EP1914491B1 - Installation de refroidissement - Google Patents

Installation de refroidissement Download PDF

Info

Publication number
EP1914491B1
EP1914491B1 EP07020003.5A EP07020003A EP1914491B1 EP 1914491 B1 EP1914491 B1 EP 1914491B1 EP 07020003 A EP07020003 A EP 07020003A EP 1914491 B1 EP1914491 B1 EP 1914491B1
Authority
EP
European Patent Office
Prior art keywords
mass flow
pressure
cooling
refrigerant
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07020003.5A
Other languages
German (de)
English (en)
Other versions
EP1914491A3 (fr
EP1914491A2 (fr
Inventor
Oliver Javerschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP1914491A2 publication Critical patent/EP1914491A2/fr
Publication of EP1914491A3 publication Critical patent/EP1914491A3/fr
Application granted granted Critical
Publication of EP1914491B1 publication Critical patent/EP1914491B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the invention relates to a refrigeration system, comprising a refrigerant circuit in which a total mass flow of a refrigerant is carried, a high-pressure-side refrigerant-cooling heat exchanger arranged in the refrigerant circuit, an expansion cooling device arranged in the refrigerant circuit, which in the active state cools the total mass flow of the refrigerant and thereby a main mass flow of liquid Refrigerant and an additional mass flow of gaseous refrigerant generated, a collector for the main mass flow, at least one normal cooling stage which removes a normal cooling mass flow from the collector with a normal cooling expansion element and a normal cooling heat exchanger downstream of this, on the low pressure side, which provides cooling capacity for normal cooling, a deep cooling stage which removes a total frozen mass flow from the collector with a deep-freeze expansion element and a downstream deep-freeze heat exchanger that provides cooling capacity and with a deep-freeze compressor unit arranged downstream of this deep-freeze heat exchanger, the deep-freeze stage
  • the WO 2006/015629 A1 and the WO 2006/015741 A1 also describe solutions with sub-optimal efficiency.
  • the invention is therefore based on the object of improving a refrigeration system of the type described above so that it has better efficiency.
  • the refrigerant compressor unit that compresses the refrigerant to high pressure comprises a plurality of refrigerant compressors and each of the refrigerant compressors has a connection on the suction side and a connection on the pressure side, with all suction-side connections being combined to form a suction connection of the refrigerant compressor unit and all pressure-side connections being combined to form a pressure connection of the refrigerant compressor unit
  • Refrigerant compressor unit compresses the main mass flow and the additional mass flow to high pressure, that in the refrigeration system the additional deep-freeze mass flow is fed from the collector via a discharge line to the suction connection of the refrigerant compressor unit which compresses the refrigerant of the main mass flow and the additional mass flow to high pressure, that from the refrigeration system the main deep-freeze mass flow compressed by the deep-freeze compressor unit the refrigerant of the main mass flow and the additional mass flow is supplied
  • the advantage of the solution according to the invention can be seen in the fact that the deep-freeze expansion cooling device creates the possibility of increasing the amount of heat to be absorbed at the deep-freezing temperature and thus further increasing the efficiency of the refrigeration system according to the invention, the enthalpy increase possible at the deep-freezing temperature being achieved by absorbing thermal energy in the Deep-freeze heat exchanger is optimally adapted to the thermodynamic states of the refrigerant, in particular the thermodynamically possible states of carbon dioxide as a refrigerant.
  • the refrigeration system according to the invention further provides that the additional deep-freeze mass flow is supplied to a suction connection of the refrigerant compressor unit and therefore an additional compressor stage is not required.
  • the solution according to the invention also provides that the main frozen mass flow compressed by the freezer compressor unit is fed to the refrigerant compressor unit and thus undergoes compression to high pressure by the refrigerant compressor unit.
  • the further compression of the main frozen mass flow can then take place via an additional compressor stage of the refrigerant compressor unit.
  • the intermediate pressure can be adjusted by supplying at least part of the additional mass flow to an additional suction connection of the refrigerant compressor unit.
  • Such a refrigerant compressor unit which is provided with an additional suction connection, can be constructed in a wide variety of ways.
  • One solution provides that the refrigerant compressor unit has refrigerant compressors with additional compressor stages.
  • the setting of the delivery rate at the additional suction connection can be adjustable either by the number of active additional compressor stages or the number of individual refrigerant compressors provided for compressing the additional mass flow and/or the speed of the same.
  • the solution according to the invention provides that the intermediate pressure can be adjusted by supplying at least part of the additional mass flow to a suction port of the refrigerant compressor unit.
  • This solution has the advantage that it is not necessary to provide additional compressor stages or special refrigerant compressors provided for the additional suction connection, but rather the additional mass flow only has to be fed to the suction connection of the refrigerant compressor unit, with which the main mass flow of the refrigerant is compressed anyway.
  • this solution has a slight disadvantage in terms of a reduction in efficiency.
  • the solution according to the invention which essentially allows optimal operation of the refrigeration system in all operating states and under all temperature conditions, provides a control which supplies the additional mass flow either to the additional suction connection or to this and in parts to the suction connection or to the suction connection of the refrigerant compressor unit.
  • one embodiment provides that in order to increase the available enthalpy difference in the heat exchanger or to further reduce the enthalpy of the main deep-freeze mass flow, it has a deep-freeze expansion device which, in the active state, relaxes the total deep-freeze mass flow and thereby generates a deep-freeze main mass flow fed to the deep-freeze expansion element and the additional deep-freeze mass flow in the deep-freeze collector .
  • the intermediate freezer pressure lies between the intermediate pressure in the expansion cooling device and a suction pressure of the freezer compressor unit in order to optimally adapt the enthalpy reduction possible through expansion in the freezer expansion cooling device to the conditions of the refrigeration system.
  • An expedient solution provides that the intermediate deep-freeze pressure in the deep-freeze expansion cooling device is at least approximately 2 bar lower than the intermediate pressure of the expansion cooling device.
