EP1929287A1 - Vorrichtung zur ultraschallprüfung von heissem walzmaterial - Google Patents

Vorrichtung zur ultraschallprüfung von heissem walzmaterial

Info

Publication number
EP1929287A1
EP1929287A1 EP06775752A EP06775752A EP1929287A1 EP 1929287 A1 EP1929287 A1 EP 1929287A1 EP 06775752 A EP06775752 A EP 06775752A EP 06775752 A EP06775752 A EP 06775752A EP 1929287 A1 EP1929287 A1 EP 1929287A1
Authority
EP
European Patent Office
Prior art keywords
rolling
rollers
nip
ultrasonic
rolled material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06775752A
Other languages
English (en)
French (fr)
Inventor
Axel STÜBER
Peter VAN HÜLLEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georgsmarienhuette GmbH
Original Assignee
Georgsmarienhuette GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georgsmarienhuette GmbH filed Critical Georgsmarienhuette GmbH
Publication of EP1929287A1 publication Critical patent/EP1929287A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/228Details, e.g. general constructional or apparatus details related to high temperature conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2632Surfaces flat

Definitions

  • the invention relates to a device for ultrasonic testing of hot rolled material during the rolling process in one of a plurality of successively arranged rolling stands of a rolling train consisting of at least two, a nip between letting rollers, the rollers are assigned ultrasonic probes, which are arranged so that parts of Roller body itself serve as a passage for the ultrasonic waves to be tested rolling in the nip.
  • Such a device is known for example from DE 199 15 203 C2.
  • the device presented there is one in a rolling mill, which is positioned in the rolling process in front of the finishing stand. That is, here the steel is already almost completely rolled out into its desired shape.
  • the reflecting surface in the beam is getting smaller and the signal getting weaker.
  • Kocksblock (so-called Kocksblock) arranged between them
  • the curvature but also ensures a dispersion of the energy of the ultrasound beam at all points where the beam does not meet perpendicular to the caliber.
  • These reflected components can cause problems as phantom echoes in the test. It is sometimes very difficult to prevent this, if the angle ratios are unfavorable.
  • a further disadvantage is the small roller diameter, which defocuses the ultrasonic beam relatively strongly in the longitudinal direction. This is essentially the transition from the test head to the roller body, which is ensured by coupling water.
  • Another significant disadvantage of the known device is the limitation of the test dimension. This means that the delay line in the through-roller must be at least as long that the time for the passage through the Lead-in distance is greater than that which is required for the passage of the rolling stock.
  • the invention is therefore based on the object to perform a device of the type mentioned above so that safer test results can be achieved with much less effort.
  • the invention solves this problem according to the characterizing part of claim 1, characterized in that the rollers provided with the ultrasonic probes are adjustable, have a straight cross-section and a diameter which measures a multiple of the nip width, so that a large rolling angle (. ⁇ . ) is present, and these rollers are arranged in one of the first rolling mills of the rolling train.
  • the testing in a rolling stand is done relatively early in the rolling process, so that the elongation of the inclusions in the rolling material is comparatively low, but the deformation is sufficient to have dissolved the cast structure and compacted porosities.
  • the dissolution of the cast structure is required to perform an ultrasonic test with a frequency above 2 MHz. Sufficiently small inclusions can only be found from this "frequency.”
