EP1900020A1 - Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure - Google Patents

Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure

Info

Publication number
EP1900020A1
EP1900020A1 EP06778776A EP06778776A EP1900020A1 EP 1900020 A1 EP1900020 A1 EP 1900020A1 EP 06778776 A EP06778776 A EP 06778776A EP 06778776 A EP06778776 A EP 06778776A EP 1900020 A1 EP1900020 A1 EP 1900020A1
Authority
EP
European Patent Office
Prior art keywords
substrate
bonding
substrates
hydroxyl groups
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06778776A
Other languages
German (de)
English (en)
Inventor
Léa Di Cioccio
Marek Kostrzewa
Marc Zussy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1900020A1 publication Critical patent/EP1900020A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the invention relates to a method for assembling two substrates by molecular bonding, at least one of which is made of a semiconductor material.
  • a tendency towards complexity in the development of integrated circuits There is nowadays a tendency towards complexity in the development of integrated circuits.
  • integrated circuits are no longer simply electronic circuits but integrate other circuits with various functionalities: circuits with optical functions, high frequency circuits and even molecular and bioelectronic circuits.
  • silicon is the most commonly used material, but when other functions such as those listed above are used, other materials are clearly more efficient than silicon to perform these additional functions. It therefore appears necessary to be able to integrate other materials on silicon to satisfy the growing development of integrated circuits that are no longer simple electronic circuits.
  • the Applicant therefore plans to ensure the integration of one or more materials on a semiconductor material such as silicon by molecular bonding, thus avoiding the use of an adhesive material.
  • a semiconductor material such as silicon
  • Such adhesion by molecular adhesion ensures a very good mechanical strength, good thermal conductivity and in particular a thickness uniformity of the bonding interface.
  • thermal oxide coating is formed on the two different types of substrate.
  • CVD Chemical Vapor Deposition
  • anglosaxon terminology of an oxide over a thickness of 1 ⁇ m.
  • the surfaces thus coated with oxide have a high roughness which is unfavorable for the subsequent molecular adhesion.
  • This technique is however not suited to the assembly of thin substrates, for example less than or of the order of 200 ⁇ m in thickness which are likely to be weakened or even broken during the polishing step. and therefore poorly support thinning.
  • the chemical mechanical polishing step is difficult to implement on surfaces having a relief or structured.
  • InP material that is not directly compatible with the treatment SC (ammonia solution and hydrogen peroxide) conventionally used for saturation in hydroxyl groups.
  • the present invention aims to remedy at least one of the aforementioned drawbacks by proposing a method for assembling by molecular bonding two substrates, at least one of which is made of a semiconductor material, characterized in that one of the substrates, called the first substrate has a surface A at least a portion of which is planar and has an initial surface roughness compatible with the molecular bonding, the method comprising the following steps:
  • a thin oxide or nitride bonding layer having a thickness of between 10 and 20 nm to allow molecular bonding without prior step polishing
  • a thin layer of bonding with a controlled thickness that is sufficiently low is deposited on a surface of a substrate of initial roughness adapted to molecular bonding, so as not to modify the initial surface roughness.
  • the surface roughness of the deposited thin film remains sufficiently low and compatible with the molecular adhesion process so as not to require a polishing step after having deposited this thin layer.
  • thin substrates therefore fragile, can be assembled thanks to the invention without risk that a polishing step does not damage them, because it is quite possible to deposit a thin layer on a thinned substrate.
  • the deposition of a thin layer of oxide or nitride on a substrate renders the surface of the substrate hydrophilic, which then makes it possible to ensure molecular bonding of the hydrophilic type.
  • the invention is also of interest when it is desired to assemble by molecular bonding two substrates, one of which has a buried interface of low mechanical strength, which would be incompatible with a mechano-chemical polishing step.
  • This interface may be in particular that with the oxide or the nitride bonding.
  • the initial surface roughness (rms) of the surface A is less than 0.5 nm.
  • the bonding energy that occurs between the two substrates, after molecular adhesion is substantially constant and high value.