  • the intermediate freezer pressure is at least approximately 4 bar lower than the intermediate pressure of the expansion cooling device.
  • an expedient solution provides that the intermediate freezer pressure in the freezer expansion device is at least approximately 2 bar higher than the suction pressure of the freezer compressor unit.
  • the intermediate freezer pressure is at least approximately 4 bar higher than the suction pressure of the freezer compressor unit.
  • a particularly expedient solution provides that there is an intermediate freezer pressure in the freezer expansion cooling device, which lies in a middle third of a pressure difference divided into three thirds between the intermediate pressure in the expansion cooler and the suction pressure of the freezer compressor unit.
  • a simple embodiment of the refrigeration system according to the invention provides that the additional deep-freeze mass flow is supplied to the suction connection of the refrigerant compressor unit without pressure regulation and therefore no additional measures for pressure regulation of the intermediate deep-freeze pressure are required.
  • the intermediate freezer pressure is expediently selected so that it lies in the low pressure range at the suction port of the refrigerant compressor unit.
  • the intermediate freezer pressure corresponds approximately to the low pressure at the suction port of the refrigerant compressor unit.
  • the refrigerant compressor unit could be constructed in such a way that it has different refrigerant compressors for the normal cooling mass flow and the deep-freeze additional mass flow.
  • a particularly simple solution provides that the additional deep-freeze mass flow is supplied to the refrigerant compressor unit together with the normal refrigerant mass flow expanded to low pressure, so that the refrigerant compressor unit sucks in and compresses the sum of both mass flows.
  • the main frozen mass flow compressed by the freezer compressor unit is mixed with the expanded normal coolant mass flow and fed to a suction port of the refrigerant compressor unit.
  • the mixing of the compressed but heated main frozen mass flow with the expanded but cooler normal cooled mass flow results in the enthalpy of the deep frozen main mass flow being reduced and thus a total enthalpy of the compressed main frozen mass flow and the expanded normal cooled mass flow.
  • the resulting heating of the expanded normal cooling mass flow caused by the main frozen mass flow compressed by the freezer compressor unit causes the refrigerant to be compressed by the refrigerant compressor unit to be supplied essentially free of liquid components and thus overheated.
  • a particularly advantageous solution provides that the main deep-freeze mass flow compressed by the deep-freeze compressor unit, the additional deep-freeze mass flow and the expanded normal refrigerant mass flow are mixed with one another and fed to the suction connection of the refrigerant compressor unit and thus all of the above-mentioned mass flows are compressed together by the refrigerant compressor unit.
  • This solution has the particular advantage that different operating conditions, that is to say different cooling capacities of the normal cooling stage and the deep-freezing stage, are at least partially averaged out and the control of the refrigerant compressor unit is therefore simplified.
  • the deep-freeze expansion cooling device reduces the enthalpy of the main deep-freeze mass flow by at least 10% compared to the enthalpy of the total deep-freeze mass flow.
  • the deep-freeze expansion cooling device reduces the enthalpy of the main deep-freeze mass flow by at least 20%.
  • thermodynamic state of the main frozen mass flow can be determined in that the deep freeze expansion cooling device generates the main frozen mass flow in a thermodynamic state whose pressure and enthalpy values are lower than those of the normal cooling mass flow.
  • the pressure and enthalpy values of the main deep-freeze mass flow caused by the deep-freeze expansion device lie close to the saturation curve in the enthalpy/pressure diagram.
  • An advantageous exemplary embodiment provides that the expansion cooling device has an expansion element for expanding the total mass flow to the intermediate pressure and that a maximum value of the intermediate pressure can be set.
  • the intermediate pressure can be set to a maximum value of 40 bar or less, since this means that the piping of at least the normal cooling stage can be carried out easily.
  • the adjustability can be achieved by adjusting the expansion element, so that standard components approved up to this pressure can usually be used.
  • An advantageous embodiment provides that the expansion cooling device reduces the enthalpy of the main mass flow by at least 10% compared to the enthalpy of the total mass flow.
  • the expansion cooling device reduces the enthalpy of the main mass flow by at least 20%.
  • the expansion cooling device is active during supercritical operation of the refrigeration system.
  • Such supercritical operation occurs in particular when carbon dioxide is used as a refrigerant and normal ambient temperatures are used to cool the heat exchanger.
  • the expansion cooling device generates the main mass flow in a thermodynamic state whose pressure and enthalpy values are lower than those of a maximum of the saturation curve.
  • the pressure and enthalpy values of the main mass flow caused by the expansion cooling device lie close to the saturation curve in the enthalpy/pressure diagram.
  • the refrigerant compressor unit in order to prevent the refrigerant compressor unit from sucking in refrigerant with liquid components at the suction connection, it is preferably provided that the refrigerant compressor unit is sucked into the suction connection of the refrigerant compressor unit incoming refrigerant can be heated by a heat exchanger connected upstream of this. With such a heat exchanger, the refrigerant to be sucked in can be heated to such an extent that liquid components are essentially excluded, so that this refrigerant can be described as overheated.
  • Heat could be supplied to the heat exchanger in a variety of ways.
  • thermoelectric heat exchanger removes heat from the total mass flow emerging from the high-pressure side heat exchanger, so that the total mass flow emerging from the high-pressure side heat exchanger, but still heated, can be used to heat the refrigerant entering the refrigerant compressor unit, with cooling at the same time of the total mass flow in return.
  • a first exemplary embodiment of a refrigeration system according to the invention comprises a refrigerant circuit designated as a whole by 10, in which a refrigerant compressor unit designated as a whole by 12 is arranged, which in the illustrated embodiment comprises several individual refrigerant compressors 14, for example four refrigerant compressors 14.
  • Each of the refrigerant compressors 14 has a connection 16 on the suction side and a connection 18 on the pressure side, with all suction side connections 16 being combined to form a suction connection 20 of the refrigerant compressor unit 12 and all pressure side connections 18 being combined to form a pressure connection 22 of the refrigerant compressor unit 12.