  • Compaction of the core of the roll core is required to prevent discarding of the involved roll core, as the ultrasonic testing does not distinguish between porosity and containment.
  • the profile of the rolling material also becomes square or rectangular during the forming process, whereby a large forming area and thus also a large area of sound can be provided by the large diameter of the rolls. Due to the large diameter is also achieved that the defocusing is limited and a maximum of energy can be introduced into the rolling stock.
  • the rolling stand is designed to deform to ensure sufficient contact between the rolls and the rolled material.
  • the contact zone increases the higher the degree of deformation. This also helps to increase the energy input.
  • so-called cantilever rollers are used as rollers, in which the rolling jacket projects beyond the rolling disk at least on one side.
  • Roller mantle a favorable mounting location for the
  • Ultrasonic probes namely according to claim 3 on the roll axis facing side of the rolling shell.
  • the rollers do not need to be reworked or specially made, since the arrangement of the ultrasonic probes in the cantilever rollers can be easily aligned with the rolling stock.
  • the use of so-called group radiators is advantageously provided.
  • the inventively preferred cantilever rolls can be used over the entire size range of production, since they only have to be made without a new caliber must be used (see claim 1).
  • group radiators can be taken into account by corresponding shutdowns and connections within the phased array with a clear leadership of the roll material the dimension of the rolling stock.
  • the main advantage of the phased array is the ability to pan the ultrasound beam to optimally view inclusions, as they often have acoustically anisotropic properties. By pivoting the sound beam, inclusions close to the edge can also be detected.
  • descaling is performed prior to testing to remove the coarse scale formed after rough rolling.
  • the rolling stock is clearly fixed in position by means of rolling fittings or by upstream and downstream rolling stands, in order to adjust the test accordingly.
  • the invention is illustrated below with reference to drawings.
  • rollers 3 each have a rolling disk 6 and a laterally outwardly projecting annular projection 7. Between these protruding areas 7 of the rollers 3 is the rolled material 8 to be tested.
  • the actual testing device 9 is arranged on the side of the projection 7 facing the shaft 5.
  • FIG. 3 shows an alternative roller arrangement, in which the array radiators 9 are likewise arranged on the side of the projection 7 facing the axis 4.
  • the ultrasonic probes 9 are arranged so that they can pass through the rolled material 8 obliquely after irradiation of the projection 7.
  • a vertical transmission is possible. This design should allow even better scanning of the near-surface zone.
  • test surface can be optimally prepared by the roll geometry and that at a point in the rolling process at which the inclusions (ie the errors to be detected within the rolling material) are still stretched quite little when irradiating the rolled material So give a clear signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Ultraschallprüfung von heißem Walzmaterial während des Walzvorgangs in einem von mehreren hintereinander angeordneten Walzgerüsten einer Walzstrasse, bestehend aus mindestens zwei, einen Walzspalt zwischen sich lassenden Walzen, wobei den Walzen Ultraschallprüfköpfe zugeordnet sind, die so angeordnet sind, dass Teile des Walzenkörpers selbst als Durchlaufstrecke für die Ultraschallwellen zum zu prüfenden Walzgut im Walzspalt dienen, die dadurch gekennzeichnet ist, dass die mit den Ultraschall-Prüfköpfen versehenen Walzen anstellbar sind, ein gerades Querprofil aufweisen und einen Durchmesser, der ein Vielfaches der Walzspaltbreite misst, so dass ein großer Walzwinkel (a) vorhanden ist, und diese Walzen in einem der ersten Walzgerüste der Walzstrasse angeordnet sind.

