EP1932060B1 - Negative photosensitive zusammensetzung für koh ätzung von silizium ohne verwendung einer siliziumnitrid-hardmaske - Google Patents

Negative photosensitive zusammensetzung für koh ätzung von silizium ohne verwendung einer siliziumnitrid-hardmaske Download PDF

Info

Publication number
EP1932060B1
EP1932060B1 EP06803089A EP06803089A EP1932060B1 EP 1932060 B1 EP1932060 B1 EP 1932060B1 EP 06803089 A EP06803089 A EP 06803089A EP 06803089 A EP06803089 A EP 06803089A EP 1932060 B1 EP1932060 B1 EP 1932060B1
Authority
EP
European Patent Office
Prior art keywords
group
silane
weight
substrates
individually selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06803089A
Other languages
English (en)
French (fr)
Other versions
EP1932060A4 (de
EP1932060A1 (de
Inventor
Xing-Fu Zhong
Chenghong Li
Jyoti K. Malhotra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brewer Science Inc
Original Assignee
Brewer Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brewer Science Inc filed Critical Brewer Science Inc
Publication of EP1932060A1 publication Critical patent/EP1932060A1/de
Publication of EP1932060A4 publication Critical patent/EP1932060A4/de
Application granted granted Critical
Publication of EP1932060B1 publication Critical patent/EP1932060B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0041Photosensitive materials providing an etching agent upon exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • Y10S430/108Polyolefin or halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/115Cationic or anionic

