EP2473795A2 - Pompe à chaleur - Google Patents

Pompe à chaleur

Info

Publication number
EP2473795A2
EP2473795A2 EP10752298A EP10752298A EP2473795A2 EP 2473795 A2 EP2473795 A2 EP 2473795A2 EP 10752298 A EP10752298 A EP 10752298A EP 10752298 A EP10752298 A EP 10752298A EP 2473795 A2 EP2473795 A2 EP 2473795A2
Authority
EP
European Patent Office
Prior art keywords
heat pump
heat
medium
heat exchanger
pump circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10752298A
Other languages
German (de)
English (en)
Inventor
Karsten Uitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2473795A2 publication Critical patent/EP2473795A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the invention relates to a heat pump according to the preamble of claim 1.
  • the invention has for its object to provide a heat pump, which has a relatively high COP value.
  • the invention is based on a heat pump with a first heat pump circuit comprising an inlet heat exchanger and an outlet heat exchanger.
  • the input heat exchanger is in the working state of a primary medium of a heat source flows through.
  • the primary medium can be liquid or gaseous.
  • the input heat exchanger is designed for the evaporation of a heat pump circuit medium, which flows through the first heat pump circuit.
  • a compressor unit is provided, the vaporized
  • Heat pump circuit medium can be supplied to the output heat exchanger.
  • the output heat exchanger can as
  • Condenser heat exchanger may be formed.
  • the secondary side of the output heat exchanger is flowed through in the working state of a secondary medium which has a higher temperature than the primary medium.
  • the heat pump comprises at least a second heat pump cycle, with an input heat exchanger and an output heat exchanger, wherein the input heat exchanger of the first and second
  • Heat pump circuits primary side and the output heat exchanger of the first and second heat pump circuit are connected on the secondary side in each case in series. This will be the
  • Heat pump circuit medium for both circuits is less than half of the workload of a single-circuit heat pump, assuming equal temperature levels.
  • Input heat exchanger together the temperature difference of a flow and return of the primary medium completely drops. The heat input into the heat pump takes place accordingly
  • the heat pump is designed such that over the
  • the heat pump can be designed such that with a
  • the second and optionally each further heat pump cycle of the basic structure is constructed as the first heat pump cycle, i. with a
  • Inlet heat exchanger in particular an evaporator inlet heat exchanger and an outlet heat exchanger
  • a condenser outlet heat exchanger and a compressor unit in particular a condenser outlet heat exchanger and a compressor unit.
  • an additional heat exchanger can be provided, which heats the evaporated, to be compressed medium in countercurrent, at the same time before the back flowing from the output heat exchanger medium the evaporation is cooled. Also by this measure, the efficiency of the heat pump can be further improved.
  • Invention is at least a third heat pump cycle
  • Heat pump circuits primary side and the output heat pumps of the heat pump circuits are connected on the secondary side in each case in series.
  • the figure shows a schematic structure of a
  • a heat pump 1 is shown in a schematic block diagram, in which two heat pump circuits 2, 3 are coupled together.
  • the first heat pump cycle 2 includes a
  • Evaporator 4 a countercurrent heat exchanger 5, a plurality of compressor 6 between eg shut-off valves 7, a Kondensatorenausgangskorleyer 8, a collection unit 9, a filter dryer 10 and an injection valve 11.
  • a sight glass 12 and a further shut-off valve 13 is provided be.
  • the heat exchangers 4, 8 each have a primary side 4a, 8a and a secondary side 4b, 8b.
  • Supply line or the return line for a primary medium of a heat source and 15a and 15b, the flow line and the return line of a secondary medium are designated.
  • the heat pump 1 according to the invention operates according to the following principle:
  • the first heat pump cycle 2 is picked out.
  • a primary medium is supplied via the flow line 14a with e.g. a temperature of 43.5 ° C in the primary side 4a of
  • the reflux of the primary medium may e.g. have a temperature of 39 ° C.
  • the liquid refrigerant is further cooled down, which also has a COP value improvement result.
  • the vaporized and heated refrigerant is by means of the compressor 6 to a desired condensing pressure;
  • Refrigerant is the condenser heat exchanger 8 of the first heat pump circuit 2, for example, supplied with a temperature of about 100 0 C.
  • a predetermined amount is delivered to a heat sink 20. This is the
  • Secondary side 8b of the capacitor output heat exchanger 8 flows through a secondary medium via the feed line 15a. Preheated by the output heat exchanger 8 of the second heat pump circuit 3 secondary medium is thereby brought to a predetermined target temperature.
  • the secondary medium flows to reach the target temperature of the output heat exchanger 8 of the second heat pump cycle 3 via a connecting line 16 in the secondary side
  • Outgoing heat exchanger 8 flows into the collecting unit 9. From there it is guided through the filter drier 10, the sight glass 12 and the countercurrent heat exchanger 5 to the injection valve 11.
  • the injection valve 11 acts as a throttle member and lowers the refrigerant pressure to a desired
  • Refrigerant again absorb heat from the primary medium and the heat pump cycle begins again.
  • the evaporator of the evaporator input heat exchanger of the second heat pump circuit 3 extracts the primary medium approximately the second half of the amount of heat that is to be withdrawn. As a result, the primary medium cools by about half of the predetermined temperature difference. In terms of numbers, this can look like this:
  • the flow of the primary medium has a temperature of, for example, 43.5 ° C, at the exit from the evaporator inlet heat exchanger 8 of the first heat pump cycle 2, the temperature is
  • the primary medium is introduced at this temperature via a connecting line 17 in the evaporator inlet heat exchanger 4 of the second heat pump circuit 3 and that from the evaporator inlet heat exchanger 4 of the second
  • Heat pump circuit 3 discharged primary medium is e.g. cooled to 39 ° C.
  • the primary medium is cooled by half the predetermined temperature difference.
  • the vaporized refrigerant then flows through the
  • the vaporized and heated refrigerant is by means of the compressor 6 to the desired
  • Condenser heat exchanger 8 of the second heat pump circuit 3 is supplied. Here is the intended amount of heat to the
  • the secondary medium in this process is only half of the desired
  • the further process corresponds to that of the first heat pump cycle. 2
  • the amount of heat given off corresponds approximately to the heat absorbed by the primary medium
  • Compressor engine waste heat In contrast to conventional heat pump systems, which are normally limited to a maximum temperature of 75 ° C, can be achieved by the system according to the invention temperatures in the secondary medium of about 100 0 C, with a comparatively high COP value. In principle, this is achieved in that the medium to be heated flows through two heat exchangers in succession, the input heat exchanger of the first heat pump cycle and then the input heat exchanger of the second heat pump cycle. For example, divided in half dissipated heat amounts are then in the respective
  • Heat pump circuit set to a predetermined temperature high, whereby the distribution of the amount of heat and the
  • the feed line 15a for a heat sink is guided on a mixer 18, the heated secondary medium of the secondary medium in the return line 15b for a desired
  • a required volume flow is e.g. by a
  • Buffer loading pump 19 is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