Description

Vorrichtung zur Ultraschallprüfung von heißem Walzmaterial
Die Erfindung betrifft eine Vorrichtung zur Ultraschallprüfung von heißem Walzmaterial während des Walzvorgangs in einem von mehreren hintereinander angeordneten Walzgerüsten einer Walzstrasse, bestehend aus mindestens zwei, einen Walzspalt zwischen sich lassenden Walzen, wobei den Walzen Ultraschallprüfköpfe zugeordnet sind, die so angeordnet sind, dass Teile des Walzenkörpers selbst als Durchlaufstrecke für die Ultraschallwellen zum zu prüfenden Walzgut im Walzspalt dienen.
Eine derartige Vorrichtung ist beispielsweise aus der DE 199 15 203 C2 bekannt. Bei der dort vorgestellten Vorrichtung handelt es sich um eine solche in einem Walzgerüst, welches im Walzablauf vor dem Fertiggerüst positioniert ist. D.h., dass hier der Stahl bereits fast vollständig in seine gewünschte Form ausgewalzt ist. Hierdurch wird die Auffindbarkeit von Fehlern innerhalb des Walzmaterials, also beispielsweise von Einschlüssen, durch die erlittene Streckung erschwert. Die reflektierende Fläche im Strahl wird immer geringer und das Signal immer schwächer.
In der in der obengenannten Druckschrift bevorzugt angegebenen
Ausführungsform sind drei sternförmig angeordnete Walzen
(sogenannter Kocksblock) angeordnet, die zwischen sich den
Walzspalt bilden. Diese scheibenförmigen Walzen müssen speziell nachgearbeitet oder hergestellt sein, damit die Ultraschallprüfköpfe installiert werden können.
Da es sich bei einem derartigen Walzgerüst um -wie oben ausgeführt- ein Gerüst vor dem Fertigwalzgerüst handelt, müssen bei verschiedenen Abmessungen der Walzader auch verschiedene Kaliber vorgesehen sein, was einen erheblichen Montage- und Lageraufwand mit sich bringt. Die Krümmung der Kaliber der Walzen ist darüber hinaus nachteilig, da sie für eine geometrische Fokussierung des Ultraschallstrahls sorgt, was aber nicht immer gewünscht ist. Diese Fokussierung wird durch die Verhältnisse der Schallgeschwindigkeiten zueinander unterstützt. Die Bündelung des Ultraschallstrahls bewirkt eine ungleichmäßige Durchschallung der Walzader. Dadurch ist eine Erhöhung der Prüfkopfzahl und die Prüfung in zusätzlichen Winkeln erforderlich.
Darüber hinaus sorgt die Krümmung aber auch für eine Streuung der Energie des Ultraschallstrahls an allen Stellen, wo der Strahl nicht senkrecht auf den Kaliber trifft. Diese reflektierten Anteile können als Phantomechos in der Prüfung Probleme bereiten. Es ist teilweise sehr schwierig diese zu unterbinden, wenn die Winkelverhältnisse ungünstig sind.
Ein weiterer Nachteil ist der geringe Walzendurchmesser, der in Längsrichtung den Ultraschallstrahl relativ stark defokussiert . Hier wirkt im wesentlichen der Übergang vom Prüfkopf zum Walzenkörper, der durch Koppelwasser gewährleistet wird.
Ein weiterer wesentlicher Nachteil der vorbekannten Vorrichtung liegt in der Begrenzung der Prüfabmessung. Dies bedeutet, dass die Vorlaufstrecke in der durchschallten Walze mindestens so lang sein muss, dass die Zeit für das Durchlaufen der Vorlaufstrecke größer ist als die, welche zur Durcheilung der Walzader benötigt wird.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung der obengenannten Art so auszuführen, dass mit wesentlich geringerem Aufwand sicherere Prüfergebnisse erzielt werden können.
