EP1917434B1 - 4-zyklen-stirlingmaschine mit 2 doppelkolbeneinheiten - Google Patents

4-zyklen-stirlingmaschine mit 2 doppelkolbeneinheiten Download PDF

Info

Publication number
EP1917434B1
EP1917434B1 EP05808128A EP05808128A EP1917434B1 EP 1917434 B1 EP1917434 B1 EP 1917434B1 EP 05808128 A EP05808128 A EP 05808128A EP 05808128 A EP05808128 A EP 05808128A EP 1917434 B1 EP1917434 B1 EP 1917434B1
Authority
EP
European Patent Office
Prior art keywords
piston
cycle
cylinder space
double
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05808128A
Other languages
English (en)
French (fr)
Other versions
EP1917434A1 (de
Inventor
Dr. Andreas Gimsa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gimsa Dr Andreas
Original Assignee
Gimsa Dr Andreas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200510039417 external-priority patent/DE102005039417B4/de
Application filed by Gimsa Dr Andreas filed Critical Gimsa Dr Andreas
Priority to PL05808128T priority Critical patent/PL1917434T3/pl
Publication of EP1917434A1 publication Critical patent/EP1917434A1/de
Application granted granted Critical
Publication of EP1917434B1 publication Critical patent/EP1917434B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/02Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder
    • F02G2243/04Crank-connecting-rod drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/02Single-acting two piston engines
    • F02G2244/06Single-acting two piston engines of stationary cylinder type
    • F02G2244/08Single-acting two piston engines of stationary cylinder type having parallel cylinder, e.g. "Rider" engines

