exemplarischen Charakter hat und insbesondere bei Verwendung mehrerer Sensoren 100 davon abweichend ausgebildet aussieht. Es können dann z.B. ADC-Ketten oder Multiplexer, eine Zeilenlogik und Parallelrechner verwendet werden. Die Architektur der Auswertelektronik ist weitgehend frei wählbar und unberührt vom Sensoraufbau. Solche Schaltungen sind auch allgemein aus dem Stand der Technik bekannt, so daß darauf nachfolgend nicht weiter einzugehen ist.
Die Steuerung könnte z.B. über einen üblichen Rechner mit geeigneten Schnittstellen zur Kommunikation mit dem Sensor 100, dem Winkelgeber 27 und den Ausblasdüsen 24 erfolgen. Allerdings werden die von den Sensoren erzeugten Datenmengen so erheblich sein, daß Rechner und Schnittstellen an ihre Leistungsgrenzen stoßen. Im hier gezeigten Beispiel wird die Ansteuerung, Versorgung und Signalauswertung des Sensors 100 daher von einem integrierten leistungsfähigen MikroController (μC) 302 übernommen. Dieser Mikrocontroller 302 kann zusätzlich auch die Steuerung der Ausblasdüsen 24 übernehmen, uns steht dazu über eine Schnittstelle und eine Busleitung 303 mit den zu schaltenden Ventilen 26 in Verbindung. Eine Mikrocontroller-Lösung stellt aber nur eine von mehreren Möglichkeiten dar.
Die Erregerspule 102 wird von einem Leistungsverstärker 305 mit einer geeigneten hochfrequenten Wechselspannung beaufschlagt, um ein Wechselfeld zu erzeugen. Es kann auch eine frequenzgemischte Wechselspannung auf die Erregerspule gegeben werden. Der Leistungsverstärker 305 wiederum wird gespeist von einem vorgeschalteten Digital-Analog-Konverter (DAC) 307, welcher wiederum vom Mikrocontroller 302 angesteuert ist.
Auf der Signalseite wird das an den Detektorspulen 104 und 106 abgreifbare Wechselspannungssignal in einen Meßverstärker 309 eingespeist, der als Differenzverstärker ausgebildet ist, und ein analoges Wechselsignal an einen Analog- Digital- Konverter (ADC) 311 liefert, über den das Signal des Meßverstärkers 309 wiederum zurück zum Mikrocontroller 302 gelangt. Dort oder in einer weiteren Rechnereinrichtung wird das Signal z.B. wie oben zu Fig. 2b geschildert ausgewertet.
Die Aufgaben des Mikrocontrollers 302 ließen sich durch geeignete Ausbildung auch auf die Ausweitung und Gesamtsteuerung der Sortiervorrichtung 10 erweitern, und kann z.B. als digitale Hardware und Firmware in die Sensorvorrichtung 14 integriert sein. Wegen der parallelen Anforderung gleicher Echtzeitmathematik für die mehreren Sensoren 100 und die davon erzeugten Datenströme ist die Verwendung von Parallelrechenwerken und digitalen Signalprozessoren vorteilbringend.
Fig. 4 zeigt in Draufsicht einen Ausschnitt aus einer Sensorvorrichtung 14 mit zwei Zeilen von Sensoren 100, die dem in Fig. 2a gezeigten Ausführungsbeispiel entsprechen. Dabei sind diese Sensoren 100 gruppenweise auf einer Platine 402 angeordnet. Ohne Einschränkung der Allgemeinheit können z.B. jeweils fünf Sensoren 100 pro Platine 402 vorgesehen sein.
Die Sensoren 100 stehen innerhalb der Zeilen in gleichen Abständen, die Sensoren 100 der einen Zeile stehen dabei auf Lücke zu den Sensoren 100 der anderen Zeile. Alle Sensoren 100 zeigen die gleiche Schrägstellung der Symmetrieebene 115 relativ zur Bewegungsrichtung 116, die hier der Richtung der strichpunktierten Linien entspricht, die, wie auch schon in Fig. 2a, die örtliche Anordnung der Ausblasdüsen V1-V20 (24) darstellen, die in Abhängigkeit der Sensorsignale zum Ausblasen eines detektierten Metallteiles 15 angesteuert werden.