L'invention concerne une pompe à chaleur (1) comportant un premier circuit de pompe à chaleur (2) qui comprend un échangeur de chaleur d'entrée (4) et un échangeur de chaleur de sortie (8), l'échangeur de chaleur d'entrée (4) étant traversé, à l'état de fonctionnement, par un milieu primaire d'une source de chaleur et étant conçu du côté secondaire pour l'évaporation d'un milieu de circuit de pompe à chaleur qui traverse le premier circuit de pompe à chaleur (2). Une unité compresseur (6) est conçue pour comprimer le milieu de circuit de pompe à chaleur évaporé, des moyens d'alimentation pouvant servir à alimenter l'échangeur de chaleur de sortie (8) en milieu de circuit de pompe à chaleur évaporé. Le côté secondaire de l'échangeur de chaleur de sortie (8) étant traversé, à l'état de fonctionnement, par un milieu secondaire dont la température est supérieure à celle du milieu primaire. Selon l'invention, la pompe à chaleur (1) comporte au moins un second circuit de pompe à chaleur (3) qui comprend un échangeur de chaleur d'entrée (4) et un échangeur de chaleur de sortie (8), l'échangeur de chaleur d'entrée (4) des premier et second circuits de pompe à chaleur (2), (3) du côté primaire, et l'échangeur de chaleur de sortie (8) des premier et second circuits de pompe à chaleur (2), (3) du côté secondaire étant respectivement montés en série.
EP10752298A 2009-08-31 2010-08-23 Pompe à chaleur Withdrawn EP2473795A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910039326 DE102009039326A1 (de) 2009-08-31 2009-08-31 Wärmepumpe
PCT/EP2010/005153 WO2011023352A2 (fr) 2009-08-31 2010-08-23 Pompe à chaleur

Publications (1)

Publication Number Publication Date
EP2473795A2 true EP2473795A2 (fr) 2012-07-11

Family

ID=43536007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10752298A Withdrawn EP2473795A2 (fr) 2009-08-31 2010-08-23 Pompe à chaleur

Country Status (3)