Definitions

  • Double-acting 4-cycle Stirling engines are named in different variants of the Siemens arrangement. In these engines, 4 cylinders are next to each other and each has an expansion and a constellation space.
  • the DE 38 34 071 A1 discloses a stirling-type heat engine wherein motions of two cold pistons are phase-shifted by substantially ninety degrees to two hot pistons. The backs of the two cold pistons are connected by rods. The same applies to the corresponding hot piston. Between the two cold pistons and the two hot pistons a gear is arranged with a swash plate, which is connected to the upper piston via connecting rods.
  • This device has the following disadvantages: It is a 2-cycle Systam that has a non-uniform torque curve over a 4-Zy-Iden machine and requires a flywheel.
  • the power density of the machine is lower because of the single-acting pistons than in double-acting systems.
  • the transmission is heated by axial heat conduction along the cylinder walls (10, 10 ') and the piston (16, 16') and thereby thermally loaded In addition, these losses reduce the operating yield of the machine.
  • the invention describes an alpha-type 4-cycle Stirling engine (4ZM) with 2 double-piston units moving in phase offset with each other, each consisting of 2 pistons connected to piston rods (3), (8) and piston rod extensions (FIGS. 4), (9), the top of a gearbox are in mechanical communication.
  • 4ZM 4-cycle Stirling engine
  • a double piston unit may consist of an expansion piston and a compression piston, 2 expansion pistons or 2 compression pistons.
  • the cylinder space above piston 1 is connected to the cylinder space above piston 7 via the first heater-regenerator-cooler assembly and the cylinder space below piston 1 is with the cylinder space below piston 7 via the second receiver-regenerator-cooler assembly connected.
  • the cylinder space above piston 6 is connected to the cylinder space below piston 2 upper the third heater-regenerator-cooler assembly and the cylinder space below piston 6 is connected to the cylinder space above piston 2 via the fourth Erthitzer regenerator cooler Assembly connected.
  • the first piston of a double piston unit can be used as a guide for the second, it is possible to work without piston rings with a defined annular gap.
  • the double-acting pistons of the double-piston units can be realized as diaphragms or bellows which can be used on both sides, preferably in an outer, pressure-tight enclosing wall.
  • the cylinders for the pistons (1), (2), (6) and (7) may differ in their diameters from each other. As a result, for example, the expansion spaces can be made larger than the compression spaces. In addition, the variation of the cylinder diameter allows a system optimization in the simultaneous realization of right- and left-handed processes (description see below).
  • It can be a heater used in the 4 consecutive or 4 pairs wound single-tube spirals are arranged in a hollow cast body.
  • the burner can be located inside the casting body.
  • the 4ZM can be installed in front of the matrix, a flow body, which has a low flow resistance on both sides, the gas evenly distributed and is preferably a ball.
  • the cyclic short-circuit valves (27) and (28) can be used to control the participating cycles in partial load operation.
  • a further arrangement according to the invention describes a 4-cycle universal machine with 2 double-piston units which move with a phase offset to each other, in which 2 cycles of mechanical energy supply and the two remaining cycles are used to cool heat sources and heat heat sinks.
  • the four working gas areas of the heater 10 in FIG. 1 reduced to two, namely those of cycle 1 and cycle 2.
  • the remaining working gas portions of the heat supply in cycle 3 and cycle 4 which are then no longer in the heater (locally and thermally separated), are thermally connected to one or two heat sources.
  • the areas of heat removal from Cycle 3 and 4 can be connected to one or two heat sinks.
  • cycles 3 and 4 can be used to provide the mechanical energy and cycles 1 and 2 for the cooling processes.
  • Equally obvious is the alternative application of a heat pump instead of a chiller.
  • Cycle 1 and 2 uses as thermal power processes, cycle 3 as a chiller and cycle 4 as a heat pump.
  • cycle 3 uses as a chiller
  • cycle 4 uses as a heat pump.
  • the working gas areas of the heat supply of cycle 3 and cycle 4 must be thermally separated because of the different temperature levels.
  • the machine can also be configured so that the cylinder space above piston 1 is connected to the cylinder space above piston 6 via the first heater-regenerator-cooler assembly and that the cylinder space below piston 1 with the cylinder space below piston 6 via the second heater-regenerator-cooler assembly is connected.
  • the cylinder space above piston 2 is connected to the cylinder space above piston 7 via the first heat source regenerator heat sink assembly and the cylinder space below piston 2 is connected to the cylinder space below piston 7 via the second heat source regenerator heat sink assembly. Assembly connected.
  • a further arrangement according to the invention of the machine is that the cylinder space above piston 1 is connected to the cylinder space below piston 7 via the first heater-regenerator-cooler assembly and that the cylinder space below piston 1 with the cylinder space above piston 7th connected via the second heater-regenerator-cooler assembly.
  • the cylinder space above piston 2 is connected to the cylinder space below piston 6 via the first heat source regenerator heat sink assembly, and the cylinder space below piston 2 is connected to the cylinder space above piston 6 via the second heat source regenerator heat sink assembly. Assembly connected.
  • a gear to achieve the phase offset and energy conversion can also be realized in the form of a linear generator linear motor system.
  • magnet or bobbins are attached to the piston rod extensions, which interact with outer stationary coil or magnetic bodies.
  • the energy surplus of a double-piston unit can be used in this way to drive the other double-piston unit.
  • the linear generator linear motor systems change permanently between generator and motor operation.
  • a linear generator linear motor system in connection with the arrangement of the two double piston units in boxer form.
  • the movable and fixed coil and magnetic body of both double piston units can then be partially or completely united.
  • the arrangement of the double piston units according to FIG. 1 and the Boxer form is also a V-arrangement with connection to only a common Kurbelwellenkröpfung feasible.