Die Erfindung löst diese Aufgabe gemäß dem kennzeichnenden Teil des Anspruchs 1 dadurch, dass die mit den Ultraschall- Prüfköpfen versehenen Walzen anstellbar sind, ein gerades Querprofil aufweisen und einen Durchmesser, der ein Vielfaches der Walzspaltbreite misst, so dass ein großer Walzwinkel (.α.) vorhanden ist, und diese Walzen in einem der ersten Walzgerüste der Walzstrasse angeordnet sind.
Somit erfolgt die Prüfung in einem Walzgerüst relativ früh im Walzprozess, so dass die Streckung der Einschlüsse im Walzmaterial vergleichsweise gering ist, aber die Umformung ausreichend, um die Gussstruktur aufgelöst und Porositäten verdichtet zu haben. Das Auflösen der Gussstruktur ist erforderlich, um eine Ultraschallprüfung mit einer Frequenz oberhalb von 2 MHz durchführen zu können. Erst ab dieser" Frequenz können hinreichend kleine Einschlüsse gefunden werden. Die Verdichtung des Kerns der Walzader ist erforderlich, um das Verwerfen des betroffenen Walzaderstückes zu verhindern, da mit der Ultraschallprüfung keine Unterscheidung zwischen Porosität und Einschluss möglich ist.
Durch das gerade Profil der Walzen wird beim Umformvorgang auch das Profil des Walzmaterials quadratisch bzw. rechteckig, wobei durch den großen Durchmesser der Walzen ein großer Umformbereich und damit auch ein großer Beschallungsbereich zur Verfügung gestellt werden kann. Durch den großen Durchmesser wird darüber hinaus erreicht, dass die Defokussierung begrenzt wird und ein Maximum an Energie in das Walzmaterial eingeleitet werden kann.
Das Walzgerüst ist so ausgelegt, dass es umformt, um einen ausreichend guten Kontakt zwischen den Walzen und dem Walzmaterial sicherzustellen. Die Kontaktzone wird um so größer, je höher der Umformgrad ist. Auch das trägt dazu bei, dass der Energieeintrag größer wird.
In bevorzugter Ausführungsform werden als Walzen sogenannte Cantilever-Walzen benutzt, bei denen der Walzmantel zumindest an einer Seite über die Walzscheibe hinausragt. Diese Cantilever-Walzen bieten die obengenannten Vorteile des großen Durchmessers und einer hinreichend großen Kraftübertragung.
Darüber hinaus bietet der schulterartige Überstand des
Walzmantels einen vorteilhaften Montageort für die
Ultraschallprüfköpfe, nämlich gemäß Anspruch 3 auf der zur Walzenachse weisenden Seite des Walzmantels.
Anders als im obengenannten Stand der Technik brauchen die Walzen nicht nachbearbeitet zu werden bzw. speziell angefertigt zu werden, da die Anordnung der Ultraschallprüfköpfe bei den Cantilever-Walzen ohne weiteres mit dem Walzmaterial fluchtend ausgeführt werden kann.
Somit ist die Ausrichtung der Ultraschallwellen lotrecht auf die Walzmaterialoberfläche im Walzspalt (Anspruch 4) problemlos möglich.
Als Ultraschallprüfköpfe können gemäß Anspruch 6 mehrere linienförmig angeordnete konventionelle Prüfköpfe vorgesehen sein, die durch entsprechende individuelle Ansteuerung entsprechend den Prüferfordernissen ausgerichtet werden.
Gemäß Anspruch 7 ist vorteilhafter Weise daher die Verwendung von sogenannten Gruppenstrahlern vorgesehen. Die erfindungsgemäß bevorzugten Cantilever-Walzen können über den gesamten Abmessungsbereich der Produktion verwendet werden, da sie nur angestellt werden müssen, ohne dass ein neues Kaliber verwendet werden muss (siehe Anspruch 1 ) . Insbesondere mit Gruppenstrahlern kann bei eindeutiger Führung des Walzmaterails die Dimension der Walzader durch entsprechende Abschaltungen und Zuschaltungen innerhalb der Gruppenstrahlerlinie berücksichtigt werden. Der wesentliche Vorteil der Gruppenstrahler liegt in der Möglichkeit den Ultraschallstrahl zu schwenken, um Einschlüsse optimal anzuschauen, da diese häufig akustisch anisotrope Eigenschaften besitzen. Durch das Schwenken des Schallstrahls können auch randnahe Einschlüsse detektiert werden.