Definitions

  • the present invention is concerned with new photoresists for use in the manufacture of microelectronic devices such as those used in microelectromechanical systems (MEMS).
  • MEMS microelectromechanical systems
  • etch protective coatings or masks for MEMS fabrication processes have been selected primarily by using a trial-and-error method because there are no general purpose protective coatings on-the market.
  • the etch selectivity of the etchants to various materials is often used as a guide for MEMS process engineers.
  • films of silicon nitride have been used as a protective layer or hardmask during KOH or TMAH bulk silicon etching.
  • Silicon dioxide has a higher etch rate than silicon nitride. Therefore, it is only used as a protective/mask layer for very short etches.
  • Gold (Au), chromium (Cr), and boron (B) have also been reportedly used in some situations.
  • Non-patterned, hard-baked photoresists have been used as masks, but they are readily etched in alkaline solutions.
  • Polymethyl methacrylate was also evaluated as an etch mask for KOH. However, because of saponification of the ester group, the masking time of this polymer was found to decrease sharply from 165 minutes at 60 ° C to 15 minutes at 90°C.
  • US-6 878 502 teaches a positive-acting resist composition
  • a positive-acting resist composition comprising (A) a resin which comprises specified repeating units and decomposes by the action of an acid, and (B) a compound capable of generating an acid upon irradiation with one of an actinic ray and a radiation.
  • the resin polymer is soluble in alkali developers.
  • US 2005/158538 A1 discloses Protective coating layers for use in wet etch processes during the production of semiconductor and MEMS devices.
  • the layers include a primer layer, a first protective layer, and an optional second protective layer.
  • the primer layer preferably comprises an organo silane compound in a solvent system.
  • the first protective layer includes thermoplastic copolymers prepared from styrene, acrylonitrile, and optionally other addition polymerizable monomers such as (meth)acrylate monomers, vinlybenzyl chloride, and diesters of maleic acid or fumaric acid.
  • the second protective layer comprises a highly halogenated polymer such as a chlorinated polymer which may or may not be crosslinked upon heating.
  • a photoresist layer to be patterned must be applied to the protective coating or mask so that the pattern can be transferred to the underlying substrate.
  • this can only be carried out after the protective coating or mask has been applied, thus requiring time and expense to apply and later etch this protective layer or mask, which is very difficult to remove.
  • the present invention overcomes these problems by providing spin-applied, photosensitive coating systems that replace prior art masks or protective coatings, and that eliminate the need for additional photoresists in the system.
  • the inventive systems protect device features from corrosion and other forms of attack during deep-etching processes that utilize concentrated aqueous bases.
  • the invention provides a photosensitive composition useful as a protective layer.
  • the composition comprises a polymer and a photoacid generator, and the polymer comprises styrene-containing monomers, acrylonitrile-containing monomers, and epoxy-containing monomers.
  • the invention also provides methods of using these photosensitive compositions in conjunction with a primer layer to form microelectronic structures.
  • the present invention provides a photosensitive composition useful as a protective layer that is alkaline-resistant, said composition being negative-acting and said composition comprising a polymer and a photoacid generator dissolved or dispersed in a solvent system, said polymer comprising: and repeating unit (III) comprising at least one epoxy group, wherein in (I) and (II):
  • the present invention provides a method of forming a microelectronic structure, said method comprising:
  • the present invention also provides a microelectronic structure comprising:
  • these systems comprise a primer layer that is applied to a microelectronic substrate surface, and a photosensitive layer that is applied to the primer layer.
  • Primer layers are formed from primer layer compositions including a silane dispersed or dissolved in a solvent system.
  • Aromatic and organo silanes are particularly preferred silanes for use in the primer layers of the invention.
  • the silane include at least one (and more preferably 2-3) group per mole of compound, or per repeat unit ofpolymer, that reacts with epoxy groups to form covalent bonds so that adhesion to a silicon substrate is very strong.
  • One preferred such group is an amine group.
  • Preferred silanes include aminoalkoxysilanes, preferably from C 1 to C 8 alkoxys, more preferably from C 1 to C4 alkoxys, and even more preferably from C 1 to C 3 alkoxys. Even more preferably, the aminoalkoxysilane is an aminoalkylalkoxysilane, preferably from C 1 to C 8 alkyls, more preferably from C 1 to C 4 alkyls, and even more preferably from C 1 to C 3 alkyls. Phenylaminoalkylalkoxysilanes are also preferred.
  • Some examples of the foregoing include aminopropyltrimethoxysilane, aminopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, and N-phenylaminopropyltriethoxysilane.
  • silanes include phenylsilanes such as phenyltrimethoxysilane, phenyltrichlorosilane, phenyltriethoxysilane, phenyltriacetoxysilane, and diphenylsilanes such as diphenyldimethoxysilane, diphenyldichlorosilane, and diphenylsilanediol.
  • phenylsilanes such as phenyltrimethoxysilane, phenyltrichlorosilane, phenyltriethoxysilane, phenyltriacetoxysilane
  • diphenylsilanes such as diphenyldimethoxysilane, diphenyldichlorosilane, and diphenylsilanediol.
  • the most preferred silanes include 2-phenylethyltrialkoxysilane, p/m-chlorophenyltrimethoxysilane, p/m-bromophenyltrimethoxysilane,(p/m-chloromethyl)phenyltrimethoxysilane, 2-(p/m-methoxy)phenylethyltrimethoxysilane, 2-(p/m-chloromethyl)phenylethyltrimethoxysilane, 3,4-dichlorophenyltrichlorosilane, 3-phenoxypropyltrichlorosilane, 3-(N-phenylamino)ropyltrimethoxysilane, and 2-(diphenylphosphino)ethyltriethoxysilane.
  • silanes for use in the present invention can also be represented by the general formula where: wherein:
  • An effective primer layer composition according to the invention is a mixture of a diphenyldialkoxysilane (e.g., diphenyldimethoxysilane) and a phenyltrialkoxysilane, (e.g., phenyltrimethoxysilane) or, even more preferably, a mixture of diphenylsilanediol and phenyltrimethoxysilane in a solution of 1-methoxy-2-propanol or 1-propoxy-2-propanol with from 5-10% by weight water.
  • a diphenyldialkoxysilane e.g., diphenyldimethoxysilane
  • a phenyltrialkoxysilane e.g., phenyltrimethoxysilane
  • a particularly effective primer layer composition for photosensitive layers comprising a poly(styrene-co-acrylonitrile) polymer is an alcohol and water solution containing from 0.1-1.0% (preferably from 0.25-0.5%) by weight diphenylsilanediol and from 0.1-1.0% (preferably from 0.25-0.5%) by weight of phenyltrimethoxysilane.
  • diphenylsilanediol and phenylsilanetriol the hydrolysis product of phenyltrimethoxysilane condense to form siloxane bonds and establish a three-dimensional silicone coating layer on the substrate.
  • Another preferred silane has the formula wherein:
  • Silanes having this structure are not only compatible with styrene-containing copolymers, but they are also reactive with ester, benzyl chloride, and/or epoxy groups, and they are excellent adhesion promoters.
  • One particularly preferred silane within the scope of this formula is This silane is 3-[N-phenylamino]propyltrimethoxysilane (mentioned above), and it is commercially available from Lancaster Synthesis and Gelest Corporation.