Description

    Stand der Technik
  • Doppelt wirkende 4-Zyklen-Stirling-Motoren sind in verschiedenen Varianten der Siemens-Anordnung benannt Bei diesen Motoren liegen 4 Zylinder nebeneinander und diese besitzen Jeweils einen Expansions- und einen Konzpressionsraum.
  • Die DE 38 34 071 A1 offenbart eine Wärmekraftmaschine nach dem Stirting-Prinzip, wobei Bewegungen von zwei Kaltkolben um im Wesentlichen 90° zu zwei Heißkolben phasenverschoben sind. Die Rückseiten der beiden Kaltkolben sind durch Stangen miteinander verbunden. Das Gleiche gilt für die entsprechenden Heißkolben. Zwischen den beiden Kaltkolben bzw. den beiden Heißkolben ist ein Getriebe angeordnet mit einer Taumelplatte, die mit den oberen Kolben über Pleuelstangen verbundenen ist.
  • Diese Vorrichtung nach dem Stand der Technik weist folgende Nachteile auf: Es handelt sich um ein 2-Zyklen-Systam, das gegenüber einer 4-Zy-Iden-Maschine einen ungleichförmigeren Drehkraftverlauf besitzt und eine Schwungmasse benötigt. Die Leistungsdichte der Maschine ist wegen der einfach wirkenden Kolben geringer als bei doppelt wirkenden Systemen. Das Getriebe wird über axiale Wärmeleitung entlang der Zylinderwände (10, 10') sowie der Kolben (16, 16') aufgeheizt und dadurch thermisch belastet Außerdem mindern diese Verluste den Arbeitsertrag der Maschine. Während des Maschinenlaufes pumpen die dem Prozess abgewandten Kolbenseiten Gas durch die Kanäle (40) der Kolbenstangenverbindungen (46). Dadurch entstehen zusätzliche hydraulische Verluste.
  • Die Erfindung beschreibt eine 4-Zyklen-Stirlingmaschine (4ZM) vom Alpha-Typ mit 2 Doppelkolbeneinheiten, die sich mit einem Phasenversatz zueinander bewegen, jeweils bestehend aus 2 Kolben, die mit Kolbenstangen (3), (8) miteinander verbunden sind und Kolbenstangenverlängerungen (4), (9), die Ober ein Getriebe in mechanischer Verbindung stehen.
  • Eine Doppelkolbeneinheit kann aus einem Expansionskolben und einem Kompression kolben, 2 Expansionskolben oder 2 Kompressionskolben bestehen.
  • Die Zyklenverbindungen nach Figur 1 sind so hergestellt, dass jeder Zyklus einen Stirling-Motor-Prozess ausführen kann. In Figur 1 findet mit Abwärtsbewegung der ersten Doppelkolbeneinheit und der hinterher eilenden zweiten Doppelkolbeneinheit im Zyklus 1 die Expansion statt, im Zyklus 2 die Kompression, im Zyklus 3 die isochore Wärmezufuhr und im Zyklus 4 die isochore Wärmeabfuhr. Der Drehkraftverlauf an der Kurbelwelle ist dadurch sehr ausgeglichen und durchweg positiv.
  • In der erfindungsgemäßen Anordnung nach Figur 1 ist der Zylinderraum oberhalb von Kolben 1 mit dem Zylinderraum oberhalb von Kolben 7 über die erste Erhitzer-Regenerator-Kühler-Baugruppe verbunden und der Zylinderraum unterhalb von Kolben 1 ist mit dem Zylinderraum unterhalb von Kolben 7 über die zweite Erhltzer-Regenerator-Kühler-Baugruppe verbunden. Zusätzlich ist der Zylinderraum oberhalb von Kolben 6 mit dem Zylinderraum unterhalb von Kolben 2 Ober die dritte Erhitzer-Regenerator-Kühler-Baugruppe verbunden und der Zylinderraum unterhalb von Kolben 6 ist mit dem Zylinderraum oberhalb von Kolben 2 über die vierte Erthitzer-Regenerator-Kühler-Baugruppe verbunden.
  • Da jeweils der erste Kolben einer Doppelkolbeneinheit als Führung für den zweiten genutzt werden kann, besteht die Möglichkeit ohne Kolbenringe mit definiertem Ringspalt zu arbeiten.
  • Die doppelt wirkenden Kolben der Doppelkolbeneinheiten lassen sich bei Beachtung der entsprechenden Temperatur und Druckniveaus als beidseitig nutzbare Membranen oder Faltenbälge, vorzugsweise in einer äußeren, druckdichten Umschließungswand realisieren.
  • Die Zylinder für die Kolben (1), (2), (6) und (7) können sich in ihren Durchmessern voneinander unterscheiden. Dadurch können bspw. die Expansionsräume größer als die Kompressionsräume ausgeführt werden. Außerdem lässt sich über die Variation der Zylinderdurchmesser eine Systemoptimierung bei der gleichzeitigen Realisierung von rechts- und linksläufigen Prozessen vornehmen (Beschreibung siehe unten).