  • the oxide is chosen from the following oxides: SiO 2 , AbO 3 , metal oxides.
  • the nitride is chosen from the following compounds: Si 3 N 4 , AlN,
  • the oxide or nitride deposit renders the surface A of the first substrate hydrophilic.
  • the surface B of the second substrate intended to be bonded to the surface A thus prepared can be prepared as the surface A
  • the saturation of hydroxyl groups is carried out by chemical treatment, for example, in a solution of hydrogen peroxide and ammonia SC type ("Standard Cleaning" in English terminology).
  • the saturation of hydroxyl groups is carried out by a non-chemical treatment, for example by means of ultraviolet radiation and in the presence of ozone.
  • plasma treatment could be used as another non-chemical treatment.
  • the deposition of a bonding layer according to the invention, associated with a UV / ozone treatment, allows such a bonding.
  • the preparation step (in terms of roughness) can thus be dissociated from the bonding step and, in particular, it can supply suitable roughness substrates and assemble them according to the invention later.
  • the semiconductor material is chosen from among the following materials: silicon, InP, germanium and galium arsenide,
  • GaN, SiC, SiGe It can be massive or be obtained by epitaxy.
  • the other substrate may be made of an amorphous material such as a glass, such as BPSG.
  • amorphous material such as a glass
  • BPSG BPSG
  • the invention finds a particularly advantageous application when one of the materials to be assembled is an amorphous material with creep capabilities such as a glass.
  • the roughness of a glass layer is generally too high to allow for molecular bonding without prior polishing step.
  • the polishing of a glass is a difficult operation to implement and therefore undesirable in this case.
  • a glass layer has been obtained by deposition on a substrate, for example silicon, it is possible to perform a creep heat treatment operation after deposition of the glass layer.
  • the deposition of a thin layer of oxide or nitride followed by a hydrophilization treatment can be carried out with a view to the molecular bonding of this glass layer with a substrate made of a material semiconductor according to the invention.
  • the invention relates to a method for assembling a plurality of substrates by molecular bonding with a substrate forming a support, characterized in that each of the substrates, called the first substrate, which is to be assembled with the support substrate, called second substrate, is assembled by the assembly method as briefly described above.
  • each first substrate is an integrated circuit carried on the support substrate.
  • the assembly method according to the invention makes it possible to obtain a structure comprising at least two substrates comprising between them at least one thin oxide or nitride layer deposited and assembled by molecular bonding.
  • the substrates composing this structure may be particularly thin, for example, with a thickness of 200 ⁇ m.
  • the substrates which are assembled by molecular bonding according to the invention can also be of a nature such that they do not withstand the treatment in wet chemistry of their surface.
  • the assembly method according to the invention makes it possible to obtain a structure comprising more than two substrates (eg circuits integrated) made of different materials and assembled by molecular bonding on a common support substrate via one or more thin layers of the same or different oxide or nitride deposited on the surfaces to be bonded.
  • the second substrate is a support substrate for a plurality of substrates each assembled by molecular bonding, by one of their at least locally flat surfaces and provided with an initial surface roughness compatible with molecular bonding, with a surface area of at least locally plane of the support substrate, the molecular bonding being provided by a thin layer of oxide or nitride bonding of sufficiently low thickness to be compatible with the molecular bonding and which is deposited on at least one of at least locally flat surfaces in touch.
  • the first substrate and the other substrate or substrates are assembled with the support substrate by surfaces of dimensions that are smaller than those of the total surface of the support substrate.
  • the substrates assembled with the support substrate thus form a plurality of mesas which project relative to the surface of the support substrate.
  • the invention it is thus possible to integrate, by molecular bonding, chips (integrated circuits) with various functions made of different materials on the same support substrate using at least one thin bonding layer.
  • deposited oxide or nitride deposited oxide or nitride.
  • Examples include assemblies such as InP on Si or GaAs on Si and more generally assemblies involving materials IN 1 V.