Bei der Prüfung sind alle denkbaren Sende- und Empfangsmodi möglich. Es kann sowohl im Durchschallungsmodus als auch im Sendeimpuls-Echo-Verfahren gearbeitet werden.
Um sicherzustellen, dass der Ultraschall nur geringfügig gestreut wird und keine Schwächung der zurückkehrenden Signale erfolgt, wird vor der Prüfung eine Entzunderung durchgeführt, um den groben Zunder, der sich nach dem Vorwalzen gebildet hat, zu entfernen.
Die Walzader wird durch Walzarmaturen oder durch vor-und nachgelagerte Walzgerüste eindeutig in ihrer Position fixiert, um die Prüfung entsprechend darauf hin einzustellen. Die Erfindung wird im folgenden anhand von Zeichnungen dargestellt .
Es zeigen:
Fig. 1 Ausschnitt aus einem Cantilever-Walzengerüst mit konventionellen Ultraschall-Prüfköpfen,
Fig. 2 Darstellung gemäß Figur 2 mit Gruppenstrahlern als Prüfköpfen,
Fig. 3 Alternatives Walzgerüst mit alternativer Prüfkopfanordnung
In den Figuren 1 und 2 ist im Ausschnitt ein Walzgerüst dargestellt und allgemein mit dem Bezugszeichen 1 versehen.
Es besteht im wesentlichen aus zwei einen Walzspalt 2 zwischen sich lassenden Cantilever-Walzen 3, deren Drehachse 4 die Welle 5 bildet. Die Walzen 3 weisen jeweils eine Walzscheibe 6 und einen von dieser seitlich nach aussen abstehenden ringförmigen Ansatz 7 auf. Zwischen diesen überstehenden Bereichen 7 der Walzen 3 befindet sich das zu prüfende Walzmaterial 8.
Fluchtend mit dem Walzspalt 2 bzw. dem Walzmaterial 8 ist auf der zur Welle 5 weisenden Seite des Ansatzes 7 die eigentliche Prüfvorrichtung 9 angeordnet .
Im Falle der Figur 1 handelt es sich hierbei um konventionelle Ultraschall-Prüfköpfe, die matrixartig angeordnet sind und derart verschaltet sind, dass sie individuell angesteuert werden können, was die Schallausbreitungsrichtung und Intensität angeht. In der Figur 2 sind alle Elemente der Figur 1 mit den gleichen Bezugszeichen versehen. Einziger Unterschied ist der, dass statt der konventionellen Ultraschallprüfköpfe 9 hier sogenannte Gruppenstrahler 10 angeordnet sind. Diese Gruppenstrahler haben den Vorteil der vielfältigeren Ansteuerungs- und Prüfmöglichkeiten. .
In Figur 3 ist eine alternative Walzenanordnung dargestellt, bei der die Gruppenstrahler 9 ebenfalls auf der zur Achse 4 hinweisenden Seite des Ansatzes 7 angeordnet sind. Hier sind die Ultraschallprüfköpfe 9 jedoch so angeordnet, dass sie nach Durchstrahlung des Ansatzes 7 das Walzmaterial 8 schräg durchstrahlen können. Durch entsprechende Ansteuerung der Prüfköpfe 9 ist jedoch auch eine lotrechte Durchstrahlung möglich. Dieser Aufbau soll eine noch bessere Abtastung der oberflächennahen Zone erlauben.
Gemeinsam ist allen Ausführungsformen jedoch die Tatsache, dass durch die Walzengeometrie die Prüffläche optimal vorbereitet werden kann und zwar an einer Stelle im Walzvorgang, an der die Einschlüsse (also die aufzufindenden Fehler innerhalb des Walzmaterials) noch recht wenig gestreckt sind, bei der Durchstrahlung des Walzmaterials also ein deutliches Signal liefern.