  • Es lässt sich ein Erhitzer einsetzen, bei dem 4 hintereinander liegende oder 4 paarweise gewickelte Einrohrspiralen in einem hohlen Gussgrundkörper angeordnet sind. Der Brenner kann sich innerhalb des Gussgrundkörpers befinden.
  • Zur gleichmäßigen Anströmung der Regeneratormatrix aus dünneren Arbeitsgasverbindungsrohren des 4ZM lässt sich vor der Matrix ein Strömungskörper einbauen, der einen geringen beidseitigen Strömungswiderstand hat, das Gas gleichmäßig verteilt und vorzugsweise eine Kugel ist.
  • Um ein einfaches Wechseln der Dichtungen in der jeweiligen Zylindermitte zu ermöglichen, können diese in Form von Kolbenringen (19) auf den Kolbenstangen (3) und (8) ausgeführt werden.
  • Die Zyklenkurzschlussventile (27) und (28) lassen sich zur Regelung der teilnehmenden Kreisprozesse im Teillastbetrieb nutzen.
  • Gegenüber dem 4-Zylen-Siemens-Stirling-Motor ergeben sich folgende Vorteile
    • ■ Einfacheres Getriebe und weniger mechanische Reibung
    • ■ Geringe Vermischungsverluste des Arbeitsgases
    • ■ Geringe Wärmeleitungsverluste insbesondere im Bereich der Zylinderwand
    • ■ Kompakterer Aufbau
    • ■ Variationsmöglichkeit des Expansionsraumes gegenüber dem Kompressionsraum
  • Eine weitere erfindungsgemäße Anordnung beschreibt eine 4-Zyklen-Universalmaschine mit 2 Doppelkolbeneinheiten, die sich mit einem Phasenversatz zueinander bewegen, bei dem 2 Zyklen zur Bereitstellung mechanischer Energie und die beiden verbleibenden Zyklen dazu genutzt werden, Wärmequellen abzukühlen und Wärmesenken aufzuheizen.
  • Dazu werden die vier Arbeitsgasbereiche des Erhitzer 10 in Figur 1 auf zwei, nämlich die von Zyklus 1 und Zyklus 2 reduziert. Die verbleibenden Arbeitsgasbereiche der Wärmezufuhr in Zyklus 3 und Zyklus 4, die dann nicht mehr im Erhitzer sind (örtlich und thermisch getrennt), werden mit einer oder zwei Wärmequellen thermisch verbunden. Die Bereiche der Wärmeabfuhr von Zyklus 3 und 4 (Kühlerbereiche) können mit einer oder zwei Wärmesenken verbunden werden. So lässt sich bspw. eine Kühlmaschine aufbauen, die mit dem Überschuss an mechanischer Energie von Zyklus 1 und 2 in den beiden anderen Zyklen Kühlprozesse realisiert. Selbstverständlich können alternativ die Zyklen 3 und 4 zur Bereitstellung der mechanischen Energie genutzt werden und Zyklus 1 und 2 für die Kühlprozesse. Ebenso selbstverständlich ist die alternative Anwendung einer Wärmepumpe anstelle einer Kühlmaschine. Es lässt sich eine Maschine aufbauen, die bspw. Zyklus 1 und 2 als Wärmekraftprozesse nutzt, Zyklus 3 als Kältemaschine und Zyklus 4 als Wärmepumpe. Dafür müssen die Arbeitsgasbereiche der Wärmezufuhr von Zyklus 3 und Zyklus 4 wegen der unterschiedlichen Temperaturniveaus thermisch getrennt werden.
  • Die Maschine lässt sich auch so konfigurieren, das der Zylinderraum oberhalb von Kolben 1 mit dem Zylinderraum oberhalb von Kolben 6 über die erste Erhitzer-Regenerator-Kühler-Baugruppe verbunden ist und dass der Zylinderraum unterhalb von Kolben 1 mit dem Zylinderraum unterhalb von Kolben 6 über die zweite Erhitzer-Regenerator-Kühler-Baugruppe verbunden ist. Zusätzlich ist der Zylinderraum oberhalb von Kolben 2 mit dem Zylinderraum oberhalb von Kolben 7 über die erste Wärmequellen-Regenerator-Wärmesenken-Baugruppe verbunden und der Zylinderraum unterhalb von Kolben 2 ist mit dem Zylinderraum unterhalb von Kolben 7 über die zweite Wärmequellen-Regenerator-Wärmesenken-Baugruppe verbunden.