  • each of the refrigerant compressors 14 also has an additional connection 24, with all additional connections 24 of the refrigerant compressors being combined to form an additional suction connection 26 of the refrigerant compressor unit 12.
  • the refrigerant sucked in by the refrigerant compressor unit 12 via the additional suction connection 26 is also compressed by the refrigerant compressor unit 12 to high pressure and exits at the pressure connection 22 of the refrigerant compressor unit 12 together with the refrigerant sucked in via the suction connection 20 and compressed to high pressure.
  • the refrigerant compressed to high pressure emerging from the pressure connection 22 of the refrigerant compressor unit 12 forms a total mass flow G and this flows through a high-pressure side heat exchanger 30, through which the refrigerant compressed to high pressure is cooled.
  • the cooling of the refrigerant compressed to high pressure in the heat exchanger 30 causes it to liquefy or merely cool to a lower temperature, with the refrigerant remaining in the gas phase.
  • CO 2 carbon dioxide
  • a supercritical cycle in which only cooling takes place to a temperature which corresponds to an isotherm that runs outside the dew and boiling line or saturation curve, so that no Liquefaction of the refrigerant occurs.
  • a subcritical cycle provides that the heat exchanger 30 cools down to a temperature that corresponds to an isotherm passing through the dew and boiling line or saturation curve of the refrigerant.
  • the refrigerant cooled by the heat exchanger 30 is subsequently expanded via a pressure line 31 by an expansion element 32 representing an expansion cooling device, for example an expansion valve, to an intermediate pressure PZ, which corresponds to an isotherm passing through the dew and boiling line or saturation curve of the refrigerant.
  • an expansion element 32 representing an expansion cooling device, for example an expansion valve
  • the intermediate pressure PZ is preferably set to a pressure of less than 40 bar in order to be able to design the line and component system of the refrigerant circuit 10 following the collector 34 to a pressure of less than 40 bar.
  • a control unit 40 is preferably provided, which detects the intermediate pressure PZ in the collector with a pressure sensor 42 and is also able to connect the individual additional connections 24 of the individual refrigerant compressors 14 to the additional suction connection 26 or not to switch on.
  • the refrigerant compressors 14 can correspond to those of German patent application 10 2005 009 173.3 be designed and, for example, be designed as suction-side connections of one of several cylinders of the respective refrigerant compressor 14, this cylinder being able to be used either for sucking in refrigerant from the additional mass flow Z via the additional suction connection 26 or for sucking in refrigerant from the suction connection 20 of the Refrigerant compressor unit 12 supplied expanded main mass flow.
  • the main mass flow H consisting of liquefied refrigerant is divided into a normal cooling mass flow N, which is fed to at least one normal cooling expansion element 50 or two normal cooling expansion elements 50a, 50b and at least one normal cooling heat exchanger 52 connected downstream of the respective normal cooling expansion element 50.
  • the respective normal cooling expansion element 50 expands the refrigerant of the normal cooling mass flow N from the intermediate pressure PZ to low pressure PN, with the refrigerant in the normal cooling mass flow N being cooled in a known manner through this expansion, which opens up the possibility of absorbing heat in the normal cooling heat exchanger 52 , which results in an increase in enthalpy.
  • the normal cooling mass flow N expanded to low pressure PN is supplied via a suction line 54 to the suction connection 20 of the refrigerant compressor unit 12 and is compressed by it to high pressure PH.
  • the deep-freeze expansion cooling device 62 expands the deep-freeze total mass flow TG to an intermediate deep-freeze pressure PTZ, so that the deep-freeze total mass flow TG consisting of liquid refrigerant produces a main deep-freeze mass flow TH at a temperature below the temperature of the total deep-freeze mass flow TG and an additional deep-freeze mass flow TZ made of vaporous refrigerant.
  • the main deep-freeze mass flow TH and the additional deep-freeze mass flow TZ are separated from one another in a reservoir connected downstream of the deep-freeze expansion cooling device 62 and designed as a collector 64, with the additional deep-freeze mass flow TZ being discharged via a discharge line 68 leading from the collector 64 to a mixer 66.
  • the mixer 66 is preferably arranged in the suction line 54 and mixes the additional deep-freeze cooling mass flow TZ with the expanded normal cooling mass flow N from the at least one normal cooling heat exchanger 52, so that both the additional deep-freeze cooling mass flow TZ and the expanded normal cooling mass flow N are then mixed together and fed to the suction port 20 of the refrigerant compressor unit 12 .
  • the main deep-freeze mass flow TH collecting in the collector 64 is then fed to at least one deep-freeze expansion element 70, expanded by this to a low-freeze pressure PTN and fed to a deep-freeze heat exchanger 72 connected downstream of the respective at least one deep-freeze expansion element 70, in which the main deep-freeze mass flow TH cooled by the expansion is able to to absorb heat by increasing enthalpy at freezing temperatures.
  • the deep-freeze main mass flow TH expanded to low-freeze low pressure PTN is fed via a deep-freeze suction line 74 connected to the at least one deep-freeze heat exchanger 72 to a deep-freeze compressor unit 82, which, for example, also includes several deep-freeze compressors 84, the individual deep-freeze compressors 84 being switchable depending on the required compressor output.
  • the freezer compressors 84 also each have a suction-side connection 86 and a pressure-side connection 88, the suction-side connections 86 being combined to form a suction port 90 of the freezer compressor unit 82 and the pressure-side connections 88 being combined to form a pressure port 92 of the freezer compressor unit 82.
  • the suction connection 90 of the freezer compressor unit 82 is connected to the freezer suction line 74, while the pressure connection 92 of the freezer compressor unit 82 is connected to a freezer discharge line 94, which is led to the mixer 66.
  • the mixer 66 not only mixes the normal cooling mass flow N expanded to low pressure PN, the additional deep-freeze mass flow TZ expanded to the intermediate deep-freeze pressure PTZ, but also the main deep-freeze mass flow TH compressed to a low-freeze high pressure PTH by the deep-freeze compressor unit 82, so that all three mass flows N, TZ and TH dem Suction port 20 of the refrigerant compressor unit 12 is supplied at the low pressure PN, which corresponds to the suction pressure at the suction port 20, and is compressed by the refrigerant compressor unit 12 to high pressure PH.