  • the silane should be included in the primer layer composition at a level of from 0.1% to 3% by weight, preferably from 0.2% to 2% by weight, and even more preferably from 0.5% to 1% by weight, based upon the total weight of solids in the primer layer composition taken as 100% by weight
  • the solvent system utilized in the primer layer composition should have a boiling point of from 100°C to 220°C, and preferably from 140°C to 180°C.
  • the solvent system should be utilized at a level of from 30% to 99.9% by weight, and preferably from 40% to 80% by weight, based upon the total weight of the primer layer composition taken as 100% by weight.
  • Preferred solvent systems include a solvent selected from the group consisting of methanol, ethanol, isopropanol, butanol, 1-methoxy-2-propanol, ethylene glycol monomethyl ether, and 1-propoxy-2-propanol, and mixtures thereof.
  • water is included in the solvent system at a level of from 20% to 60% by weight, and preferably from 20% to 40% by weight, based upon the total weight of the primer layer composition taken as 100% by weight.
  • the primer layer composition can also include a catalyst.
  • Suitable catalysts include any inorganic or organic acid (e.g., hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid) or an inorganic or organic base (e.g., potassium hydroxide, TMAH, ammonia, amines).
  • the catalyst is preferably present in the primer layer composition at levels of from 0.01% to 0.5% by weight, more preferably from 0.1 % to 0.3% by weight, and even more preferably from 0.02% to 0.03% by weight, based upon the total weight of solids in the primer layer composition taken as 100% by weight.
  • the primer layer can also include a number of optional ingredients, such as a surfactant.
  • a surfactant such as FC4430 (available from 3M) or Triton X-100 (available from 3M) can be added to make a uniform primer coating that is defect-free.
  • the photosensitive layer is formed from a composition comprising a polymer dispersed or dissolved in a solvent system.
  • the polymer is a terpolymer comprising recurring: styrene monomers; acrylonitrile monomers; and monomers comprising functional groups that react with amines.
  • the styrene monomers have the formula
  • the acrylonitrile monomers have the formula
  • the monomers comprising functional groups for reacting with amines are monomers comprising one or more epoxy groups (e.g., glycidylmethacrylate, glycidyl acrylate, vinylbenzyl glycidyl ether).
  • epoxy groups e.g., glycidylmethacrylate, glycidyl acrylate, vinylbenzyl glycidyl ether.
  • the polymer preferably comprises from 35% to 75% by weight of monomer (I), more preferably from 46% to 70% by weight of monomer (I), and even more preferably from 50% to 65% by weight of monomer (I).
  • the polymer preferably comprises from 20% to 40% by weight of monomer (II), more preferably from 25% to 35% by weight of monomer (II), and even more preferably from 25% to 30% by weight of monomer (II).
  • the polymer preferably comprises from 5% to 15% by weight of monomer (III), more preferably from 6% to 12% by weight of monomer (III), and even more preferably from 8% to 10% by weight of monomer (III).
  • Each of the above percentages by weight is based upon the total weight of the polymer taken as 100% by weight.
  • the polymer have a weight average molecular weight of from 10,000 Daltons to 80,000 Daltons, preferably from 20,000 Daltons to 60,000 Daltons, and even more preferably from 30,000 Daltons to 50,000 Daltons.
  • Monomers other than monomers (I), (II), and (III) can also be present in the polymer, if desired.
  • the combined weight of monomers (I), (II), and (III) in the polymer is preferably at least 60% by weight, and more preferably from 70% to 90% by weight, based upon the total weight of the polymer taken as 100% by weight.
  • suitable other monomers include those having functional groups that can react with groups in the primer layer for achieving chemical bonding between the two layers.
  • These monomers may have, by way of example, haloalkyl (e.g., benzyl chloride, 2-chloroethyl methacrylate), ester (methacrylates, acrylates, maleates, fumarates, isocyanates), or anhydride functional groups, which react readily with functional groups such as hydroxyl, amino, or oxiranyl groups that can be present in the primer layer.
  • haloalkyl e.g., benzyl chloride, 2-chloroethyl methacrylate
  • ester methacrylates, acrylates, maleates, fumarates, isocyanates
  • anhydride functional groups which react readily with functional groups such as hydroxyl, amino, or oxiranyl groups that can be present in the primer layer.
  • the polymer should be included in the photosensitive layer composition at a level of from 90% to 98% by weight, and preferably from 90% to 95% by weight, based upon the total weight of solids in the photosensitive layer composition taken as 100% by weight.
  • the photosensitive composition will also comprise a photoacid generator (PAG).
  • PAG photoacid generator
  • the PAG generates a strong acid or superacid when exposed to actinic radiation such as UV light.
  • suitable PAGs include those selected from the group consisting of triarylsulfonium hexafluoroantimonate, triarylsulfonium hexafluorophosphate, diaryliodonium hexafluoroantimonate, diaryliodonium hexafluorophosphate, and where each R 3 is individually selected from the group consisting of C 3 H 7 , C 8 H 17 , CH 3 C 6 H 4 , and camphor.
  • the PAGs of formulas (IV) and (V) are sold by Ciba Specialty Chemicals as The CGI 13XX Family and The CGI 26X Family, respectively.
  • the PAG should be included in the photosensitive composition at a level of from 2% to 10% by weight, and preferably from 5% to 8% by weight, based upon the total weight of solids in the photosensitive composition taken as 100% by weight.
  • the solvent system utilized in the photosensitive composition should have a boiling point of from 120°C to 200°C, and preferably from 130°C to 180 °C.
  • the solvent system should be utilized at a level of from 70% to 95% by weight, and preferably from 80% to 90% by weight, based upon the total weight of the photosensitive composition taken as 100% by weight.
  • Preferred solvent systems include a solvent selected from the group consisting of methyl isoamyl ketone, di(ethylene glycol) dimethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, cyclohexanone, and mixtures thereof.
  • Preferred substrates for use in this process include those comprising silicon.
  • Some particularly preferred substrates are selected from the group consisting of Si substrates, SiO 2 substrates, Si 3 N 4 substrates, SiO 2 on silicon substrates, Si 3 N 4 on silicon substrates, glass substrates, quartz substrates, ceramic substrates, semiconductor substrates, and metal substrates.
  • the silane and any other components are dissolved in the primer solvent system to form the silane composition.
  • This composition is then spin-applied onto the substrate at 500-5,000 rpm, and preferably from 1000-3,000 rpm, for 30-90 seconds, and preferably for 60 seconds. It is then baked at a temperature of from 60-110°C for 60-180 seconds (preferably 120 seconds), and then at 150-250 °C for 60-180 seconds (preferably 120 seconds) in order to condense the silane molecules into a continuous film that is bonded to surface hydroxyl groups present on typical microelectronic substrates. That is, the hydrolyzed silane reacts with the silanol groups present in the silicon-containing substrate and also self-crosslinks by condensation. It is preferred that the primer layer have an average thickness (as measured by an ellipsometer over 5 different points) of less than about 50 nm and more preferably from 20 nm to 30 nm.
  • the polymer, PAG, and any other components are dissolved in the solvent system and spin coated onto the substrate at 1,000-5,000 rpm, and preferably from 1,000-2,000 rpm, for 30-90 seconds, and preferably 60 seconds. It is then baked at a temperature of from 100-120 °C for 60-180 seconds (preferably 120 seconds).