  • Eine weitere erfindungsgemäße Anordnung der Maschine besteht darin, dass der Zylinderraum oberhalb von Kolben 1 mit dem Zylinderraum unterhalb von Kolben 7 über die erste Erhitzer-Regenerator-Kühler-Baugruppe verbunden ist und dass der Zylinderraum unterhalb von Kolben 1 mit dem Zylinderraum oberhalb von Kolben 7 über die zweite Erhitzer-Regenerator-Kühler-Baugruppe verbunden ist. Zusätzlich ist der Zylinderraum oberhalb von Kolben 2 mit dem Zylinderraum unterhalb von Kolben 6 über die erste Wärmequellen-Regenerator-Wärmesenken-Baugruppe verbunden und der Zylinderraum unterhalb von Kolben 2 ist mit dem Zylinderraum oberhalb von Kolben 6 über die zweite Wärmequellen-Regenerator-Wärmesenken-Baugruppe verbunden.
  • Ein vorteilhafte Kopplung zweier 4-Zyklen-Maschinen wird erreicht, wenn an den beiden Kröpfungen der Kurbelwelle für die zwei Doppelkolbeneinheiten eines 4-Zyklen-Motors je eine weitere Doppelkolbeneinheit einer 4-Zyklen-Kühlmaschine anlenkt. Dadurch wird eine ruhig laufende Maschine mit hoher Leistung, guter Trennung der unterschiedlichen Temperaturniveaus und einfachem Getriebe realisiert.
  • Vorteile
    • ■ Mit den beschriebenen Anordnungen können in einer Drehrichtung 4 Prozesse betrieben werden: 4 rechtsläufige Wärmekraftprozesse oder 4 linksläufige Kühlmaschinen- oder Wärmepumpenprozesse oder 2 rechtsläufige und 2 linksläufige Prozesse.
    • ■ Es lassen sich bspw. einfache solare oder pflanzenölbefeuerte Kühlmaschinen mit vergleichsweise hohen Wirkungsgraden auch im Teillastbereich aufbauen. Die COP von thermisch betriebenen konventionellen Systemen liegen nur zwischen 0,5 und 1,1 (im Vergleich Kompressionsanlagen im Bereich von 3,5 bis 4,5 COP).
    • ■ Die Maschine kann mechanische, elektrische und thermische Energie sowie Kälte bereitstellen. Mit Ausiegungsvariation lassen sich Anteile einer bestimmten Energieform der Nutzungsart anpassen.
  • Ein Getriebe zur Erzielung des Phasenversatzes und zur Energieumwandlung kann auch in Form eines Lineargenerator-Linearmotor-Systems realisiert werden. Dazu werden an den Kolbenstangenverlängerungen Magnet- oder Spulenkörper befestigt, die mit äußeren feststehenden Spulen- oder Magnetkörpern wechselwirken. Der Energieüberschuss der einen Doppelkolbeneinheit lässt sich auf diese Weise nutzen um die andere Doppelkolbeneinheit anzutreiben. Dabei wechseln die Lineargenerator-Linearmotor-Systeme permanent zwischen Generator - und Motorbetrieb.
  • Vorteilhaft ist ein Lineargenerator-Linearmotor-System im Zusammenhang mit der Anordnung der beiden Doppelkolbeneinheiten in Boxer-Form. Die beweglichen und feststehenden Spulen- und Magnetkörper beider Doppelkolbeneinheiten können dann teilweise oder vollständig vereint werden. Neben der Anordnung der Doppelkolbeneinheiten gemäß Figur 1 und der Boxer-Form ist auch eine V-Anordnung mit Anbindung an nur eine gemeinsame Kurbelwellenkröpfung realisierbar.
  • Bezugszeichenliste
  • 1
    Expansionskolben der ersten Doppelkolbeneinheit
    2
    Kompressionskolben der ersten Doppelkolbeneinheit
    3
    Kolbenstange der ersten Doppelkolbeneinheit
    4
    Kolbenstangenverlängerung der ersten Doppelkolbeneinheit
    5
    Zylindergehäuse
    6
    Expansionskolben der zweiten Doppelkolbeneinheit
    7
    Kompressionskolben der zweiten Doppelkolbeneinheit
    8
    Kolbenstange der zweiten Doppelkolbeneinheit
    9
    Kolbenstangenverlängerung der zweiten Doppelkolbeneinheit
    10
    4-Zyklen-Erhitzer
    11
    Regenerator Zyklus 1
    12
    Regenerator Zyklus 2
    13
    Regenerator Zyklus 3
    14
    Regenerator Zyklus 4
    15
    Kühler Zyklus 1
    16
    Kühler Zyklus 2
    17
    Kühler Zyklus 3
    18
    Kühler Zyklus 4
    19
    Kolbenstangenringe zur Abdichtung
    20
    Thermische Isolation
    21
    Kolbenstangendichtung
    22
    Linearführung
    23
    Pleuel
    24
    Kurbelwelle
    25
    Generator
    26
    Kurbelgehäuse
    27
    Zyklenkurzschlussventil Zyklus 1 mit Zyklus 2
    28
    Zyklenkurzschlussventil Zyklus 3 mit Zyklus 4
    Z1
    Zyklus 1
    Z2
    Zyklus 2
    Z3
    Zyklus 3
    Z4
    Zyklus 4