  • the entire process can be carried out at low temperature, which is quite suitable for structures whose materials have very different coefficients of thermal expansion: the oxide deposition (densification included) can be achieved between 120 and 380 ° , bonding at ambient temperature and the heat treatment of bonding reinforcement between 200 and 450 ° C.
  • a thermal oxide was grown to a thickness of 400 nm.
  • the eight plates thus oxidized were then cleaned in a solution of water and sulfuric acid, and then rinsed with water.
  • the oxidized and cleaned surfaces of the eight plates were polished by Chemical Mechanical Polishing (CMP) in order to give the surfaces a low roughness of less than 0.5 nm (microroughness measured by AFM).
  • CMP Chemical Mechanical Polishing
  • the plates 1 to 4 were then cleaned and chemically activated as follows: - cleaning plates 1 to 4 in water, then exposure to ultraviolet radiation in the presence of ozone in order to saturate the oxidized surfaces of the plates with hydroxyl groups ;
  • the plates were then rinsed in water and then dried.
  • the thus prepared surfaces of the plates 1 to 4 were then contacted in pairs with the oxidized surfaces of the plates 5 to 8 respectively in order to achieve molecular bonding at room temperature.
  • the plate 1 has thus been bonded with the plate 5, the plate 2 with the plate 6, the plate 3 with the plate 7 and the plate 4 with the plate 8.
  • the four plate structures thus bonded 1/5, 2/6, 3/7 and 4/8 were exposed to infrared radiation, to verify the quality of the molecular bonding and this infrared imaging test revealed no glue failure visible.
  • a deposit of a thin layer of SiO 2 oxide with a thickness of 19 nm was made by the PECVD technique on the plates numbered from 1 to 4.
  • the plates 3 and 4 were cleaned in a solution of ammonia and hydrogen peroxide (SC), then rinsed in water and dried.
  • SC ammonia and hydrogen peroxide
  • the prepared surfaces of the plates 1 and 2 were then respectively contacted with the prepared surfaces of the support plates 5 and 6 for molecular bonding to occur at room temperature, thereby giving rise to the bonded 1/5 and 2-ply bonded structures. / 6.
  • the prepared surfaces of the plates 3 and 4 have likewise been brought into contact with the prepared surfaces of the support plates 7 and 8, respectively, so that molecular bonding of the contacted surfaces occurs at room temperature, thus resulting in the assembled plate structures glued 3/7 and 4/8.
  • a bonding strengthening heat treatment operation was carried out at a temperature of about 200 ° C., thus leading to an interface of good mechanical strength.
  • a thin layer of SiO 2 oxide 19 nm thick was deposited according to the PECVD type deposition technique on two flat plates or substrates of silicon. These plates were then cleaned and chemically activated as follows:
  • the thus cleaned and chemically activated plates were then contacted by one of their treated surfaces to ensure molecular bonding at room temperature.
  • the thus-bonded plates were then subjected to a thermal treatment operation at a temperature of 200 ° C. to reinforce the molecular bonding.
  • the bonding energy of the structure thus obtained was measured under conditions identical to the previous conditions and revealed a value of 850 mJ / m 2 , corresponding to a very good quality bonding.
  • FIGS. 1 to 9 illustrate the successive steps of assembling an example of a composite assembled structure according to the invention.
  • a support substrate 10 for example made of silicon
  • a thermal oxide layer thermal SiO 2
  • the support substrate is, for example, made of CMOS process silicon, that is to say having undergone technological steps to achieve all or part of electronic components.
  • the CMOS substrates are covered with a final passivation layer deposited thick oxide. This thick oxide layer was then polished by mechanical-chemical polishing in order to obtain a level of roughness compatible with molecular bonding, then saturated with hydroxyl groups in order to promote the subsequent molecular bonding of the substrate 10 coated with this layer.
  • CMOS process silicon that is to say having undergone technological steps to achieve all or part of electronic components.