  • the polymer solids level and spinning conditions are typically adjusted to achieve an average coating thickness after baking (as measured by an ellipsometer over 5 different points) of from 500 nm to 3,000 nm, and preferably from 1,000 nm to 2,000 nm, depending upon the degree of coverage required over device topography on the substrate.
  • the epoxy or other reactive group in the photosensitive layer polymer form covalent bonds with an amine or other reactive group on the silane of the primer layer.
  • the photosensitive layer is then imaged by exposing it to UV light with a wavelength of from 150-500 nm (e.g., 248 nm or 365 nm), preferably in a dose of 500 mJ/cm 2 .
  • the coating is then preferably post-exposure baked at 110°C to 130°C for 2 minutes, and developed with a solvent for 1 minute. Finally, the coating is baked at 200°C to 250°C for 5 minutes.
  • Exposure to light causes the PAG to generate an acid, and this acid initiates crosslinking of the polymer (preferably via the epoxy groups) in the photosensitive layer.
  • the exposed areas become substantially insoluble (e.g., less than 1% by weight soluble, preferably less than 0.05% soluble, and more preferably 0% soluble) in typical solvent developers such as propylene glycol monomethyl ether acetate, methyl isoamyl ketone, and ethyl acetoacetate.
  • solvent developers such as propylene glycol monomethyl ether acetate, methyl isoamyl ketone, and ethyl acetoacetate.
  • the unexposed areas remain soluble in these developers and are thus readily removed during developing.
  • the pattern can be easily transferred with no additional etching steps to remove the protective layer being needed.
  • the layer systems will exhibit less than 100 ⁇ m, preferably less than 70 ⁇ m, and more preferably less than 50 ⁇ m of undercutting when subjected for 2 hours (or even 3 hours) to etching in an approximately 30-35% by weight aqueous KOH solution having a temperature of 83-87 °C.
  • Undercutting is determined by measuring the width of overhanging protective layer at the edge of etched areas as observed under a confocal microscope.
  • the inventive protective systems will experience very little or no etchant penetration during etching processes.
  • the inventive protective systems when subjected for 2 hours (or even 3 hours) to etching in an approximately 30-35% by weight aqueous KOH solution having a temperature of 83-87°C, the inventive protective systems will have less than 0.1 pinholes per cm 2 of substrate, and preferably less than 0.05 pinholes per cm 2 of substrate, when observed under a microscope at 10X magnification. This is different from prior art photosensitive layers, which would dissolve relatively quickly in KOH and thus required the presence of a separate protective layer such as a silicon nitride layer.
  • a solution was made by dissolving 67.50 g of styrene, 25.00 g of acrylonittile, 7.50 g of glycidyl methacrylate, and 1.25 g of 2,2'-azobisisobutyronitrile in 400 g of cyclopentanone, all of which were obtained from Aldrich.
  • the solution was heated to 65 °C under nitrogen while undergoing magnetic stirring.
  • the polymerization was allowed to proceed at 65 °C for 98 hours.
  • the actual yield was determined by solids analysis to be 97% of the theoretical yield.
  • N-phenylaminoproyltrimethoxysilane obtained from Gelest
  • propylene glycol propyl ether obtained from General Chemical
  • the primer solution in Part 3 of this Example was spin coated onto a silicon wafer at 1,500 rpm for 1 minute.
  • the primer coating was baked at 75 °C for 2 minutes and then at 180°C for 2 minutes.
  • the topcoat solution of Part 2 of this Example was then spin coated over the primer layer at 1,500 rpm for 1 minute.
  • the topcoat was baked at 100°C for 2 minutes.
  • the coating was imaged by exposing it to UV light at a wavelength of 365 nm in a dose of 500 mJ/cm 2 , baking at 130°C for 2 minutes, and developing with acetone for 1 minute. Finally, the combination was baked at 230°C for 5 minutes. A negative pattern was obtained.
  • the wafer prepared and patterned in Part 4 of this Example was etched in 30% KOH aqueous solution at 85 °C for 1 hour.
  • the silicon was etched 70 ⁇ m deep in areas without the polymer coating.
  • the polymer-coated areas remained intact.
  • the pattern was transferred to the silicon wafer in essentially the same manner as is the case with prior art silicon nitride masking methods.
  • a solution was made by dissolving 27.07 g of styrene, 10.00 g of acrylonitrile, 3.08 g of glycidyl methacrylate, and 0.51 g of dicumyl peroxide (obtained from Aldrich) in 160 g of PGMEA.
  • the solution was heated to 120°C under nitrogen while undergoing magnetic stirring.
  • the polymerization was allowed to proceed at 120 ° C for 24 hours.
  • the actual yield was determined by solids analysis to be 95.5% of the theoretical yield.
  • the primer solution of Part 2 of Example 1 was spin coated onto a silicon wafer at 1,500 rpm for 1 minute.
  • the primer coating was baked at 60°C for 5 minutes and at 180°C for 2 minutes.
  • the topcoat solution from Part 2 of this Example was then spin coated onto the wafer at 1,500 rpm for 1 minute.
  • the topcoat was baked at 100 °C for 2 minutes.
  • After the coating was imaged by exposing it to UV light at 254 nm in a dose of 500 mJ/cm 2 , it was baked at 130°C for 2 minutes and then developed with PGMEA for 1 minute.
  • the coating was finally baked at 230°C for 5 minutes. A negative pattern was obtained.
  • the wafer prepared and patterned in Part 3 of this Example was etched in 30% KOH aqueous solution at 80 °C for 1 hour.
  • the silicon was etched 58 ⁇ m deep in the areas without the polymer coating.
  • the polymer-coated areas remained intact.
  • the pattern was transferred to the silicon wafer in essentially the same way as with prior art silicon nitride masking methods.
  • a solution was made by dissolving 168.0 g of styrene, 84.0 g of acrylonitrile, 28.3 g of glycidyl methacrylate, and 7.0 g of dicumyl peroxide in 1,120 g of PGMEA.
  • the solution was heated to 120°C under nitrogen while undergoing magnetic stirring.
  • the polymerization was allowed to proceed at 120°C for 28 hours.
  • the actual yield was found by solid analysis to be 97.5% of the theoretical.
  • the terpolymer was precipitated in isopropanol, filtered, and dried overnight under vacuum at 50°C.
  • N-phenylaminopropyltrimethoxysilane were dissolved in a mixture of 77.50 g of propylene glycol propyl ether (PnP), 120.14 g of deionized water, 0.51 g of acetic acid, and 0.03 g of FC4430 (a surfactant).
  • PnP propylene glycol propyl ether
  • FC4430 a surfactant
  • the primer solution prepared in Part 3 of this Example was spin coated onto a silicon wafer at 1,500 rpm for 1 minute.
  • the primer coating was baked at 110°C for 1 minute and then at 205 °C for 1 minute.
  • the topcoat solution from Part 2 of this Example was spin coated over the primer layer at 1,500 rpm for 1 minute.
  • the topcoat was baked at 110°C for 2 minutes.
  • the coating was imaged by exposing it to UV light at a wavelength of 365 nm in a dose of 500 mJ/cm 2 , baking at 130°C for 2 minutes, and developing with PGMEA for 1 minute. Finally, the combination was baked at 230°C for 5 minutes. A negative pattern was obtained.
  • the wafer prepared and patterned in Part 4 of this Example was etched in 30% KOH aqueous solution at 75 °C for 4 hours.
  • the silicon was etched 178 ⁇ m deep in the areas without the polymer coating.
  • the polymer-coated area remained intact.
  • the pattern was transferred to the silicon wafer in essentially the same manner as prior art silicon nitride masking methods.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Claims (31)