Claims (4)

  1. 4-Zyklen-STIRLING-Maschine vom Alpha Typ, dadurch gekennzeichnet, dass sich zwei Doppelkolbeneinheiten mit einem Phasenversatz zueinander bewegen, jeweils bestehend aus einem Expansionskolben (1, 6), der über eine Kolbenstange (3, 8) fest mit einem Kompressionskolben (2, 7) verbunden ist und eine Kolbenstangenverlängerung (4, 9), die fest mit dem Kompressionskolbens (2, 7) und am anderen Ende mit einem Getriebe mechanisch verbunden ist.
  2. 4-Zyklen-STIRLING-Maschine nach Anspruch 1, dadurch gekennzeichnet, dass der Zylinderraum oberhalb vom Kolben (1) mit dem Zylinderraum oberhalb von Kolben (7) über die erste Erhitzer-Regenerator-Kühler-Baugruppe verbunden ist und dass der Zylinderraum unterhalb von Kolben (1) mit dem Zylinderraum unterhalb von Kolben (7) über die zweite Erhitzer-Regenerator-Kühler-Baugruppe verbunden ist; zusätzlich ist der Zylinderraum oberhalb von Kolben (6) mit dem Zylinderraum unterhalb von Kolben (2) über die dritte Erhitzer-Regenerator-Kühler-Baugruppe verbunden und der Zylinderraum unterhalb von Kolben (6) ist mit dem Zylinderraum oberhalb von Kolben (2) über die vierte Erhitzer-Regenerator-Kühler-Baugruppe verbunden.
  3. 4-Zyklen-STIRLING-Maschine nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die doppelt wirkenden Kolben der Doppelkolbeneinheiten als beidseitig nutzbare Membranen oder Faltenbälge, vorzugsweise in einer äußeren, druckdichten Umschließungswand ausgeführt werden.
  4. 4-Zyklen-STIRLING-Maschine nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass zwei 4-Zyklen-Maschinen gekoppelt werden indem an den beiden Kröpfungen der Kurbelwelle für die zwei Doppelkolbeneinheiten eines 4-Zyklen-Motors je eine weitere Doppelkolbeneinheit einer 4-Zyklen-Kühlmaschine anlenkt.
EP05808128A 2005-08-16 2005-10-07 4-zyklen-stirlingmaschine mit 2 doppelkolbeneinheiten Active EP1917434B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05808128T PL1917434T3 (pl) 2005-08-16 2005-10-07 4-cyklowy silnik Stirlinga z dwoma podwójnymi jednostkami tłoków

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200510039417 DE102005039417B4 (de) 2005-08-16 2005-08-16 4-Zyklen-Stirlingmotor
DE102005042744A DE102005042744A1 (de) 2005-08-16 2005-09-05 4-Zyklen-Universalmaschine
PCT/DE2005/001833 WO2007019815A1 (de) 2005-08-16 2005-10-07 4-zyklen-stirlingmaschine mit 2 doppelkolbeneinheiten

Publications (2)

Publication Number Publication Date
EP1917434A1 EP1917434A1 (de) 2008-05-07
EP1917434B1 true EP1917434B1 (de) 2009-06-10

Family

ID=36035798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05808128A Active EP1917434B1 (de) 2005-08-16 2005-10-07 4-zyklen-stirlingmaschine mit 2 doppelkolbeneinheiten

Country Status (9)

Country Link
US (1) US7891184B2 (de)
EP (1) EP1917434B1 (de)
JP (1) JP4638943B2 (de)
AT (1) ATE433539T1 (de)
DE (3) DE102005042744A1 (de)
DK (1) DK1917434T3 (de)
PL (1) PL1917434T3 (de)
RU (1) RU2008104932A (de)
WO (1) WO2007019815A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014011241B3 (de) * 2014-08-01 2015-10-08 Enerlyt Technik Gmbh 2-Zyklen-Stirlingmaschine mit zwei doppelt wirkenden Kolben