  • the CMOS substrates are covered with a final passivation layer deposited thick oxide. This thick oxide layer was then polished by mechanical-chemical polishing in order to obtain a level of roughness compatible with molecular bonding, then saturated with hydroxyl groups in order to promote the subsequent molecular bonding of the substrate 10 coated with this layer.
  • CMOS process silicon that is to say having undergone technological steps to achieve all or part of electronic components.
  • the CMOS substrates
  • the substrate has a satisfactory roughness, also be made in the form of a thin oxide layer, thus not requiring a polishing step, and which would subsequently be saturated with hydroxyl groups.
  • FIG. 2 shows a referenced substrate 14 made for example in a semiconductor material chosen from silicon, InP, germanium Galium parsenide, SiGe, SiC, GaN, garnets ...
  • the chosen material is, for example, InP.
  • the surface A of the substrate 14 is coated with a thin bonding layer 16 of silicon nitride (Si 3 N 4 ), of a thickness for example equal to 15 nm obtained by a PECVD type deposition technique.
  • the substrate 14 coated with the thin film 16 is cut to form a plurality of substrates S1 referenced 14a, 14b, 14c, each of which is smaller than those of the support substrate 10.
  • Each substrate 14a, 14b, 14c is coated with a thin bonding layer 16a, 16b, 16c and the latter are each saturated with hydroxyl groups in order to render the surfaces hydrophilic for subsequent molecular bonding.
  • Substrates 14a and 14b coated with a thin layer are then brought into contact by means of this thin layer with the layer 12 of the support substrate 10, as shown in FIG. 4, so that a hydrophilic-type molecular bonding occurs. between the layers put in contact, thus making it possible to assemble the different substrates by molecular bonding by means of hydrogen bonds.
  • the substrates 14a and 14b provided with their respective thin layers 16a and 16b form a plurality of mesas (reported integrated circuits) which protrude from the surface of the support substrate. 10.
  • a heat treatment of bonding reinforcement can be implemented once the substrates (chips or integrated circuits) have been bonded.
  • the oxide may be deposited locally in the areas on which the bonding is to be carried out.
  • another substrate 22 is made, for example, in a semiconductor material such as GaAs or, for example, in an amorphous material and is coated with a thin layer 24, for example silicon oxide.
  • the thin oxide layer 24 is deposited, for example, by a PECVD type deposition technique and has a thickness, for example, equal to 15 nm. As explained with reference to FIG. 3, the substrate 22 thus coated is cut into several substrates S2 referenced 22a, 22b, 22c, each each coated with a thin oxide layer 24a, 24b, 24c (FIG. 7).
  • the substrates thus obtained are then brought into contact via their respective thin layers saturated with hydroxyl groups with the thin layer 20 of the support substrate of FIG. 5 so that a molecular bonding of the surfaces thus brought into contact takes place at ambient temperature. (Figure 8).
  • the substrates newly bonded to the support substrate form a plurality of mesas which protrude from the surface of the support substrate.
  • finishing operations are implemented in order to remove the thin oxide layer 18 deposited on the upper surface of the mesas formed by the substrates S1 and etching operations may also be implemented.
  • the composite structure thus assembled of FIG. 9 comprises a plurality of substrates forming mesas which project relative to the surface of the support and which are, for example, interposed relative to one another.
  • the various molecularly bonded substrates via a thin oxide or nitride layer on the surface of the support substrate may be selectively placed in appropriate areas of the support substrate, without necessarily being intercalated between them. one against another.
  • the substrates S1 and S2 are made of different materials with respect to each other and different from that of the support substrate.
  • structures comprising one or more substrates made of the same material and forming mesas protruding from the support substrate are also conceivable.
  • the support substrate has been represented in planar form, but it will be noted that it may have a relief, holes, micromechanical structures, etc.
  • the oxide or nitride thin film deposition according to the invention can be carried out over the entire surface of a planar substrate or only on plane preferential zones of the latter, depending on the applications envisaged.
  • FIGS. 3 and 7 show substrates (chips or integrated circuits) separated from a single substrate (respectively the substrate of FIGS. 2 and 6) and which comprises a thin layer before separation.