  1. Negative photoempfindliche Zusammensetzung, die als Schutzschicht brauchbar und alkalibeständig ist, wobei die Zusammensetzung negativ wirkt und die Zusammensetzung ein Polymer und einen Photosäuregenerator gelöst oder dispergiert in einem Lösungsmittelsystem umfasst, wobei das Polymer
    Figure imgb0031
    Figure imgb0032
    und
    eine Wiederholungseinheit (III) umfasst, die mindestens eine Epoxygruppe umfasst,
    wobei in (I) und (II)
    jedes R1 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und C1-C8-Alkylgruppen und
    jedes R2 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und C1-C8-Alkylgruppen.
  2. Zusammensetzung nach Anspruch 1, bei der die Wiederholungseinheit (III) aus Monomeren ausgewählt aus der Gruppe bestehend aus Glycidylmethacrylat, Glycidylacrylat und Vinylbenzylglycidylether gebildet worden ist.
  3. Zusammensetzung nach Anspruch 1, bei der die Wiederholungseinheit (III) die Formel
    Figure imgb0033
    aufweist, in der jedes R1 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und C1-C8-Alkylgruppen.
  4. Zusammensetzung nach Anspruch 1, bei der der Photosäuregenerator ausgewählt ist aus der Gruppe bestehend aus Triarylsulfoniumhexafluorantimonat, Triarylsulfoniumhexafluorphosphat, Diaryliodoniumhexafluorantimonat, Diaryliodoniumhexafluorphosphat,
    Figure imgb0034
    und
    Figure imgb0035
    wobei jedes R3 unabhängig ausgewählt ist aus der Gruppe bestehend aus C3H7, C8H17, CH3C6H4 und der Campher-Gruppe.
  5. Zusammensetzung nach Anspruch 1, bei der das Polymer 35 bis 75 Gew.-% von (I), 20 bis 40 Gew.-% von (II) und 5 bis 15 Gew.-% von (III) umfasst, bezogen auf das als 100 Gew.-% genommenen Gesamtgewichts des Polymers.
  6. Verfahren zur Bildung einer mikroelektronischen Struktur, wobei das Verfahren umfasst:
    Bereitstellung eines mikroelektronischen Substrats,
    Aufbringung einer Primerschicht auf das Substrat, wobei die Primerschicht aus einer Primerzusammensetzung gebildet wird, die ein in einem Lösungsmittelsystem dispergiertes oder gelöstes Silan umfasst,
    Aufbringung einer photoempfindlichen Schicht auf die Primerschicht, wobei die photoempfindliche Schicht aus einer negativen photoempfindlichen Zusammensetzung gemäß Anspruch 1 gebildet wird,
    Aussetzung eines ersten Teils der photoempfindlichen Schicht gegen aktinische Strahlung, während ein zweiter Teil der photoempfindlichen Schicht nicht aktinischer Strahlung ausgesetzt wird, wobei der erste Teil der photoempfindlichen Schicht während des Aussetzens vernetzt, und
    Entwicklung der photoempfindlichen Schicht.
  7. Verfahren nach Anspruch 6, bei dem die Wiederholungseinheit (III) aus Monomeren ausgewählt aus der Gruppe bestehend aus Glycidylmethacrylat, Glycidylacrylat und Vinylbenzylglycidylether gebildet wird.
  8. Verfahren nach Anspruch 6, bei dem die Wiederholungseinheit (III) die Formel
    Figure imgb0036
    aufweist, in der jedes R1 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und C1-C8-Alkylgruppen.
  9. Verfahren nach Anspruch 6, bei dem der Photosäuregenerator ausgewählt ist aus der Gruppe bestehend aus Triarylsulfoniumhexafluorantimonat, Triarylsulfoniumhexafluorphosphat, Diaryliodoniumhexafluorantimonat, Diaryliodoniumhexafluorphosphat,
    Figure imgb0037
    und
    Figure imgb0038
    wobei jedes R3 unabhängig ausgewählt ist aus der Gruppe bestehend aus C3H7, C8H17, CH3C6H4, und der Campher-Gruppe.
  10. Verfahren nach Anspruch 6, bei dem das Polymer 35 bis 75 Gew.-% von (I), 20 bis 40 Gew.-% von (II) und 5 bis 15 Gew.-% von (III) umfasst, bezogen auf das als 100 Gew.-% genommene Gesamtgewicht des Polymers.
  11. Verfahren nach Anspruch 6, bei dem das Silan eine Formel ausgewählt aus der Gruppe bestehend aus
    Figure imgb0039
    worin
    Figure imgb0040
    Figure imgb0041
    sind, und
    Figure imgb0042
    aufweist,
    worin
    jedes i, j, und k unabhängig ausgewählt ist aus der Gruppe bestehend aus 0 und 1, und, wenn eines von i und j 1 ist, dann das andere von i und j 0 ist,
    jedes R4 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, den Halogenen, C1-C8-Alkylgruppen, C1-C8-Alkoxygruppen, C1-C8-Halogenalkylgruppen, Aminogruppen und C1-C8-Alkylaminogruppen,
    jedes R5 unabhängig ausgewählt ist aus der Gruppe bestehend aus aliphatischen C1-C8-Gruppen.
    jedes R6 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und Halogenalkylgruppen,
    jedes X unabhängig ausgewählt ist aus der Gruppe bestehend aus Halogenen, Hydroxylgruppen, C1-C4-Alkoxygruppen und C1-C4-Carboxylgruppen,
    Y ausgewählt ist aus der Gruppe bestehend aus Sauerstoff und Schwefel,
    Z ausgewählt ist aus der Gruppe bestehend aus Stickstoff und Phosphor,
    jedes d unabhängig ausgewählt ist aus der Gruppe bestehend aus 0 und 1,
    jedes R7 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, den Halogenen, C1-C8-Alkylgruppen, C1-C8-Alkoxygruppen, C1-C8-Halogenalkylgruppen, Aminogruppen und C1-C8-Alkylaminogruppen, und
    jedes R8 unabhängig ausgewählt ist aus der Gruppe bestehend aus aliphatischen C1-C8-Gruppen.
  12. Verfahren nach Anspruch 6, bei dem das Silan ausgewählt ist aus der Gruppe bestehend aus Aminoalkoxysilanen, Phenylsilanen und Diphenylsilanen.
  13. Verfahren nach Anspruch 12, bei dem das Silan ausgewählt ist aus der Gruppe bestehend aus Aminoalkylalkoxysilanen und Phenylaminoalkylalkoxysilanen.
  14. Verfahren nach Anspruch 12, bei dem das Silan ausgewählt ist aus der Gruppe bestehend aus Aminopropyltrimethoxysilan, Aminopropyltriethoxysilan, N-Phenylaminopropyltrimethoxysilan, N-Phenylaminopropyltriethoxysilan, Phenyltrimethoxysilan, Phenyltrichlorsilan, Phenyltriethoxysilan, Phenyltriacetoxysilan, Diphenyldimethoxysilan, Diphenyldichlorsilan, Diphenylsilandiol-2-phenylethyltrialkoxysilan, p/m-Chlorphenyltrimethoxysilan, p/m-Bromphenyltrimethoxysilan, (p/m-Chlormethyl)phenyltri-methoxysilan, 2-(p/m-Methoxy)phenylethyltrimethoxysilan, 2-(p/m-Chlormethyl)phenylethyltrimethoxysilan, 3,4-Dichlorphenyltrichlorsilan, 3-Phenoxypropyltrichlorsilan, 3-(N-Phenylamino)propyltrimethoxysilan und 2-(Diphenylphosphin)ethyltriethoxysilan.