  • the refrigerant present at the suction connection 20 of the refrigerant compressor unit 12 corresponds to the state of the point ZA in Figure 2 . Compressing the refrigerant by the refrigerant compressor unit 12 leads to an increase in pressure with a small increase in enthalpy and thus to the thermodynamic state ZB in Figure 2 .
  • the refrigerant compressed to high pressure PH is cooled while maintaining the high pressure PH in the heat exchanger 30, so that the refrigerant is subsequently in the thermodynamic state ZC, the thermodynamic state ZC being above the saturation curve or dew and boiling line 110 for the refrigerant, in this case carbon dioxide, is located, so that in the thermodynamic state ZC the refrigerant is still gaseous.
  • the expansion cooling device 32 starting from the state ZC, an isenthalpic expansion of the refrigerant in an expansion element or the almost isentropic expansion in an expander takes place to the intermediate pressure PZ and thus into a thermodynamic state corresponding to the point ZD, which represents a mixture of a liquid phase and a gas phase , whereby in the collector 34 the liquid phase forms the main mass flow H, while the gas phase forms the additional mass flow Z.
  • the main mass flow H reaches a thermodynamic state corresponding to the point ZE with a decrease in the enthalpy h which lies in the area of the saturation curve or boiling line, while the additional mass flow Z through enthalpy increase due to enthalpy removal in the main mass flow H reaches the thermodynamic state ZF, which lies in the area of the saturation curve or saturated steam line or close to the saturation curve or saturated steam line, from which the additional mass flow Z is again compressed to the high pressure PH, namely in that the additional mass flow Z is sucked in via the additional suction connection 26 of the refrigerant compressor unit 12 and compressed to the high pressure PH.
  • the refrigerant from the main mass flow H is expanded to the low pressure PN by isenthalpic expansion, once in the form of the normal cooling mass flow N through the at least one normal cooling expansion element 50 and another time through the deep-freeze expansion cooling device 62, whereby the intermediate deep-freeze pressure PTZ automatically increases to the pressure level of the Low pressure PN at the suction port 20 of the refrigerant compressor unit 12 sets, unless special measures are taken to change this pressure.
  • the refrigerant of the main mass flow H thus reaches the thermodynamic state corresponding to the point ZG in once as the normal cooling mass flow N and once as the total deep-freezing mass flow TG Figure 2 .
  • the deep-freeze expansion cooling device 62 and the subsequent collector 64 divide it into a liquid phase, which forms the main deep-freeze mass flow TH, which passes through enthalpy release into the thermodynamic state ZH in the area of the saturation curve or boiling line, while the gas phase forms the deep-freeze additional mass flow TZ , which is supplied via the discharge line 68 to the suction connection 20 of the refrigerant compressor unit 12, the additional deep-freeze mass flow TZ starting from the thermodynamic State ZG experiences an enthalpy increase due to enthalpy removal of the main frozen mass flow TH, so that it enters a thermodynamic state in the area of the saturation curve or saturated steam line or near the saturation curve or saturated steam line Figure 2 reached.
  • the at least one normal cooling expansion element 50 and the normal cooling heat exchanger 52 following it form a normal cooling stage 100, the deep-freezing expansion cooling device 62, the collector 64, the discharge line 68, the at least one deep-freezing expansion element 70, the deep-freezing heat exchanger 72 and the deep-freezing compressor unit 82 form a deep-freezing stage integrated into the refrigerant circuit 10 102, through which a part of the main mass flow H, namely the deep-freezing total mass flow TG, flows, while the normal cooling stage 100 is flowed through by the normal cooling mass flow N, ultimately both the normal cooling mass flow N and the deep-freezing total mass flow TG in turn at low pressure PN via the suction connection 20 from the refrigerant compressor unit 12 are sucked in and compressed to high pressure PH, whereby the total mass flow G leaving the pressure connection 22 of the refrigerant compressor unit 12 is not only composed of the normal cooling mass flow N and the deep-freeze total mass flow TG, but also additionally includes the additional mass flow Z, which
  • the refrigerant of the deep-freeze main mass flow TH is supplied to the at least one deep-freeze expansion element 70 and in this undergoes an isenthalpic expansion to the low-freeze low pressure PTN and thus reaches the thermodynamic state ZI in Figure 2 .
  • thermodynamic state ZI in Figure 2 The deep-freeze main mass flow TH can absorb heat due to an increase in enthalpy at the deep-freeze temperature in the at least one deep-freeze heat exchanger 72 and thereby, in the simplest case, the thermodynamic state ZJ in Figure 2 to reach.
  • the state ZJ is in Figure 2 achieved by the overheating control of the deep-freeze expansion element 70 in the deep-freeze heat exchanger 72.
  • additional heat input in the suction line 74 must be taken into account.
  • Another possibility sees one or more heat exchangers between the suction line 74 and the liquid line starting from point ZI in Figure 2 before.
  • thermodynamic state ZJ the deep-freeze main mass flow TH expanded to low low-temperature pressure PTN is compressed by the deep-freeze compressor unit 82 to the high-freeze high pressure PTH corresponding to the suction pressure at the suction port 20 of the refrigerant compressor unit 12, with this compression being associated with an increase in enthalpy, so that the thermodynamic state ZK in Figure 2 is achieved.
  • a connecting line 120 with a throttle element 122 provided therein is also provided between the suction line 36 and the suction connection 20 of the refrigerant compressor unit 12, which can be controlled via the controller 40 '.
  • the second exemplary embodiment corresponds entirely to the first exemplary embodiment, so that reference is made in full to the detailed explanations in this regard in the first exemplary embodiment.
  • the refrigerant compressors 14 are not provided with additional connections 24, so that the refrigerant compressor unit 12 does not have an additional suction connection 26, but rather the entire additional mass flow Z is fed to the suction connection 20 via the connecting line 120, with the throttle element 122 must be set so that the intermediate pressure PZ is higher than the low pressure PN, which is present at the suction connection 20 of the refrigerant compressor unit 12.
  • a heat exchanger element 130a is provided in the suction line 54 between the mixer 66 and the suction connection 20, which is coupled to a heat exchanger element 130b in the pressure line 31, which is arranged between the heat exchanger 30 and the expansion cooling device 32 and through which the total mass flow G flows is, so that depending on special situations due to ambient temperatures and partial load conditions, it is possible to heat the refrigerant supplied to the suction connection 20 to such an extent that it is free of liquid components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (26)