Die Abstände zwischen den Sensoren 100 innerhalb einer Zeile sind kleiner als der Durchmesser der Detektorspulen 104, 106, so daß sich aufgrund der versetz- ten Anordnung der beiden Reihen eine Überdeckung in der Breite ergibt. Ein Metallteil, das z.B. entlang derjenigen Bewegungsbahn läuft, die dem Ausblasventil V5 zugeordnet werden kann, überstreicht sowohl Sensor 100' als auch Sensor 100". Bei der Auswertung der Sensorsignale dieser beiden Sensoren kann die Aus wert- und Steuereinrichtung 20 also z.B. einen Abgleich dahingehend vornehmen, ob die Detektion eines Metallteiles durch Sensor 100' an einem bestimmten Ort übereinstimmt mit der zeitlich versetzt erfolgenden Detektionsmel- dung des Sensors 100". Weiterhin kann bei einer solchen Anordnung eine Plausi- bilitätsprüfung an Teilen durch geführt werden, die breiter als der Ventilabstand sind. So kann z.B. ein Teil, das die Ventillinie Vl und V2 überdeckt, in seiner Kontur errechnet werden: der erste Sensor 100 der oberen Zeile reagiert mit gleichlanger positiver und negativer Signalzeit. Das Überstreichen in Höhe der Linie V2 könnte von dem ersten Sensor 100 nicht gemessen werden. Da aber der erste Sensor 100" der unteren Zeile nun und ausschließlich mit einem positiven Signal reagiert, muss das Teil entlang der Linien Vl und V2 die Sensoren 100 und 100" überquert haben. Ist das Teil noch größer, also überstreicht es die Sensoren 100 und 100" z.B. entlang der Linien Vl, V2 und V3, so reagiert der erste Sensor 100" der unteren Zeile mit einem langen positiven Signal und einem kurzen negativen. Es kann also gefolgert werden, dass die Sensoren über die Breite der Linien Vl, V2 und V3 überstrichen worden sind. Es läßt sich nach diesem Prinzip nahezu jede erdenkliche Teilebreite interpolieren, die größer als die Sensoren selbst ist.
Die erfindungsgemäße Sensorvorrichtung 10 gestattet eine hochauflösende Ortung elektromagnetisch detektierbarer Teile, die über die Sensorvorrichtung 14 hinwegbewegt werden. Durch geeignete Auswertung der Sensorsignale, z.B. durch der Signale mehrerer benachbarter Sensoren oder gar aller Sensoren und durch Hinzunahme von Interpolationsverfahren nach dem eben geschilderten Prinzip, kann ein vollständiges Bild der detektierten Teile erhalten werden. Die exemplarisch gezeigte Sensorvorrichtung 14 funktioniert zuverlässig für einen sehr breiten Größenbereich der zu detektierenden Teile, also sowohl bei Teilen, die kleiner als der Durchmesser der Sensoren 100 sind, als auch bei Teilen, die über mehrere Sensoren 100 gleichzeitig hinweglaufen.
Die sich nach Fig. 4 ergebende Verbesserung der Auflösung gegenüber dem gattungsgemäßen Stand der Technik um den Faktor 5 wird schon mit einfachen Mitteln erreicht. Bei Anwendung von mehr Rechen- und Auswerteleistung, gegebenenfalls auch bei Verwendung weiterer Sensoren, kann die Auflösung ohne großen Aufwand weiter verfeinert werden. Auflösungssteigerungen um einen Faktor 10 wurden problemlos erreicht.