  15. Verfahren nach Anspruch 6, bei dem ferner die Primerschicht nach dem Aufbringen der Primerschicht gebacken wird.
  16. Verfahren nach Anspruch 15, bei dem die Primerzusammensetzung einen Katalysator umfasst, und bei dem das Backen der Primerschicht Vernetzen der Silans umfasst.
  17. Verfahren nach Anspruch 6, bei dem ferner die photoempfindliche Schicht nach dem Aufbringen der photoempfindlichen Schicht gebacken wird.
  18. Verfahren nach Anspruch 17, bei dem das Backen ein kovalentes Binden des Polymers der photoempfindlichen Schicht an das Silan der Primerschicht umfasst.
  19. Verfahren nach Anspruch 6, bei dem ferner die photoempfindliche Schicht nach dem Aussetzen gegenüber aktinischer Strahlung gebacken wird.
  20. Verfahren nach Anspruch 6, bei dem das Entwickeln das im Wesentliche Entfernen des zweiten Teils der photoempfindlichen Schicht und das Bilden eines Stapels umfasst, der eine photoempfindliche Schicht mit einem darin gebildeten Muster enthält.
  21. Verfahren nach Anspruch 20, bei dem die photoempfindliche Schicht nach dem Entwickeln gebacken wird.
  22. Verfahren nach Anspruch 20, bei dem der Stapel ferner mit KOH geätzt wird, um so das Muster der photoempfindlichen Schicht auf das Substrat zu übertragen.
  23. Verfahren nach Anspruch 20, bei dem das Substrat ausgewählt ist aus der Gruppe bestehend aus Si-Substraten, SiO2-Substraten, Si3N4-Substraten, SiO2-auf-Silicium-Substraten, Si3N4-auf-Silicium-Substraten, Glassubstraten, Quarzsubstraten, keramischen Substraten, Halbleitersubstraten und Metallsubstraten.
  24. Mikroelektronische Struktur, die umfasst:
    ein mikroelektronisches Substrat, eine Primerschicht angrenzend an das Substrat, wobei die Primerschicht ein vernetztes Silan umfasst,
    eine Schutzschicht angrenzend an die Primerschicht, wobei die Schutzschicht aus einer negativen photoempfindlichen Zusammensetzung gemäß Anspruch 1 gebildet worden ist und alkalibeständig ist.
  25. Mikroelektronische Struktur nach Anspruch 24, bei der das Silan eine Aminogruppe umfasst und das Polymer der Schutzschicht eine Epoxygruppe umfasst, die kovalent an die Aminogruppe gebunden ist.
  26. Mikroelektronische Struktur nach Anspruch 24, bei der das Polymer 35 bis 75 Gew.-% von (I), 20 bis 40 Gew.-% von (II) und 5 bis 15 Gew.-% von (III) umfasst, bezogen auf das als 100 Gew.-% genommene Gesamtgewicht des Polymers.
  27. Mikroelektronische Struktur nach Anspruch 24, bei der das vernetzte Silan aus einem Silan mit einer Formel ausgewählt aus der Gruppe bestehend aus
    Figure imgb0043
    worin
    Figure imgb0044
    Figure imgb0045
    sind, und
    Figure imgb0046
    gebildet worden ist,
    wobei
    jedes i, j und k unabhängig ausgewählt ist aus der Gruppe bestehend aus 0 und 1, und, wenn eines von i und j 1 ist, dann das andere von i und j 0 ist,
    jedes R4 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, den Halogenen, C1-C8-Alkylgruppen, C1-C8-Alkoxygruppen, C1-C8-Halogenalkylgruppen, Aminogruppen und C1-C8-Alkylaminogruppen,
    jedes R5 unabhängig ausgewählt ist aus der Gruppe bestehend aus aliphatischen C1-C8-Gruppen,
    jedes R6 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und Halogenalkylgruppen,
    jedes X unabhängig ausgewählt ist aus der Gruppe bestehend aus Halogenen, Hydroxylgruppen, C1-C4-Alkoxygruppen und C1-C4-Carboxylgruppen,
    Y ausgewählt aus der Gruppe bestehend aus Sauerstoff und Schwefel,
    Z ausgewählt ist aus der Gruppe bestehend aus Stickstoff und Phosphor,
    jedes d unabhängig ausgewählt ist aus der Gruppe bestehend aus 0 und 1,
    jedes R7 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, den Halogenen, C1-C8-Alkylgruppen, C1-C8-Alkoxygruppen, C1-C8-Halogenalkylgruppen, Aminogruppen und C1-C8-Alkylaminogruppen, und
    jedes R8 unabhängig ausgewählt ist aus der Gruppe bestehend aus aliphatischen C1-C8-Gruppen.
  28. Mikroelektronische Struktur nach Anspruch 24, bei der das vernetzte Silan aus einem Silan ausgewählt aus der Gruppe bestehend aus Aminoalkoxysilanen, Phenylsilanen und Diphenylsilanen gebildet worden ist.
  29. Mikroelektronische Struktur nach Anspruch 28, bei der das vernetzte Silan aus einem Silan ausgewählt aus der Gruppe bestehend aus Aminoalkylakoxysilanen und Phenylaminoalkoxysilanen gebildet worden ist.
  30. Mikroelektronische Struktur nach Anspruch 28, bei der das vernetzte Silan aus einem Silan ausgewählt aus der Gruppe bestehend aus Aminopropyltrimethoxysilan, Aminopropyltriethoxysilan, N-Phenylaminopropyltrimethoxysilan, N-Phenylaminopropyltriethoxysilan, Phenyltrimethoxysilan, Phenyltrichlorsilan, Phenyltriethoxysilan, Phenyltriacetoxysilan, Diphenyldimethoxysilan, Diphenyldichlorsilan, Diphenylsilandiol-2-phenylethyltrialkoxysilan, p/m-Chlorphenyltrimethoxysilan, p/m-Bromphenyltrimethoxysilan, (p/m-Chlormethly)phenyltrimethoxysilan, 2-(p/m-Methoxy)phenylethyltrimethoxysilan, 2-(p/m-Chlormethly)phenylethyltrimethoxysilan, 3,4-Dichlorphenyltrichlorsilan, 3-Phenoxypropyltrichlorsilan, 3-(N-Phenylamino)propyltrimethoxysilan und 2-(Diphenylphosphin)ethyltriethoxysilan gebildet worden ist.
  31. Mikroelektronische Struktur nach Anspruch 24, bei der das Substrat ausgewählt ist aus Si-Substraten, SiO2-Substraten, Si3N4-Substraten, SiO2-auf-Silicium-Substraten, Si3N4-auf-Silicium-Substraten, Glassubstraten, Quarzsubstraten, keramischen Substraten, Halbleitersubstraten und Metallsubstraten.
EP06803089A 2005-09-09 2006-09-07 Negative photosensitive zusammensetzung für koh ätzung von silizium ohne verwendung einer siliziumnitrid-hardmaske Active EP1932060B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US71596405P 2005-09-09 2005-09-09
US11/470,520 US7695890B2 (en) 2005-09-09 2006-09-06 Negative photoresist for silicon KOH etch without silicon nitride
PCT/US2006/034817 WO2007030593A1 (en) 2005-09-09 2006-09-07 Negative photoresist for silicon koh etch without silicon nitride