  • the thin layer may alternatively be deposited on the plurality of substrates resulting from the separation operation ("dicing" in English terminology).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Element Separation (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Recrystallisation Techniques (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

L'invention concerne un procédé d'assemblage par collage moléculaire de deux substrats dont au moins un est réalisé dans un matériau semiconducteur, caractérisé en ce que l'un des substrats, appelé premier substrat, comporte une surface (A) dont au moins une partie est plane et dotée d'une rugosité initiale de surface compatible avec le collage moléculaire, le procédé comportant les étapes suivantes : - dépôt, sur au moins une portion (14a, 14b) de la partie plane de la surface (A) du premier substrat, d'une couche mince (16a, 16b) de collage d'oxyde ou de nitrure d'épaisseur comprise entre 10 et 20 nm pour permettre un collage moléculaire sans étape préalable de polissage, - saturation en groupements hydroxyles de la couche mince de collage, - mise en contact de la couche mince (16a, 16b) de collage saturée en groupements hydroxyles avec une surface (B) du deuxième substrat (10), au moins localement plane en regard de la portion de la partie plane de la surface (A) et saturée en groupements hydroxyles, - collage moléculaire de type hydrophile entre les deux substrats.

Description

PROCEDE D ' ASSEMBLAGE DE SUBSTRATS PAR DEPOT D ' UNE COUCHE MINCE DE COLLAGE D ' OXYDE OU DE NITRURE
L'invention concerne un procédé d'assemblage par collage moléculaire de deux substrats dont au moins un est réalisé dans un matériau semi-conducteur. On observe de nos jours une tendance à la complexification dans le développement des circuits intégrés.
En effet, les circuits intégrés ne sont plus actuellement de simples circuits électroniques mais intègrent d'autres circuits aux fonctionnalités diverses : des circuits à fonctions optiques, des circuits de haute fréquence et même des circuits moléculaires et bioélectroniques. Dans le domaine électronique, le silicium est le matériau le plus couramment utilisé, mais lorsque l'on fait appel à d'autres fonctions telles que celles énumérées ci-dessus, on s'aperçoit que d'autres matériaux sont nettement plus performants que le silicium pour réaliser ces fonctions additionnelles. Il apparaît donc nécessaire de pouvoir intégrer d'autres matériaux sur du silicium pour satisfaire au développement croissant de circuits intégrés qui ne sont plus des simples circuits électroniques.
L'intégration d'un ou de plusieurs matériaux sur du silicium, voire sur un autre matériau semi-conducteur, dépend du circuit qu'il est envisagé de fabriquer et donc de l'application visée, ce qui nécessite d'adapter la technologie d'intégration à chaque circuit intégré.
Ainsi, pour certaines applications, il est indispensable de disposer d'une interface de collage ayant une bonne conductivité thermique afin d'assurer une dissipation de puissance suffisante, à faible coefficient d'absorption de la lumière pour satisfaire des exigences liées à des applications optoélectroniques, ayant une tenue en température et en vide donnée ... Pour ce faire, il apparaît nécessaire de sélectionner des matériaux adhésifs aux propriétés adaptées.
Par ailleurs, il convient de noter qu'il est possible, après avoir intégré un ou plusieurs matériaux sur du silicium à l'aide d'adhésifs judicieusement choisis, de faire appel à d'autres techniques comme, par exemple, un traitement thermique, un dépôt d'oxydes, une épitaxie ...
Or, l'utilisation de matériaux adhésifs tels que des résines époxydes, acryliques ou autres pour assembler entre eux des circuits réalisés dans des matériaux différents, voire pour réaliser des assemblages de type "flip-chip", est difficilement compatible avec les techniques décrites ci-dessus (traitement thermique, dépôt d'oxydes, épitaxie ...) du fait, notamment, des températures élevées qui sont mises en jeu.
Cependant, ces techniques sont couramment utilisées pour assembler des circuits intégrés dans leur boîtier, ou bien pour fabriquer certains circuits hybrides.