Claims

Patentansprüche
1. Vorrichtung zur Ultraschallprüfung von heißem Walzmaterial während des Walzvorgangs in einem von mehreren hintereinander angeordneten Walzgerüsten einer Walzstrasse, bestehend aus mindestens zwei, einen Walzspalt zwischen sich lassenden Walzen, wobei den Walzen Ultraschallprüfköpfe zugeordnet sind, die so angeordnet sind, dass Teile des Walzenkörpers selbst als Durchlaufstrecke für die Ultraschallwellen zum zu prüfenden Walzgut im Walzspalt dienen, dadurch gekennzeichnet, dass die mit den Ultraschall-Prüfköpfen (9,10) versehenen Walzen (3) anstellbar sind, ein gerades Querprofil aufweisen und einen Durchmesser, der ein Vielfaches der Walzspaltbreite (2) misst, so dass ein großer Walzwinkel ( α) vorhanden ist, und diese Walzen (3) in einem der ersten Walzgerüste der Walzstrasse angeordnet sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Walzen (3 ) Cantilever-Walzen sind, bei denen die Walzenoberflächen zumindest an einer Seite einen nach aussen von der Walzscheibe 6 abstehenden ringförmigen Ansatz (7) aufweisen.
3. Vorrichtung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Ultraschallprüfköpfe (9,10) auf der zur Walzenachse (4) weisenden Seite des ringförmigen Ansatzes (7) angeordnet sind.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Ultraschallwellen lotrecht auf die Walzmatenaloberfläche im Walzspalt (2) gerichtet sind.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Ultraschall-Wellen schräg auf die Walzmatenaloberfläche im Walzspalt (2) gerichtet sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mehrere miteinander verschaltete matπxförmig angeordnete Ultraschall-Prüfköpfe (9) vorgesehen sind.
7. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Ultraschall-Prüfköpfe Gruppenstrahler (10) vorgesehen sind.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das zu prüfende Walzmaterial (8) durch Walzarmaturen xn einer konstanten Durchlauf-Messposition gehalten wird.
9. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das zu prüfende Walzmaterial (8) durch vor-und/oder nachgeschaltete Walzgerüste in einer konstanten Durchlauf- Messposition gehalten wird.
EP06775752A 2005-09-20 2006-07-27 Vorrichtung zur ultraschallprüfung von heissem walzmaterial Withdrawn EP1929287A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005044760A DE102005044760B3 (de) 2005-09-20 2005-09-20 Vorrichtung zur Ultraschallprüfung von heißem Walzmaterial
PCT/DE2006/001298 WO2007033633A1 (de) 2005-09-20 2006-07-27 Vorrichtung zur ultraschallprüfung von heissem walzmaterial

Publications (1)

Publication Number Publication Date
EP1929287A1 true EP1929287A1 (de) 2008-06-11

Family

ID=37622512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06775752A Withdrawn EP1929287A1 (de) 2005-09-20 2006-07-27 Vorrichtung zur ultraschallprüfung von heissem walzmaterial

Country Status (14)