  1. Installation de refroidissement comprenant un circuit de réfrigérant (10), dans lequel un flux massique total (G) d'un réfrigérant est guidé, un échangeur de chaleur (30) refroidissant le réfrigérant côté haute pression, agencé dans le circuit de réfrigérant (10), un dispositif de refroidissement par détente (32) agencé dans le circuit de réfrigérant (10) qui refroidit dans l'état actif le flux massique total (G) du réfrigérant liquide et génère un flux massique principal (H) de réfrigérant liquide et un flux massique supplémentaire (Z) de réfrigérant gazeux, un collecteur (34) pour le flux massique principal (H), au moins un étage de refroidissement normal (100) prélevant un flux massique de refroidissement normal (N) du collecteur (34) avec un organe de détente de refroidissement normal (50) et un échangeur de chaleur de refroidissement normal (52) mettant à disposition une puissance de refroidissement pour le refroidissement normal, côté basse pression, agencé en aval de celui-ci, un étage de réfrigération (102) prélevant un flux massique total réfrigéré (TG) du collecteur (34) avec un organe de détente de réfrigération (70) et un échangeur de chaleur de réfrigération (72) mettant à disposition de la puissance de refroidissement pour la réfrigération agencé en aval ainsi qu'avec une unité de compresseur de réfrigération (82) agencé en aval de cet échangeur de chaleur de réfrigération (72), dans lequel l'étage de réfrigération (102) présente pour la suite du refroidissement du flux massique total réfrigéré (TG) un dispositif de refroidissement par détente de réfrigération (62) qui détend et refroidit dans l'état actif le flux massique total réfrigéré (TG) et génère un flux massique principal réfrigéré (TH) amené à l'organe de détente de réfrigération (70) ainsi qu'un flux massique supplémentaire réfrigéré (TZ) et dans un collecteur de réfrigération (64), et au moins une unité de compresseur de réfrigérant (12) agencée dans le circuit de réfrigérant (10) qui compresse le réfrigérant à haute pression (PH), dans laquelle l'unité de compresseur de réfrigérant (12) compressant le réfrigérant à haute pression (PH) comporte plusieurs compresseurs de réfrigérant (14), dans lequel chacun des compresseurs de réfrigérant (14) présente côté aspiration un raccord (16) ainsi que côté pression un raccord (18), dans lequel tous les raccords (18) côté pression sont réunis en un raccord de pression (22) de l'unité de compresseur de réfrigérant (12), dans lequel l'unité de compresseur de réfrigérant (12) compresse le flux massique principal (H) et le flux massique supplémentaire (Z) à haute pression,
    caractérisé en ce que tous les raccords côté aspiration (16) sont réunis en un raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12), que dans l'installation de refroidissement, le flux massique supplémentaire réfrigéré (TZ) est amené au raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12) compressant le réfrigérant du flux massique principal (H) et du flux massique supplémentaire (Z) à haute pression (PH), que par l'installation de refroidissement, le flux massique principal réfrigéré (TH) compressé par l'unité de compresseur de réfrigération (82) est amené à l'unité de compresseur de réfrigérant (12) compressant le réfrigérant du flux massique principal (H) et du flux massique supplémentaire (Z) à haute pression, que la pression intermédiaire (PZ) est réglable par amenée d'au moins une partie du flux massique supplémentaire (Z) à un raccord d'aspiration supplémentaire (26) de l'unité de compresseur de réfrigérant (12), en lequel sont réunis des raccords supplémentaires (24) de chacun des compresseurs de réfrigérant (14), et/ou que la pression intermédiaire (PZ) est réglable par amenée d'au moins une partie du flux massique supplémentaire (Z) au raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12) au moyen d'un organe d'étranglement (122), et qu'une commande (40) est prévue, laquelle détecte au moyen d'un capteur de pression (42) une pression intermédiaire (PZ) du flux massique supplémentaire (Z) dans le collecteur (34) et amène le flux massique supplémentaire (Z) au raccord d'aspiration supplémentaire (26) ou à celui-ci et en partie au raccord d'aspiration (20) ou au raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12).
  2. Installation de refroidissement selon la revendication 1, caractérisée en ce que dans le dispositif de refroidissement par détente réfrigération (62) règne une pression intermédiaire de réfrigération (PTZ) qui se trouve entre la pression intermédiaire (PZ) du dispositif de refroidissement par détente (32) et une pression d'aspiration (PTN) de l'unité de compresseur de réfrigération (82).
  3. Installation de refroidissement selon la revendication 2, caractérisée en ce que dans le dispositif de refroidissement par détente de réfrigération (62), la pression intermédiaire de réfrigération (PTZ) se trouve au moins à peu près 2 bars inférieure à la pression intermédiaire (PZ) du dispositif de refroidissement par détente (32).
  4. Installation de refroidissement selon la revendication 2 ou 3, caractérisée en ce que dans le dispositif de refroidissement par détente de réfrigération (62), la pression intermédiaire de réfrigération (PTZ) se trouve au moins à peu près 2 bars supérieure à la pression d'aspiration (PTN) de l'unité de compresseur de réfrigération (82).
  5. Installation de refroidissement selon l'une des revendications 2 à 4, caractérisée en ce que dans le dispositif de refroidissement par détente de réfrigération (62) règne une pression intermédiaire de réfrigération (PTZ), lequel se trouve dans une plage médiane de la différence de pression entre la pression intermédiaire (PZ) dans le dispositif de refroidissement par détente et la pression d'aspiration (PTN) de l'unité de compresseur de réfrigération (82).