Compte tenu de ce qui précède, la Demanderesse prévoit donc d'assurer l'intégration d'un ou de plusieurs matériaux sur un matériau semiconducteur tel que le silicium par collage moléculaire, permettant ainsi de ne pas avoir recours à un matériau adhésif. Un tel collage par adhésion moléculaire permet d'assurer une très bonne tenue mécanique, une bonne conductivité thermique et notamment une uniformité d'épaisseur de l'interface de collage.
L'article intitulé "Low-Temperature Direct CVD Oxides to Thermal
Oxide Wafer Bonding in Silicon Layer Transfer" de CS. Tan, K. N. Chen, A. Fan and R. Reif, Electrochemicals and Solid-State Letters, 8 (1) G1-G4, 2004 décrit l'assemblage par collage moléculaire de substrats en silicium et de substrats de type SOI Ç'SHicon-On-Insulatof' en terminologie anglosaxonne).
Sur les deux types différents de substrat, on forme un revêtement d'oxyde thermique de 5 000 A. Sur les substrats de type SOI ainsi revêtus, on effectue un dépôt en phase vapeur par voie chimique de type CVD ("Chemical Vapor Déposition" en terminologie anglosaxonne) d'un oxyde sur une épaisseur de 1 μm. Les surfaces ainsi revêtues d'oxyde présentent une rugosité élevée qui s'avère défavorable pour l'adhésion moléculaire ultérieure.
Aussi, les auteurs de cet article prévoient d'effectuer un polissage mécanico-chimique de type CMP ("Chemical Mechanical Polishing" en terminologie anglosaxonne) des surfaces revêtues d'une couche d'oxyde des substrats en SOI. Ces dernières sont ensuite nettoyées et saturées en groupements hydroxyles par traitement en chimie humide, tout comme les surfaces revêtues d'oxyde thermique des substrats en silicium, et les deux types différents de substrat ainsi préparés sont ensuite liés par paires l'un à l'autre.
Cette technique n'est toutefois pas adaptée à l'assemblage de substrats minces, par exemple inférieurs à ou de l'ordre de 200 μm d'épaisseur qui sont susceptibles d'être fragilisés, voire de casser, lors de l'étape de polissage et donc supportent mal l'amincissement. De plus, l'étape de polissage mécano-chimique est difficile à mettre en œuvre sur des surfaces présentant un relief ou structurées.
Elle est également difficile à mettre en œuvre localement sur une partie de surface.
Par ailleurs, pour certains matériaux, il n'est pas possible de traiter en chimie humide les surfaces des substrats à coller.
On peut, par exemple, citer comme matériau InP qui n'est pas directement compatible avec le traitement SC (solution d'ammoniaque et d'eau oxygénée) classiquement utilisé pour la saturation en groupements hydroxyles.
Il serait par conséquent utile de disposer d'une technique d'assemblage pouvant s'appliquer même lorsqu'il est impossible de traiter en chimie humide les surfaces à assembler.
La présente invention vise à remédier à au moins un des inconvénients précités en proposant un procédé d'assemblage par collage moléculaire de deux substrats dont au moins un est réalisé dans un matériau semiconducteur, caractérisé en ce que l'un des substrats, appelé premier substrat, comporte une surface A dont au moins une partie est plane et dotée d'une rugosité initiale de surface compatible avec le collage moléculaire, le procédé comportant les étapes suivantes :
- dépôt, sur au moins une portion de la partie plane de la surface A du premier substrat, d'une couche mince de collage d'oxyde ou de nitrure d'épaisseur comprise entre 10 et 20 nm pour permettre un collage moléculaire sans étape préalable de polissage,
- saturation en groupements hydroxyles de la couche mince de collage,
- mise en contact de la couche mince de collage saturée en groupements hydroxyles avec une surface B du deuxième substrat, au moins localement plane en regard de la portion de la partie plane de la surface A et saturée en groupements hydroxyles,
- collage moléculaire de type hydrophile entre les deux substrats. Selon l'invention, on effectue un dépôt, sur une surface d'un substrat de rugosité initiale adaptée au collage moléculaire, d'une couche mince de collage d'épaisseur contrôlée suffisamment faible pour ne pas modifier la rugosité initiale de surface. La rugosité de surface de la couche mince déposée reste suffisamment faible et compatible avec le processus d'adhésion moléculaire pour ne pas nécessiter une étape de polissage après avoir déposé cette couche mince.