Claims

Oliver Gurok 04041pctAlexander BraunSensorvorrichtung zum Erkennen elektromagnetisch detektierbarer Fördergutteile und Sortiervorrichtung mit einer solchen SensorvorrichtungPATENTANSPRÜCHE
1. Sensorvorrichtung (14) mit mehreren Sensoren (100) zum Erkennen elektromagnetisch detektierbarer Fördergutteile (15, 16), mit einer zugeordneten Fördergut (13) in einer Förderebene und in einer Bewegungsrichtung (116) an den Sensoren (100) vorbeibewegenden Fördereinrichtung (12), mit einer Einrichtung (102) zur Erzeugung eines elektromagnetischen Wechselfeldes, wobei die Sensoren (100) jeweils wenigstens ein Paar von Detektorspulen (104, 106) aufweisen, die an eine Auswerteinrichtung (20) zur Bestimmung eines Differenzsignals zwischen den Spulen (104, 106) eines Paares angeschlossen sind zum Erfassen von Fördergutteilen (15), die aufgrund ihrer Materialeigenschaften das Wechselfeld verformen, dadurch gekennzeichnet, dass die beiden Detektorspulen (104, 106) des Paares so angeordnet sind, dass sie parallel zur Förderebene stehende Querschnittsflächen mit gegeneinander verschobenen Flächenschwerpunkten (M, M') haben, und die Verbindungslinie (L) zwischen den Flächenschwerpunkten (M, M') schräg zur Bewegungsrichtung (116) des Fördergutes (13) steht.
2. Sensorvorrichtung (14) nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Detektorspulen (104, 106) des Paares spiegelsymmetrisch zu einer Symmetrieebene (115) angeordnet sind, die nicht gleichzeitig auch eine Spiegelebene jeder der Detektorspulen (104, 106) ist.
3. Sensorvorrichtung (14) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sensoren (100) in einer Zeile angeordnet sind, die im wesentlichen senkrecht zur Bewegungsrichtung (116) des vorbeibewegten Fördergutstromes (13) steht.
4. Sensorvorrichtung (14) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass jeder Sensor (100) ein Detektorspulenpaar (104, 106) aufweist, und diese Detektorspulen (104, 106) D-förmig ausgebildet und voneinander beabstandet angeordnet sind.
5. Sensorvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einrichtung zur Erzeugung des Wechselfeldes mehrere Erregerspulen (102) aufweist und jedem Sensor (100) eine Erregerspule (106) zugeordnet ist.
6. Sensorvorrichtung (14) nach Anspruch 5, dadurch gekennzeichnet, dass die Sensorspulen (104, 106) von der zugeordneten Erregerspule (102) umgeben sind.
7. Sensorvorrichtung (14) nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Erregerspulen (102) kreisförmig gewickelte Spulen sind.
8. Sensorvoπichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alle Erreger- und Detektorspulen (102, 104, 106) im wesentlichen in derselben Ebene parallel zur Förderebene des vorbeibewegten Fördergutstromes (13) angeordnet sind.
9. Sensorvorrichtung (14) nach Anspruch 8, dadurch gekennzeichnet, dass mehrere Sensoren (100) auf einer Feinleiter-Platine (402) angeordnet sind.
10. Sensorvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alle Erregerspulen (102) synchron betrieben sind.
11. Sensorvorrichtung (14) nach einem der vorhergehende Ansprüche, dadurch gekennzeichnet, dass die Sensoren (100', 100") in mehreren gegeneinander versetzten Zeilen angeordnet sind.
12. Sensorvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Detektorspulen (104, 106) und/oder die Erregerspulen (102) einen zum Fördergutstrom (13) offenen Kern aufweisen.
13. Sensorvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in einer Zeile liegenden Sensoren (100) gleichbeabstandet angeordnet sind.
14. Sensorvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an den Zeilenenden sensorleere Erregerspulen (102) angeordnet sind.
15. Sensorvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Winkel zwischen der Bewegungsrichtung (116) des Fördergutstromes (13) und der Verbindungslinie der Flächenschwerpunkte bzw. der Symmetrieebene (115) der Detektorspulen (104, 106) eines Paares zwischen 30° und 60° beträgt.
16. Sensorvorrichtung (14) nach Anspruch 15, dadurch gekennzeichnet, daß der Winkel 45° beträgt.
17. Sensorvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Auswerteinrichtung (20) ausgebildet ist, die Signale mehrerer benachbart zueinander angeordneter Sensoren (100) zeitlich miteinander korreliert auszuwerten.
18. Sensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Einrichtung (102) zur Erzeugung eines elektromagnetischen Wechselfeldes zur Erzeugung eines multifrequenten Wechselfeldes ausgebildet ist.
19. Vorrichtung (10) zum automatisierten Aussortieren von elektromagnetisch detektierbaren Fraktionen aus einem Fördergutstrom (13), mit einer Fördereinrichtung (12) zum Bewegen des Fördergutes (13) durch einen De- tektionsbereich, mit einer in dem Detektionsbereich angeordneten Sensorvorrichtung (14) zum Erkennen elektromagnetisch detektierbarer Fördergutteile (15) in einem quer zur Sensorvorrichtung (14) an dieser benachbart vorbeibewegten Fördergutstrom (13), mit einer Trenneinrichtung (24) zum selektiven Trennen einer detektierten und auszusortierenden Fraktion (15', 15"), und mit einer Auswert- und Steuereinrichtung (20), die die Trenneinrichtung (24) anhand der Auswertung der von der Sensorvor- richtung (14) gelieferten Ergebnisse ansteuert, gekennzeichnet durch eine Sensorvoπϊchtung (14) nach einem der vorhergehenden Ansprüche.
20. Vorrichtung (10) nach Anspruch 19, dadurch gekennzeichnet, dass die Trenneinrichtung eine Mehrzahl von Ausblasdüsen (24) aufweist.
21. Vorrichtung nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass die Fördereinrichtung ein Förderband (12) ist, und die Sensoren (100) unterhalb des Förderbandes (12) angeordnet sind.
22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass eine Meßeinrichtung (29) die Momentantransportgeschwindigkeit des Transportbandes (12) ermittelt und diese Messung zur Korrektur der Verzögerungszeit zwischen Erfassung des Fördergutteiles (13) und Ansteuern der Trenneinrichtung (24) verwendet wird.
EP06805832A 2005-10-10 2006-09-25 Sensorvorrichtung zum erkennen elektromagnetisch detektierbarer fördergutteile und sortiervorrichtung mit einer solchen sensorvorrichtung Not-in-force EP1940564B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005048757A DE102005048757A1 (de) 2005-10-10 2005-10-10 Sensorvorrichtung zum Erkennen elektromagnetisch detektierbarer Fördergutteile und Sortiervorrichtung mit einer solchen Sensorvorrichtung
PCT/EP2006/009272 WO2007042139A1 (de) 2005-10-10 2006-09-25 Sensorvorrichtung zum erkennen elektromagnetisch detektierbarer fördergutteile und sortiervorrichtung mit einer solchen sensorvorrichtung