  6. Installation de refroidissement selon la revendication 5, caractérisée en ce que dans le dispositif de refroidissement par détente de réfrigération (62) règne une pression intermédiaire de réfrigération (PTZ) qui se trouve dans un tiers médian d'une différence de pression répartie en trois tiers entre la pression intermédiaire (PZ) dans le dispositif de refroidissement par détente (32) et la pression d'aspiration (PTN) de l'unité de compresseur de réfrigération (82).
  7. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que dans celle-ci, le flux massique supplémentaire réfrigéré (TZ) est amené sans régulation de pression au raccord d'aspiration (20).
  8. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que la pression intermédiaire de réfrigération (PTZ) se trouve dans la plage de la basse pression (PN) sur le raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12).
  9. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le flux massique supplémentaire réfrigéré (TZ) est amené conjointement au flux massique de refroidissement normal (N) détendu à basse pression (PN) à l'unité de compresseur de réfrigérant (12).
  10. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que par celle-ci, le flux massique principal réfrigéré (TH) compressé par l'unité de compresseur de réfrigération (82) est amené mélangé avec le flux massique de refroidissement normal (N) détendu à un raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12).
  11. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que par celle-ci, le flux massique principal réfrigéré (TH) compressé par l'unité de compresseur de réfrigération (82), le flux massique supplémentaire réfrigéré (TZ) et le flux massique de refroidissement normal (N) détendu sont amenés mélangés entre eux au raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12).
  12. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le dispositif de refroidissement par détente de réfrigération (62) réduit l'enthalpie (ZI) du flux massique principal réfrigéré (TH) d'au moins 10 % par rapport à l'enthalpie (ZG) du flux massique total réfrigéré (TG).
  13. Installation de refroidissement selon la revendication 12, caractérisée en ce que le dispositif de refroidissement par détente de réfrigération (62) réduit l'enthalpie du flux massique principal réfrigéré (TH) d'au moins 20 %.
  14. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le dispositif de refroidissement par détente de réfrigération (62) génère le flux massique principal réfrigéré (TH) dans un état thermodynamique (ZI), dont les valeurs de pression et d'enthalpie sont inférieures à celles (ZG) du flux massique de refroidissement normal (N).
  15. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que les valeurs de pression et d'enthalpie provoquées par le dispositif de refroidissement par détente de réfrigération (62) du flux massique principal réfrigéré (TH) se trouvent près de la courbe de saturation (110) dans le diagramme d'enthalpie/de pression.
  16. Installation de refroidissement selon la revendication 15, caractérisée en ce que les valeurs de pression et d'enthalpie provoquées par le dispositif de refroidissement par détente de réfrigération (62) du flux massique principal réfrigéré (TH) se trouvent sensiblement sur la courbe de saturation (110) du diagramme d'enthalpie/de pression.
  17. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le dispositif de refroidissement par détente (32) présente un organe de détente pour la détente du flux massique total (G) à une pression intermédiaire (PZ) et qu'une valeur maximale de la pression intermédiaire (PZ) est réglable.
  18. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que la pression intermédiaire (PZ) est réglable à une valeur maximale de 40 bars ou moins.
  19. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le dispositif de refroidissement par détente (32) réduit l'enthalpie du flux massique principal (H) d'au moins 10 % par rapport à l'enthalpie du flux massique total (G).
  20. Installation de refroidissement selon la revendication 19, caractérisée en ce que le dispositif de refroidissement par détente (32) réduit l'enthalpie du flux massique principal (H) d'au moins 20 %.
  21. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le dispositif de refroidissement par détente (32) est actif pour un fonctionnement surcritique de l'installation de refroidissement.
  22. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le dispositif de refroidissement par détente (32) génère le flux massique principal (H) dans un état thermodynamique, dont les valeurs de pression et d'enthalpie sont inférieures à celles d'un maximum de la courbe de saturation (110).
  23. Installation de refroidissement selon la revendication 22, caractérisée en ce que les valeurs de pression et d'enthalpie provoquées par le dispositif de refroidissement par détente (32) du flux massique principal (H) se trouvent près de la courbe de saturation (110) dans le diagramme d'enthalpie/de pression.
  24. Installation de refroidissement selon la revendication 23, caractérisée en ce que les valeurs de pression et d'enthalpie provoquées par le dispositif de refroidissement par détente (32) du flux massique principal (H) se trouvent sensiblement sur la courbe de saturation (110) du diagramme d'enthalpie/de pression.
  25. Installation de refroidissement selon l'une des revendications précédentes, caractérisée en ce que le réfrigérant entrant dans le raccord d'aspiration (20) de l'unité de compresseur de réfrigérant (12) est chauffable par un échangeur de chaleur (130) monté en amont de celui-ci.
  26. Installation de refroidissement selon la revendication 25, caractérisée en ce que l'échangeur de chaleur (130) prélève de la chaleur du flux massique total (G) sortant de l'échangeur de chaleur (130) côté haute pression.
EP07020003.5A 2006-10-17 2007-10-12 Installation de refroidissement Active EP1914491B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006050232A DE102006050232B9 (de) 2006-10-17 2006-10-17 Kälteanlage