Publications (3)

Publication Number Publication Date
EP1932060A1 EP1932060A1 (de) 2008-06-18
EP1932060A4 EP1932060A4 (de) 2010-06-23
EP1932060B1 true EP1932060B1 (de) 2013-03-27

Family

ID=37836158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06803089A Active EP1932060B1 (de) 2005-09-09 2006-09-07 Negative photosensitive zusammensetzung für koh ätzung von silizium ohne verwendung einer siliziumnitrid-hardmaske

Country Status (7)

Country Link
US (1) US7695890B2 (de)
EP (1) EP1932060B1 (de)
JP (1) JP4870769B2 (de)
KR (1) KR101360503B1 (de)
CN (1) CN101258444B (de)
TW (1) TWI411879B (de)
WO (1) WO2007030593A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316844B2 (en) 2004-01-16 2008-01-08 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
US7695890B2 (en) 2005-09-09 2010-04-13 Brewer Science Inc. Negative photoresist for silicon KOH etch without silicon nitride
US7709178B2 (en) 2007-04-17 2010-05-04 Brewer Science Inc. Alkaline-resistant negative photoresist for silicon wet-etch without silicon nitride
US8192642B2 (en) * 2007-09-13 2012-06-05 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
SG179209A1 (en) * 2009-09-16 2012-05-30 Brewer Science Inc Scratch-resistant coatings for protecting front-side circuitry during backside processing
KR101384457B1 (ko) * 2011-08-04 2014-04-14 주식회사 엘지화학 실란계 화합물 및 이를 포함하는 감광성 수지 조성물
US9000556B2 (en) 2011-10-07 2015-04-07 International Business Machines Corporation Lateral etch stop for NEMS release etch for high density NEMS/CMOS monolithic integration
US10002758B2 (en) * 2012-10-12 2018-06-19 John Cleaon Moore Compositions and methods of rinsable primers used to aid in the removal of temporary functional coatings
US9299778B2 (en) 2012-11-08 2016-03-29 Brewer Science Inc. CVD-free, scalable processes for the production of silicon micro- and nanostructures
JP6088813B2 (ja) * 2012-12-14 2017-03-01 東京応化工業株式会社 粗樹脂の精製方法、レジスト用樹脂の製造方法、レジスト組成物の製造方法及びレジストパターン形成方法
TWI597574B (zh) * 2015-08-19 2017-09-01 奇美實業股份有限公司 感光性樹脂組成物及其應用
CN110908240A (zh) * 2018-09-14 2020-03-24 江西省长益光电有限公司 芯片用光刻胶及光刻工艺
KR102031251B1 (ko) * 2019-03-06 2019-10-11 영창케미칼 주식회사 실리콘질화막 식각 조성물
JP7222811B2 (ja) 2019-06-04 2023-02-15 キオクシア株式会社 インプリント装置、インプリント方法、及び半導体装置の製造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398044A (en) 1965-02-01 1968-08-20 Dow Corning Bonding of organic resins or rubbers to inorganic substances
NL130670C (de) 1965-02-15
US3461027A (en) 1966-02-01 1969-08-12 Dow Corning Bonding of thermoplastic polymer resins to silane-primed siliceous or metallic materials
US3585103A (en) 1968-09-23 1971-06-15 Hercules Inc Priming composition comprising a coupling agent and a polyfunctional azide for bonding polymers to glass,metal and metal oxide substrates
US3826709A (en) 1969-09-02 1974-07-30 Bethlehem Steel Corp Process for laminating phosphate coated steel with abs resin
US4800125A (en) 1986-10-07 1989-01-24 Dow Corning Corporation Coupling agent compositions
US4826564A (en) 1987-10-30 1989-05-02 International Business Machines Corporation Method of selective reactive ion etching of substrates
US5077174A (en) * 1990-04-10 1991-12-31 E. I. Du Pont De Nemours And Company Positive working dry film element having a layer of resist composition
US5100503A (en) * 1990-09-14 1992-03-31 Ncr Corporation Silica-based anti-reflective planarizing layer
EP0539973A3 (en) 1991-11-01 1995-07-12 Furukawa Electric Co Ltd A surface-protection method during etching
JP3213001B2 (ja) 1991-12-10 2001-09-25 ザ ダウ ケミカル カンパニー 光硬化性シクロブタレーン組成物
US5217568A (en) 1992-02-03 1993-06-08 Motorola, Inc. Silicon etching process using polymeric mask, for example, to form V-groove for an optical fiber coupling
US5353705A (en) 1992-07-20 1994-10-11 Presstek, Inc. Lithographic printing members having secondary ablation layers for use with laser-discharge imaging apparatus
GB2273366B (en) * 1992-11-18 1996-03-27 Du Pont Forming images on radiation-sensitive plates
JP3417008B2 (ja) 1993-11-04 2003-06-16 株式会社デンソー 半導体ウエハのエッチング方法
JPH07261390A (ja) * 1994-03-22 1995-10-13 Nippon Oil & Fats Co Ltd 光硬化性樹脂組成物
US5753523A (en) 1994-11-21 1998-05-19 Brewer Science, Inc. Method for making airbridge from ion-implanted conductive polymers
US5922410A (en) 1995-01-18 1999-07-13 Rohm And Haas Company Wood coating composition
US6162860A (en) * 1997-11-12 2000-12-19 S. C. Johnson Commercial Markets, Inc. Solvent based interactive polymeric compositions containing a substantially non-gelled composition
TWI250379B (en) 1998-08-07 2006-03-01 Az Electronic Materials Japan Chemical amplified radiation-sensitive composition which contains onium salt and generator
US6506534B1 (en) * 1999-09-02 2003-01-14 Fujitsu Limited Negative resist composition, method for the formation of resist patterns and process for the production of electronic devices
SG98433A1 (en) * 1999-12-21 2003-09-19 Ciba Sc Holding Ag Iodonium salts as latent acid donors
US6645695B2 (en) 2000-09-11 2003-11-11 Shipley Company, L.L.C. Photoresist composition
US6756459B2 (en) 2000-09-28 2004-06-29 Rohm And Haas Company Binder compositions for direct-to-metal coatings
US6929705B2 (en) 2001-04-30 2005-08-16 Ak Steel Corporation Antimicrobial coated metal sheet
US6956268B2 (en) 2001-05-18 2005-10-18 Reveo, Inc. MEMS and method of manufacturing MEMS
KR100863984B1 (ko) 2001-07-03 2008-10-16 후지필름 가부시키가이샤 포지티브 레지스트 조성물
US6930364B2 (en) 2001-09-13 2005-08-16 Silicon Light Machines Corporation Microelectronic mechanical system and methods
JP3790960B2 (ja) * 2001-10-19 2006-06-28 富士写真フイルム株式会社 ネガ型レジスト組成物
US20030216508A1 (en) * 2002-05-14 2003-11-20 Lee Coreen Y. Polycarbonate and acrylonitrile-butadiene-styrene polymeric blends with improved impact resistance
US20040157426A1 (en) 2003-02-07 2004-08-12 Luc Ouellet Fabrication of advanced silicon-based MEMS devices
JP4207604B2 (ja) 2003-03-03 2009-01-14 Jsr株式会社 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの形成方法
JP3960281B2 (ja) 2003-05-28 2007-08-15 Jsr株式会社 硬化性樹脂組成物、保護膜および保護膜の形成方法
EP1507171A3 (de) 2003-08-15 2008-03-05 FUJIFILM Corporation Lichtempfindlicher Bogen mit einer Unterlage, einer ersten und einer zweiten lichtempfindlichen Schicht sowie einer Barriereschicht
JP4131864B2 (ja) 2003-11-25 2008-08-13 東京応化工業株式会社 化学増幅型ポジ型感光性熱硬化性樹脂組成物、硬化物の形成方法、及び機能素子の製造方法
US7316844B2 (en) 2004-01-16 2008-01-08 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
EP1617178B1 (de) 2004-07-12 2017-04-12 STMicroelectronics Srl Mikroelektromechanische Struktur mit elektrisch isolierten Gebieten und Verfahren zu ihrer Herstellung
KR101254349B1 (ko) 2004-10-29 2013-04-12 제이에스알 가부시끼가이샤 포지티브형 감광성 절연 수지 조성물 및 그의 경화물
KR100692593B1 (ko) 2005-01-24 2007-03-13 삼성전자주식회사 Mems 구조체, 외팔보 형태의 mems 구조체 및밀봉된 유체채널의 제조 방법.
US7695890B2 (en) 2005-09-09 2010-04-13 Brewer Science Inc. Negative photoresist for silicon KOH etch without silicon nitride