Country Link
US (1) US7987719B2 (de)
EP (1) EP1929287A1 (de)
JP (1) JP4819900B2 (de)
KR (1) KR101135769B1 (de)
CN (1) CN101268362B (de)
AR (1) AR054940A1 (de)
BR (1) BRPI0616373A2 (de)
CA (1) CA2622590C (de)
DE (1) DE102005044760B3 (de)
RU (1) RU2383015C2 (de)
TW (1) TWI315789B (de)
UA (1) UA93520C2 (de)
WO (1) WO2007033633A1 (de)
ZA (1) ZA200801866B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO2755812T3 (de) 2013-03-12 2018-06-30
DE102013107560B4 (de) * 2013-07-16 2023-11-02 Althaus Engineering Verfahren und Vorrichtung zum Prüfen von Wälzkörpern mittels Ultraschall
DE102013223083A1 (de) * 2013-11-13 2015-05-13 Sms Siemag Ag Verfahren und Vorrichtung zur kontaktlosen Überprüfung der Beschaffenheit eines metallurgischen Gießproduktes
FI20145157L (fi) 2014-02-17 2015-08-18 Andritz Sundwig Gmbh Pitkänomaisten metallimateriaalien valmistusprosessien aikana syntyneiden vikojen indikointi akustisella emissiolla
CN105092700B (zh) * 2015-06-23 2018-06-19 邯钢集团邯宝钢铁有限公司 一种轧辊的冷作硬化接触疲劳显微裂纹检测方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1473682A1 (de) * 1965-12-07 1970-02-19 Automationstrust Fuer Ind Elek Verfahren zur zerstoerungsfreien Pruefung von heissem Walzgut
US3423993A (en) 1966-07-20 1969-01-28 Parametrics Inc Rolling ultrasonic transducer
DE2106891B2 (de) * 1971-02-13 1972-11-30 SKF Kugellagerfabnken GmbH, 8720 Schweinfurt Antriebsvorrichtung fuer kugeln zu deren zerstoerungsfreien pruefung
GB1585648A (en) * 1976-12-28 1981-03-11 Sumitomo Electric Industries Apparatus for detecting flaws in castings
JPS5383672A (en) * 1976-12-28 1978-07-24 Sumitomo Electric Ind Ltd Method and apparatus for detecting inside defect of continuous
GB2128739B (en) * 1982-09-15 1986-05-21 Schlumberger Electronics Ultrasonic inspection devices
US5535628A (en) * 1994-11-14 1996-07-16 Rohrback Cosasco Systems, Inc. Ultrasonic scanner head and method
JPH08290217A (ja) * 1995-04-18 1996-11-05 Kawasaki Steel Corp 形鋼のローラ矯正方法及び装置
JPH1183814A (ja) * 1997-09-09 1999-03-26 Sumitomo Metal Ind Ltd 鋳片の凝固状態検出方法及びその装置
KR100390101B1 (ko) * 1997-10-31 2003-07-04 가와사키 세이테츠 가부시키가이샤 원기둥체 표면의 초음파 탐상방법과 그 탐상장치 및 이를이용한 롤의 연삭방법
DE59914412D1 (de) * 1998-07-24 2007-08-30 Georgsmarienhuette Gmbh Verfahren und Vorrichtung zur zerstörungsfreien Ultraschallprüfung von zu walzendem, noch gut verformbarem Stahl auf Innenfehler
DE19915203C2 (de) * 1998-07-24 2000-11-23 Georgsmarienhuette Gmbh Verfahren und Vorrichtung zur zerstörungsfreien Prüfung von zu walzendem, noch gut verformbarem Stahl auf Innenfehler
DE19955136A1 (de) * 1999-11-17 2001-05-31 Sms Demag Ag Verfahren und Vorrichtung zur berührungslosen online Heißwanddickenmessung an Rohren
DE10127564A1 (de) * 2000-06-16 2002-01-03 Georgsmarienhuette Gmbh Verfahren zum Markieren von Walzmaterial
IT1318734B1 (it) * 2000-08-04 2003-09-10 Technoprobe S R L Testa di misura a sonde verticali.
CN2497311Y (zh) * 2001-08-31 2002-06-26 宝山钢铁股份有限公司 一种超声波探伤夹紧装置
US6945114B2 (en) * 2002-11-25 2005-09-20 The Johns Hopkins University Laser-air, hybrid, ultrasonic testing of railroad tracks
DE102004051020A1 (de) * 2004-10-20 2006-05-04 Sms Demag Ag Verfahren, Vorrichtung und Schaltung zum Ermitteln von Oberflächenfehlern, wie beispielsweise Risse, Ausbrüche und dergleichen an einer Walze eines Walzwerks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007033633A1 *