Publications (3)

Publication Number Publication Date
EP1914491A2 EP1914491A2 (fr) 2008-04-23
EP1914491A3 EP1914491A3 (fr) 2011-01-05
EP1914491B1 true EP1914491B1 (fr) 2024-01-17

Family

ID=38885256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07020003.5A Active EP1914491B1 (fr) 2006-10-17 2007-10-12 Installation de refroidissement

Country Status (4)

Country Link
US (1) US8056356B2 (fr)
EP (1) EP1914491B1 (fr)
CN (1) CN101165439B (fr)
DE (1) DE102006050232B9 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003590A2 (fr) * 2008-07-07 2010-01-14 Carrier Corporation Circuit de réfrigération
WO2010036540A1 (fr) * 2008-09-29 2010-04-01 Carrier Corporation Augmentation de la capacité pendant la descente
EP2394058B1 (fr) * 2009-02-06 2018-01-31 Carrier Corporation Compresseur de réfrigération alternatif
EP2496894B1 (fr) 2009-11-06 2019-01-02 Carrier Corporation Système de réfrigération et procédé de fonctionnement d'un système de réfrigération
KR101201567B1 (ko) * 2010-09-27 2012-11-14 엘지전자 주식회사 공기 조화기
CN103282729B (zh) * 2011-01-14 2015-09-30 开利公司 制冷系统和用于操作制冷系统的方法
DE102011012644A1 (de) 2011-02-28 2012-08-30 Gea Bock Gmbh Kälteanlage
CA2807643C (fr) * 2012-02-23 2017-01-03 Systemes Lmp Inc. Sous-refroidissement mecanique de systemes de refrigeration r-744 transcritiques avec recuperation de chaleur et pression de tete flottante de pompe a chaleur
EP2841855B1 (fr) 2012-04-27 2021-04-14 Carrier Corporation Système de refroidissement et procédé d'opération dudit système
EP2906881A4 (fr) * 2012-05-11 2016-04-13 Hill Phoenix Inc Système de réfrigération au co2 pourvu d'un module de conditionnement d'air intégré
CN105358918B (zh) 2013-07-02 2017-06-27 三菱电机株式会社 制冷剂回路和空调装置
US9657969B2 (en) 2013-12-30 2017-05-23 Rolls-Royce Corporation Multi-evaporator trans-critical cooling systems
DE102014100916A1 (de) * 2014-01-27 2015-07-30 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
DE102014100917A1 (de) 2014-01-27 2015-07-30 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
EP3023712A1 (fr) * 2014-11-19 2016-05-25 Danfoss A/S Procédé pour commander un système de compression de vapeur avec un récepteur
US9726411B2 (en) 2015-03-04 2017-08-08 Heatcraft Refrigeration Products L.L.C. Modulated oversized compressors configuration for flash gas bypass in a carbon dioxide refrigeration system
DE102015112439A1 (de) * 2015-07-29 2017-02-02 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
CN106642786A (zh) * 2016-11-24 2017-05-10 松下冷机系统(大连)有限公司 一种采用中间压力供液的二氧化碳制冷循环系统
US10808966B2 (en) * 2017-03-02 2020-10-20 Heatcraft Refrigeration Products Llc Cooling system with parallel compression
US10767906B2 (en) * 2017-03-02 2020-09-08 Heatcraft Refrigeration Products Llc Hot gas defrost in a cooling system
US11118817B2 (en) * 2018-04-03 2021-09-14 Heatcraft Refrigeration Products Llc Cooling system
US11346583B2 (en) * 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
EP3628942B1 (fr) 2018-09-25 2021-01-27 Danfoss A/S Procédé permettant de commander un système de compression de vapeur à une pression d'aspiration réduite
PL3628940T3 (pl) 2018-09-25 2022-08-22 Danfoss A/S Sposób sterowania systemem sprężania pary na podstawie szacowanego przepływu
CN111197872B (zh) * 2018-11-16 2021-10-29 株式会社前川制作所 冷冻装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766745A (en) * 1970-03-16 1973-10-23 L Quick Refrigeration system with plural evaporator means
US5079929A (en) * 1979-07-31 1992-01-14 Alsenz Richard H Multi-stage refrigeration apparatus and method
US4742694A (en) * 1987-04-17 1988-05-10 Nippondenso Co., Ltd. Refrigerant apparatus
JPH1163694A (ja) * 1997-08-21 1999-03-05 Zexel Corp 冷却サイクル
JP2000046420A (ja) * 1998-07-31 2000-02-18 Zexel Corp 冷凍サイクル
WO2006022829A1 (fr) * 2004-08-09 2006-03-02 Carrier Corporation Circuit de réfrigération à co2 avec sous-refroidissement de l’agent réfrigérant liquide contre la vapeur instantanée de la bouteille accumulatrice et méthode pour exploiter celui-ci
DE102004038640A1 (de) * 2004-08-09 2006-02-23 Linde Kältetechnik GmbH & Co. KG Kältekreislauf und Verfahen zum Betreiben eines Kältekreislaufes
US20080196420A1 (en) * 2004-08-09 2008-08-21 Andreas Gernemann Flashgas Removal From a Receiver in a Refrigeration Circuit