Country Link
EP (1) EP2473795A2 (fr)
DE (1) DE102009039326A1 (fr)
WO (1) WO2011023352A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112398A1 (de) 2013-11-12 2015-05-13 Khs Gmbh Verfahren sowie Anlage zum Pasteurisieren von Produkten in Behältern
DE102013114607A1 (de) 2013-12-20 2015-06-25 Khs Gmbh Verfahren zum Reinigen von Behältern sowie Behälterreinigungsmaschine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003919A1 (de) * 2013-03-07 2014-09-11 Peter Wolf Verfahren zur optimalen Wärmeenergierückgewinnung aus Abwärmequellen
DE102016206185A1 (de) 2016-04-13 2017-10-19 Krones Ag Flaschenreinigungsvorrichtung und Verfahren für einen Prozesswasserkreislauf unter Verwendung der Flaschenreinigungsvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005540A1 (de) * 2003-02-05 2004-09-02 Denso Corp., Kariya Wärmepumpenvorrichtung
JP2007202446A (ja) * 2006-01-31 2007-08-16 Kansai Electric Power Co Inc:The 殺菌用加熱・冷却装置
DE202007017723U1 (de) * 2007-11-21 2008-03-20 Meister, Remo Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage
JP2012189238A (ja) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp 冷凍空調装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH236721A (de) * 1943-09-27 1945-03-15 Escher Wyss Maschf Ag Wärmepumpenanlage mit mehreren mit verschiedenen Enddrücken arbeitenden Wärmeträgerkreisläufen.
FR2402844A1 (fr) * 1977-09-08 1979-04-06 Girodin Tech Installation de pompes de transfert thermique a hautes performances
DE69204723T2 (de) * 1991-04-23 1996-02-22 Asahi Breweries Ltd., Tokio/Tokyo Aus einer Mehrzahl von Kältekreisläufen bestehende Kältevorrichtung.
JP5096678B2 (ja) * 2006-01-10 2012-12-12 株式会社荏原製作所 冷凍装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005540A1 (de) * 2003-02-05 2004-09-02 Denso Corp., Kariya Wärmepumpenvorrichtung
JP2007202446A (ja) * 2006-01-31 2007-08-16 Kansai Electric Power Co Inc:The 殺菌用加熱・冷却装置
DE202007017723U1 (de) * 2007-11-21 2008-03-20 Meister, Remo Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage
JP2012189238A (ja) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp 冷凍空調装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112398A1 (de) 2013-11-12 2015-05-13 Khs Gmbh Verfahren sowie Anlage zum Pasteurisieren von Produkten in Behältern
WO2015071168A1 (fr) 2013-11-12 2015-05-21 Khs Gmbh Procédé et installation de pasteurisation de produits dans des récipients
DE102013114607A1 (de) 2013-12-20 2015-06-25 Khs Gmbh Verfahren zum Reinigen von Behältern sowie Behälterreinigungsmaschine
DE102013114607B4 (de) 2013-12-20 2021-08-19 Khs Gmbh Verfahren zum Reinigen von Behältern sowie Behälterreinigungsmaschine

Also Published As

Publication number Publication date
WO2011023352A3 (fr) 2011-06-23
DE102009039326A1 (de) 2011-03-10
WO2011023352A2 (fr) 2011-03-03

Similar Documents

Publication Publication Date Title
DE69827110T2 (de) Klimaanlage
EP1914491B1 (fr) Installation de refroidissement
DD262478A5 (de) Verfahren zum betreiben von kompressions-absorbtionswaermepumpen oder -kaeltemaschinen und einrichtung zur durchfuehrung des verfahrens
DE102019132689A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug und Kraftfahrzeug mit einem solchen
WO2011023352A2 (fr) Pompe à chaleur
DE19937949A1 (de) Vorrichtung und Verfahren zum Heizen und/oder Kühlen eines Fahrzeuginnenraums
DE10358944A1 (de) Kältemittelkreislauf und Kälteanlage
DE102008005076A1 (de) Kältemittelkreis und Verfahren zum Betreiben eines Kältemittelkreises
DE102010004187B4 (de) Wärmepumpe für hohe Vor- und Rücklauftemperaturen
DE112017005948T5 (de) Klimatisierungsvorrichtung
WO2009065233A1 (fr) Installation pour le refroidissement, le chauffage ou la climatisation, en particulier installations frigorifiques
EP1394482A2 (fr) Installation de pompe à chaleur
DE102007020406A1 (de) Vakuum-Sorptionsvorrichtung und Verfahren zum Betrieb einer Vakuum-Sorptionsvorrichtung
DE102011012644A1 (de) Kälteanlage
EP0593495B1 (fr) Dispositif frigorifique
DE10343820A1 (de) Dampfverdichtungskältemittelkreislauf
EP2989397B1 (fr) Procédé et dispositif de refroidissement d'un moteur
EP3583365B1 (fr) Procédé permettant de faire fonctionner une pompe à chaleur
DE19832682C2 (de) Abtaueinrichtung für einen Verdampfer einer Wärmepumpe oder eines Klimageräts
DE2837695A1 (de) Verfahren und vorrichtung zur wirkungsgradverbesserung in einer kuehlanlage
EP0184181B1 (fr) Pompe à chaleur
EP0314719B1 (fr) Pompe a chaleur a compression binaire avec circuit de solution
EP0260367A1 (fr) Installation frigorifique
DE102020121275A1 (de) Wärmeübertrager eines Kältemittelkreislaufes einer Fahrzeugklimaanlage
DE102007005098A1 (de) Verfahren zum Betreiben eines Kältekreislaufes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120328

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161220