Publications (2)

Publication Number Publication Date
EP1940564A1 true EP1940564A1 (de) 2008-07-09
EP1940564B1 EP1940564B1 (de) 2008-12-03

Family

ID=37442108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06805832A Not-in-force EP1940564B1 (de) 2005-10-10 2006-09-25 Sensorvorrichtung zum erkennen elektromagnetisch detektierbarer fördergutteile und sortiervorrichtung mit einer solchen sensorvorrichtung

Country Status (4)

Country Link
EP (1) EP1940564B1 (de)
AT (1) ATE416042T1 (de)
DE (3) DE102005048757A1 (de)
WO (1) WO2007042139A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050907A1 (de) 2008-10-10 2010-04-22 Dwenger und Grünthal Engineering GmbH Ausblasvorrichtung zum selektiven Ausblasen von Fördergutteilen aus einem Fördergutsstrom und Sortiervorrichtung mit einer solchen Ausblasvorrichtung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007291932B2 (en) * 2006-08-28 2014-02-13 Detection Systems Pty Ltd Production line detection apparatus and method
US7732726B2 (en) * 2008-04-03 2010-06-08 Valerio Thomas A System and method for sorting dissimilar materials using a dynamic sensor
MX2010013578A (es) * 2008-06-11 2011-03-21 a valerio Thomas Metodo y sistema para la recuperacion de metal de materiales reciclados procesados.
DE202009018890U1 (de) * 2009-07-28 2014-04-07 Ahlborn Mess- Und Regelungstechnik Gmbh Elektronisches Modul, insbesondere digitaler Messfühler
DE202009016133U1 (de) 2009-11-30 2010-03-18 d.evolte Forschungs- und Entwicklungsgesellschaft bR (vertretungsberechtigte Gesellschafter: Alexander Braun Detektionssystem zum Erkennen elektromagnetisch detektierbarer Fördergutteile und Sortiervorrichtung mit einem solchen System
WO2014102011A1 (de) * 2012-12-28 2014-07-03 D.Evolute Forschungs- Und Entwicklungsgesellschaft Br Verfahren zum erkennen und klassifizieren von elektromagnetisch detektierbaren teilen, insbesondere von fördergutteilen in einem schüttgut
AT13646U1 (de) * 2013-01-08 2014-05-15 Binder Co Ag Anblasvorrichtung
DE102013010894A1 (de) 2013-07-01 2015-01-08 Thomas Grünthal Mobile Sortieranlage für Schüttgüter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3476035D1 (en) * 1983-07-05 1989-02-16 Elektroniktechnologie Get Inductive sensor device and measuring device for using the same
DE3714009A1 (de) * 1987-04-27 1988-11-10 Hauni Werke Koerber & Co Kg Metalldetektor
DE3827024C2 (de) 1988-08-05 1995-01-19 S & S Elektronik Geraetebau Vorrichtung zum Erkennen und Trennen von Verunreinigungen aus einem Kunststoff- oder Glasmaterialstrom
DE3912840A1 (de) * 1989-04-19 1990-10-25 Foerster Inst Dr Friedrich Suchspulenanordnung fuer ein induktives suchgeraet
DE4423661A1 (de) * 1994-07-06 1996-01-11 Foerster Inst Dr Friedrich Suchspulenanordnung
DE19830584C2 (de) * 1997-10-11 2001-11-22 Mesutronic Geraetebau Gmbh Aufnehmer-Vorrichtung
DE10003562A1 (de) * 2000-01-27 2001-08-16 Commodas Gmbh Vorrichtung und Verfahren zum Aussortieren von metallischen Fraktionen aus einem Schüttgutstrom
DE10233352A1 (de) * 2002-07-23 2004-02-05 Lorenz Roatzsch Verfahren zum Aussortieren von Metallobjekten, bzw. eine Sortieranlage, ein Detektor sowie eine Schaltungsanordnung hierfür
GB0228692D0 (en) * 2002-12-09 2003-01-15 London Underground Ltd A device
GB0322224D0 (en) 2003-09-23 2003-10-22 Qinetiq Ltd Apparatus for establishing the positions of metal objects in an input stream
DE102004049641B4 (de) * 2004-10-11 2006-10-19 Sartorius Aachen Gmbh & Co.Kg System zur industriellen Qualitätskontrolle von Gütern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007042139A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050907A1 (de) 2008-10-10 2010-04-22 Dwenger und Grünthal Engineering GmbH Ausblasvorrichtung zum selektiven Ausblasen von Fördergutteilen aus einem Fördergutsstrom und Sortiervorrichtung mit einer solchen Ausblasvorrichtung
DE202008017748U1 (de) 2008-10-10 2010-06-17 Dwenger und Grünthal Engineering GmbH Ausblasvorrichtung zum selektiven Ausblasen von Fördergutteilen aus einem Fördergutstrom und Sortiervorrichtung mit einer solchen Ausblasvorrichtung

Also Published As

Publication number Publication date
DE202006020496U1 (de) 2008-11-20
EP1940564B1 (de) 2008-12-03
DE502006002284D1 (de) 2009-01-15
WO2007042139A1 (de) 2007-04-19
DE102005048757A1 (de) 2007-04-19
ATE416042T1 (de) 2008-12-15