Also Published As

Publication number Publication date
KR20080069573A (ko) 2008-07-28
WO2007033633A1 (de) 2007-03-29
US7987719B2 (en) 2011-08-02
CN101268362B (zh) 2011-12-14
JP4819900B2 (ja) 2011-11-24
AR054940A1 (es) 2007-07-25
US20090260439A1 (en) 2009-10-22
CA2622590A1 (en) 2007-03-29
ZA200801866B (en) 2009-06-24
RU2383015C2 (ru) 2010-02-27
JP2009509147A (ja) 2009-03-05
BRPI0616373A2 (pt) 2011-06-21
UA93520C2 (ru) 2011-02-25
TW200722749A (en) 2007-06-16
CN101268362A (zh) 2008-09-17
CA2622590C (en) 2011-12-20
DE102005044760B3 (de) 2007-04-12
RU2008115439A (ru) 2009-10-27
KR101135769B1 (ko) 2012-04-16
TWI315789B (en) 2009-10-11

Similar Documents

Publication Publication Date Title
EP3541564B1 (de) Verfahren und vorrichtung zur herstellung eines kontinuierlichen bandförmigen verbundmaterials
EP1830185B1 (de) Verfahren zur Ultraschallprüfung eines Werkstückes in einem gekrümmten Bereich seiner Oberfläche und zur Durchführung des Verfahrens geeignete Prüfanordnung
EP0472252B1 (de) Ultraschallprüfvorrichtung
DE102005044760B3 (de) Vorrichtung zur Ultraschallprüfung von heißem Walzmaterial
EP2382620B1 (de) Ultraschallprüfkopf
DE102011018954B4 (de) Ultraschallprüfkopf und Verfahren zur zerstörungsfreien Prüfung eines flächig ausgebildeten Prüfkörpers
DE4439470C2 (de) Vorrichtung zum Ultraschallbearbeiten eines Werkstücks
WO2012048982A1 (de) Verfahren zum herstellen eines prüfkörpers mit einem additiven fertigungsverfahren, prüfverfahren für ein solches additives fertigungsverfahren und cad-datensatz für einen solchen prüfkörper
WO2006122798A1 (de) Ultraschall-prüfkopfanordnung
DE102019106427A1 (de) Wandler und Wandleranordnung für Ultraschall-Prüfkopfsysteme, Ultraschall-Prüfkopfsystem und Prüfverfahren
DE102013217101A1 (de) Stranggießvorrichtung und Verfahren zur Produktion und/oder Inspektion von metallurgischen Gießprodukten
DE102006062396A1 (de) Verfahren und Formstation zur Bildung einer Streugutmatte im Zuge der Herstellung von Werkstoffplatten
DE2118595A1 (de) Vorrichtung zur Ultraschall Werk stoffprufung
DE102014015060B4 (de) Einrichtung zum Prüfen von Schweißnähten in Rohren
EP1358476B1 (de) Ultraschall-sensor für die prozesssteuerung beim widerstandspunktschweissen
DE10034031B4 (de) Verfahren zur Untersuchung eines Bauteils eines stufenlos verstellbaren Toroid-Getriebes
EP0974837B1 (de) Verfahren und Vorrichtung zur zerstörungsfreien Ultraschallprüfung von zu walzendem, noch gut verformbarem Stahl auf Innenfehler
DE102016110044A1 (de) Verfahren zur Ultraschallprüfung von langgestreckten Hohlprofilen
EP0753360B1 (de) Richtvorrichtung
DE102012112120A1 (de) Verfahren und Vorrichtung zur oberflächennahen zerstörungsfreien Prüfung eines rotationssymmetrischen Werkstücks mit abschnittsweise wechselndem Durchmesser mittels Ultraschall
DE10258336B3 (de) Verfahren und Vorrichtung zur zerstörungsfreien Werkstoffprüfung mittels Ultraschall
DE102014102374B4 (de) Verfahren zur Prüfung eines Werkstücks mittels Ultraschall
EP1423237A2 (de) Verfahren zur herstellung eines kraftstoffhochdruckspeichers
DE3643769A1 (de) Verfahren zum fertigstellen warmgewalzter rohre
DE19915203C2 (de) Verfahren und Vorrichtung zur zerstörungsfreien Prüfung von zu walzendem, noch gut verformbarem Stahl auf Innenfehler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090324

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150820