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8490414B2 (en) * 2007-05-16 2013-07-23 Raytheon Company Cryocooler with moving piston and moving cylinder
DE102007034418A1 (de) 2007-07-20 2009-01-22 Enerlyt Technik Gmbh Kolbenring für Heißgasmotor
DE102007053873A1 (de) 2007-11-09 2009-05-14 Enerlyt Technik Gmbh Geteilter Kolbenring für Heißgasmotoren mit einer Vorspannung, die bei Betriebstemperatur verschwindet
DE202008001920U1 (de) * 2008-02-11 2008-04-24 Pasemann, Lutz, Dr. Stirlingmaschine mit Gegenstrom-Wärmeübertrager
DE102008008983B4 (de) 2008-02-13 2015-11-19 Enerlyt Technik Gmbh Kolbenring mit Sperrstoß
GB0803021D0 (en) * 2008-02-19 2008-03-26 Isis Innovation Linear multi-cylinder stirling cycle machine
WO2010052512A2 (en) 2008-11-05 2010-05-14 RINYU, Ferenc György Process and apparatus for implementing thermodynamic cycles
JP5487710B2 (ja) * 2009-05-11 2014-05-07 いすゞ自動車株式会社 スターリングエンジン
DE102009052491A1 (de) 2009-11-11 2011-05-12 Enerlyt Technik Gmbh Heißgasmotor mit Hochtemperatur- Expansionszylindern und Bornitrid-Dispersionsschicht-Laufflächen
US8653678B2 (en) * 2010-06-29 2014-02-18 Marc Henness Method and apparatus for a thermo-electric engine
FR2966520A3 (fr) * 2010-10-22 2012-04-27 Wind Building Engineering Wibee Moteur a air chaud travaillant essentiellement selon un cycle a trois phases
CZ303266B6 (cs) * 2010-11-09 2012-07-04 Libiš@Jirí Dvojcinný prehánec s oddeleným teplým a studeným prostorem a tepelný stroj s dvojcinným prehánecem
US10221808B2 (en) * 2012-05-02 2019-03-05 Solar Miller Stirling engine and methods of operations and use
DE102012213878B4 (de) * 2012-08-06 2017-10-19 István Majoros Wärmekraftmaschine und thermodynamischer Kreisprozess zur Umwandlung von Wärme in Nutzarbeit
FI20140044L (fi) * 2014-02-17 2015-08-18 Seppo LAITINEN Monivaiheinen polttomoottori jossa on vaiheittain toimiva mäntä
EP2975251A1 (de) 2014-07-14 2016-01-20 Frauscher Holding Gesellschaft m.b.H. Thermodynamische Maschine
GB2535693B (en) * 2015-01-27 2019-05-15 Ricardo Uk Ltd Split Cycle Engine Comprising Two Working Fluid Systems
US10100778B2 (en) * 2015-05-11 2018-10-16 Cool Energy, Inc. Stirling cycle and linear-to-rotary mechanism systems, devices, and methods
US20200149494A1 (en) * 2017-07-14 2020-05-14 Daniel Norvin Brown Double-acting stirling engines with optimal parameters and waveforms
US10422329B2 (en) 2017-08-14 2019-09-24 Raytheon Company Push-pull compressor having ultra-high efficiency for cryocoolers or other systems
US10598125B1 (en) * 2019-05-21 2020-03-24 General Electric Company Engine apparatus and method for operation
WO2020236881A1 (en) * 2019-05-21 2020-11-26 General Electric Company Engine apparatus and method for operation
FR3114621B3 (fr) * 2020-09-29 2022-09-02 Benjamin Dupas Moteur à cycle Stirling
GB202107042D0 (en) * 2021-05-17 2021-06-30 Sargent Howard Charles Heat energy conversion device
DE202022001806U1 (de) 2022-08-13 2022-09-12 Thomas Seidenschnur Mehrzylinder-Heißgasmotor-Anlage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL65813C (de) * 1943-01-23
GB682445A (en) * 1947-08-23 1952-11-12 Philips Nv Improvements in or relating to hot-gas reciprocating engines and reciprocating engines operating on the reversed hot-gas engine principle
SE352140B (de) * 1970-09-25 1972-12-18 S Rydberg
AU472315B2 (en) * 1974-02-26 1976-05-20 Eben Hamilton Hipsley Rotating stirling engine
US3994136A (en) * 1975-07-03 1976-11-30 Josam Manufacturing Co. Hot gas engine
JPS6119953A (ja) * 1984-07-06 1986-01-28 Mitsubishi Electric Corp スタ−リングエンジン
JPH0718381B2 (ja) * 1986-02-25 1995-03-06 三洋電機株式会社 多気筒スタ−リングエンジン
IT1191965B (it) * 1986-06-24 1988-03-31 Enea Motore stirling perfezionato
DE3834071A1 (de) 1988-10-06 1990-04-12 Heidelberg Goetz Waermekraftmaschine nach dem stirling-prinzip oder dem ericsen-prinzip
DE4336975A1 (de) * 1993-10-29 1995-05-04 Erno Raumfahrttechnik Gmbh Energieerzeugungseinrichtung
JPH10213012A (ja) * 1997-01-29 1998-08-11 Aisin Seiki Co Ltd 直列複動型4気筒熱ガス機関
DE10060137A1 (de) 2000-11-24 2002-05-29 Enerlyt Potsdam Gmbh 2-Zylinder-Heißgasmotor mit ineinander laufenden Kolben
JP2005054640A (ja) * 2003-08-01 2005-03-03 Sakushiyon Gas Kikan Seisakusho:Kk スターリングエンジン
JP2005076557A (ja) * 2003-09-01 2005-03-24 Sakushiyon Gas Kikan Seisakusho:Kk スターリングエンジン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014011241B3 (de) * 2014-08-01 2015-10-08 Enerlyt Technik Gmbh 2-Zyklen-Stirlingmaschine mit zwei doppelt wirkenden Kolben