Also Published As

Publication number Publication date
DE102006050232B3 (de) 2008-02-07
DE102006050232B9 (de) 2008-09-18
US20080110200A1 (en) 2008-05-15
EP1914491A3 (fr) 2011-01-05
US8056356B2 (en) 2011-11-15
EP1914491A2 (fr) 2008-04-23
CN101165439A (zh) 2008-04-23
CN101165439B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
EP1914491B1 (fr) Installation de refroidissement
EP1886075B1 (fr) Appareil frigorifique
DE60003832T2 (de) Luftkreislaufkühlungsystem mit einem flüssigkeitskreislaufsubsystem
DE102012204405B4 (de) Kältemittelverteiler und kältekreislaufvorrichtung
DE60010587T2 (de) Vorrichtung zum Entfernen von parasitären Verlusten in einem Kühlaggregat
DE60314559T2 (de) Verfahren zum Erhöhen der Leistungsfähigkeit einer Dampfverdichtungsanordnung mittels Verdampferheizung
DE69633282T2 (de) Tieftemperaturdampfkompressionskreislauf mit gemischten kältemitteln
DE10201427A1 (de) System zur Luftentfeuchtung in Klimaanlagen
WO2022101139A2 (fr) Installation de thermorégulation et procédé pour faire fonctionner une installation de thermorégulation
DE102004031701A1 (de) Dampfkompressionskühlkreis
EP3574269B1 (fr) Unité d'expansion a intégrer dans un circuit de réfrigération
DE102011012644A1 (de) Kälteanlage
DE102018112333A1 (de) Kältemittelkreislauf mit einer Expansions-Kompressions-Vorrichtung sowie Verfahren zum Betreiben des Kältemittelkreislaufs
DE202007017723U1 (de) Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage
DE19708428C2 (de) Kälteanlage
DE102008011255A1 (de) Ejektorzyklus mit einphasigem Strahl
DE10140630A1 (de) Kälteanlage für ein Kraftfahrzeug sowie Kältemittel-Kreisprozess
EP2473795A2 (fr) Pompe à chaleur
DE19755484A1 (de) Verfahren zur Kälteerzeugung im Temperaturbereich von 50,1 bis 63 Kelvin und Vorrichtung zur Durchführung dieses Verfahrens
DE102021003045A1 (de) Kühlvorrichtung zum Kühlen von Ladeluft für eine Verbrennungsmaschine
WO2006092108A1 (fr) Systeme frigorifique destine a un mode de fonctionnement transcritique et dote d'un economiseur
DE10338388B3 (de) Verfahren zur Regelung einer Klimaanlage
DE102019111309A1 (de) Ejektor-basiertes Kühlungssystem und Kühlungsverfahren
EP3830499A1 (fr) Circuit frigorifique
EP3922931B1 (fr) Installation de réfrigération à compression et procédé de fonctionnement de celle-ci

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20110705

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20160315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BITZER KUEHLMASCHINENBAU GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 5/02 20060101ALI20200320BHEP

Ipc: F25B 40/00 20060101ALI20200320BHEP

Ipc: F25B 41/04 20060101AFI20200320BHEP

Ipc: F25B 1/10 20060101ALI20200320BHEP

Ipc: F25B 9/00 20060101ALI20200320BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref document number: 502007016995

Country of ref document: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: F25B0009000000

Ipc: F25B0001100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101ALI20230330BHEP

Ipc: F25B 40/00 20060101ALI20230330BHEP

Ipc: F25B 5/02 20060101ALI20230330BHEP

Ipc: F25B 1/10 20060101AFI20230330BHEP

INTG Intention to grant announced

Effective date: 20230502

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016995

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240117