Similar Documents

Publication Publication Date Title
EP1940564B1 (de) Sensorvorrichtung zum erkennen elektromagnetisch detektierbarer fördergutteile und sortiervorrichtung mit einer solchen sensorvorrichtung
EP1433541A1 (de) Vorrichtung zum Ausblasen von metallischen Fraktionen aus einem Schüttgutstrom
EP0459478B1 (de) Vorrichtung zum Feststellen von relativ zu einer metallempfindlichen Sensoranordnung bewegten Metallteilen
EP0222028B1 (de) Metalldetektor zur Erkennung von metallischen Gegenständen
EP0353457B1 (de) Vorrichtung zum Erkennen und Trennen von Verunreinigungen aus einem Kunststoff- oder Glasmaterialstrom
DE4209158A1 (de) Hochgeschwindigkeits- tablettensortiervorrichtung
WO2008101270A1 (de) Verfahren und vorrichtung zum unterscheiden von ein elektromagnetisches wechselfeld beeinflussenden objekten, insbesondere metallobjekten
EP3087877B1 (de) Kassensystemanordnung mit warentrennstaberkennung
EP1685641A1 (de) Sortiereinrichtung unterschiedlicher stoffe mit hilfe eines transportbandes und eines elektromagnetischen stellglieds
WO2011082728A1 (de) Detektionseinrichtung für eine bandfördereinrichtung und verfahren zur detektion von elektrisch leitfähigen fremdkörpern im fördergut einer bandfördereinrichtung
DE10105082A1 (de) Vorrichtung zur Entgegennahme von Banknoten
DE3731329C2 (de)
EP2092371A2 (de) Einrichtung zur überwachung eines produktstromes auf störende einschlüsse
EP1347311B1 (de) Verfahren zum Detektieren von Objekten, insbesondere von Metallobjekten
EP0818030B1 (de) Verfahren und einrichtungen zur prüfung von sicherheitsdokumenten
EP2650660A1 (de) Metallmelderband mit integrierter Wägezelle
DE102022208758A1 (de) Metalldetektor und Verfahren zur Detektion von Metallen in Fördergut
DE4315373C2 (de) Ausschleusvorrichtung für Aluminium-Dosendeckel
DE102006041636B4 (de) Förderanlage mit Näherungsschalter bzw. Näherungsschalter
EP2938443B1 (de) Verfahren zum erkennen und klassifizieren von elektromagnetisch detektierbaren teilen, insbesondere von fördergutteilen in einem schüttgut
EP4198464A1 (de) Förderbandwaage mit metalldetektor
DE10233352A1 (de) Verfahren zum Aussortieren von Metallobjekten, bzw. eine Sortieranlage, ein Detektor sowie eine Schaltungsanordnung hierfür
EP3764054B1 (de) Sensoranordnung zum erfassen einer auslenkung einer drahtelektrode
DE202009016133U1 (de) Detektionssystem zum Erkennen elektromagnetisch detektierbarer Fördergutteile und Sortiervorrichtung mit einem solchen System
DE10213115A1 (de) Verfahren zum Aussortieren von Metallobjekten bzw. eine Sortieranlage, ein Detektor sowie eine Schaltungsanordnung hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006002284

Country of ref document: DE

Date of ref document: 20090115

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090303

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090504

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: STL SYSTEMTECHNIK LUDWIG GMBH

Effective date: 20090903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

NLR1 Nl: opposition has been filed with the epo

Opponent name: STL SYSTEMTECHNIK LUDWIG GMBH

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

BERE Be: lapsed

Owner name: GUROK, OLIVER

Effective date: 20090930

Owner name: BRAUN, ALEXANDER

Effective date: 20090930

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GUROK, OLIVER

Free format text: GUROK, OLIVER#AM EISKELLER 34#21339 LUENEBURG (DE) $ BRAUN, ALEXANDER#VOR DEM WEISSEN BERGE 20#21339 LUENEBURG (DE) -TRANSFER TO- GUROK, OLIVER#AM EISKELLER 34#21339 LUENEBURG (DE) $ BRAUN, ALEXANDER#VOR DEM WEISSEN BERGE 20#21339 LUENEBURG (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090604

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002284

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002284

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502006002284

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20170304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170810

Year of fee payment: 12

Ref country code: GB

Payment date: 20170920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190313

Year of fee payment: 13

Ref country code: DE

Payment date: 20190315

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190315

Year of fee payment: 13

Ref country code: AT

Payment date: 20190314

Year of fee payment: 13

Ref country code: NL

Payment date: 20190313

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006002284

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 416042

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190925