Also Published As

Publication number Publication date
RU2008104932A (ru) 2009-09-27
DE102005042744A1 (de) 2007-04-26
DE502005007478D1 (de) 2009-07-23
US20100139262A1 (en) 2010-06-10
EP1917434A1 (de) 2008-05-07
DE112005003734A5 (de) 2008-07-17
JP2009504980A (ja) 2009-02-05
WO2007019815A1 (de) 2007-02-22
JP4638943B2 (ja) 2011-02-23
ATE433539T1 (de) 2009-06-15
US7891184B2 (en) 2011-02-22
DK1917434T3 (da) 2009-10-12
PL1917434T3 (pl) 2010-01-29

Similar Documents

Publication Publication Date Title
EP1917434B1 (de) 4-zyklen-stirlingmaschine mit 2 doppelkolbeneinheiten
DE102005039417B4 (de) 4-Zyklen-Stirlingmotor
DE102006043250B4 (de) Mehrfachzylinder-Freikolben-Stirlingmaschinen und -Wärmepumpen in Alpha-Anordnung mit abgestuften Kolben
DE69732929T2 (de) Einlass- System für eine Stirlingmaschine
DE60224261T2 (de) Antriebseinheit mit linearer hubbewegung auf grundlage eines stirlingmotors und bei dem antriebssystem verwendetes verfahren
DE112010006142B3 (de) Schmiermittelfreie Freikolben-Stirlingmaschine reduzierter Masse mit hin- und her gehendem Kolben, antriebskoppelnd verbunden mit rotierendem elektromagnetischem Wandler, der sich rotatorisch schwingend bewegt
DE112010004335B4 (de) Gamma-Typ Freikolben-Stirlingmaschinen Konfiguration
DE102006040206A1 (de) Wasserstoffausgleichssystem für zweifach wirkenden Stirlingmotor
US8857173B2 (en) Two piston, concentric cylinder, alpha free piston Stirling machine
DE102008050655A1 (de) Abgasanlage für Kraftfahrzeuge mit integrierter Wärmekraftmaschine
JPS61207863A (ja) 熱機関
DE4018943A1 (de) Kolbenmaschine
EP1306539B1 (de) Zwei-Zyklen-Heissgasmotor
EP1411235B1 (de) 2-Zyklen-Heissgasmotor mit zwei beweglichen Teilen
DE102008004075B4 (de) Stirlingmotor
WO2021175353A1 (de) Stirlingmotor
WO1990008890A1 (en) Improved sibling cycle piston and valving method
DE102008047275C5 (de) Expansionsmaschine
DE3922986A1 (de) Verbrennungsmotor mit lineargenerator
WO2001021947A1 (en) Conversion of rectilinear reciprocating motion into rotational motion
JPS6125901A (ja) 第1及び第2の線形変位体間の運動を伝達するための機構
DE4320356A1 (de) Stirling-Wärmekraftmaschine in Verdrängerbauweise
DE102014011241B3 (de) 2-Zyklen-Stirlingmaschine mit zwei doppelt wirkenden Kolben
EP1016781B1 (de) Kalorische Maschine
DE102012109832A1 (de) Freikolbenmaschine und Doppelzylinderfreikolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005007478

Country of ref document: DE

Date of ref document: 20090723

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090910

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091010

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090910

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: GIMSA, DR., ANDREAS

Effective date: 20091031

26N No opposition filed

Effective date: 20100311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141030

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20221021

Year of fee payment: 18

Ref country code: AT

Payment date: 20221020

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221024

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230928

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 19