Also Published As

Publication number Publication date
JP2009508165A (ja) 2009-02-26
TWI411879B (zh) 2013-10-11
EP1932060A4 (de) 2010-06-23
WO2007030593A1 (en) 2007-03-15
CN101258444A (zh) 2008-09-03
CN101258444B (zh) 2013-04-03
US7695890B2 (en) 2010-04-13
KR101360503B1 (ko) 2014-02-07
US20070075309A1 (en) 2007-04-05
KR20080042141A (ko) 2008-05-14
TW200722917A (en) 2007-06-16
JP4870769B2 (ja) 2012-02-08
EP1932060A1 (de) 2008-06-18

Similar Documents

Publication Publication Date Title
EP1932060B1 (de) Negative photosensitive zusammensetzung für koh ätzung von silizium ohne verwendung einer siliziumnitrid-hardmaske
KR101849638B1 (ko) 습식-박리성 실리콘-함유 반사방지제
EP1810084B1 (de) Resistzusammensetzung
US8202442B2 (en) Spin-on protective coatings for wet-etch processing of microelectronic substrates
US8445591B2 (en) Spin-on protective coatings for wet-etch processing of microelectronic substrates
CN102439523B (zh) 用于双重图案化的方法和材料
US7485690B2 (en) Sacrificial film-forming composition, patterning process, sacrificial film and removal method
US8507179B2 (en) Switchable antireflective coatings
CN102439069B (zh) 用于反向图案化的方法和材料
EP2142960B1 (de) Gegen konzentrierte wässrige base beständiger negativ-photoresist für silizium-nassätzung ohne siliziumnitrid
JP7139469B2 (ja) ケイ素含有下層
US20090226824A1 (en) Hardmask composition and associated methods
US20140124898A1 (en) Cvd-free, scalable processes for the production of silicon micro- and nanostructures
JP3636242B2 (ja) 化学増幅ポジ型レジスト材料
JP2501552B2 (ja) パタ―ン形成方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LI, CHENGHONG

Inventor name: ZHONG, XING-FU

Inventor name: MALHOTRA, JYOTI, K.

A4 Supplementary search report drawn up and despatched

Effective date: 20100525

RIC1 Information provided on ipc code assigned before grant

Ipc: G03F 7/075 20060101ALI20100518BHEP

Ipc: G03F 7/027 20060101ALI20100518BHEP

Ipc: G03F 7/004 20060101AFI20070531BHEP

17Q First examination report despatched

Effective date: 20111121

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006035335

Country of ref document: DE

Effective date: 20130516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 603754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130327

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006035335

Country of ref document: DE

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130907

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060907

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180927

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190925

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006035335

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240927

Year of fee payment: 19