Ainsi, la préparation des surfaces avant collage est simplifiée et donc moins longue.
En outre, des substrats minces, donc fragiles, peuvent être assemblés grâce à l'invention sans risque qu'une étape de polissage ne les endommage, car il est tout à fait possible de déposer une couche mince sur un substrat aminci.
On notera que le dépôt d'une couche mince d'oxyde ou de nitrure sur un substrat rend la surface du substrat hydrophile, ce qui permet ensuite d'assurer un collage moléculaire de type hydrophile. De manière générale, l'invention trouve également un intérêt lorsque l'on souhaite assembler par collage moléculaire deux substrats dont l'un possède une interface enterrée de faible tenue mécanique, qui serait incompatible avec une étape de polissage mécano-chimique.
Cette interface peut être en particulier celle avec l'oxyde ou le nitrure de collage. Selon une caractéristique, la rugosité initiale de surface (rms) de la surface A est inférieure à 0,5 nm.
Une telle valeur est tout à fait compatible avec le collage moléculaire.
On notera que lorsque la rugosité de surface après dépôt de la couche mince reste inférieure ou égale à 0,5 nm, l'énergie de collage qui intervient entre les deux substrats, après adhésion moléculaire, est sensiblement constante et de valeur élevée.
Toutefois, il peut être utile d'assembler deux substrats avec une énergie de collage contrôlée mais de moindre valeur. Il est, par exemple, ainsi possible d'augmenter légèrement la rugosité initiale de surface, tout en restant dans des limites acceptables pour que le collage moléculaire puisse intervenir sans étape préalable de polissage après le dépôt de la couche mince.
Selon une caractéristique, l'oxyde est choisi parmi les oxydes suivants : SiO2, AbO3, oxydes de métaux. Le nitrure est choisi parmi les composés suivants : Si3N4, AIN,
AINO3 ...
Le dépôt d'oxyde ou de nitrure rend hydrophile la surface A du premier substrat.
On notera que la surface B du deuxième substrat destinée à être collée à la surface A ainsi préparée peut être préparée comme la surface A
(dépôt d'une couche mince d'oxyde ou de nitrure et saturation en groupements hydroxyles) ou d'une autre manière, dans la mesure où cette autre manière intègre une étape de saturation en groupements hydroxyles de la surface B.
Selon une caractéristique, la saturation en groupements hydroxyles est réalisée par traitement chimique, par exemple, dans une solution d'eau oxygénée et d'ammoniaque de type SC ("Standard Cleaning" en terminologie anglosaxonne). Selon une caractéristique, la saturation en groupements hydroxyles est réalisée par un traitement non chimique, par exemple, au moyen d'un rayonnement ultraviolet et en présence d'ozone.
A titre d'exemple, le traitement plasma pourrait être utilisé comme autre traitement non chimique.
Pour un substrat préalablement préparé, en particulier pour présenter une rugosité compatible avec un collage moléculaire, le seul traitement de ce substrat au rayonnement UV en présence d'ozone ne permet pas d'assurer un collage moléculaire avec un autre substrat. C'est le cas en particulier si le substrat subit, après l'étape de préparation, une étape de stockage ou de transport.
Plutôt que de réitérer la préparation, le dépôt d'une couche de collage selon l'invention, associé à un traitement UV/ozone, permet un tel collage. L'étape de préparation (en terme de rugosité) peut ainsi être dissociée de l'étape de collage et, en particulier, on pourra approvisionner des substrats de rugosité adaptée et les assembler selon l'invention ultérieurement.
Après assemblage, la structure obtenue est soumise à un traitement thermique qui permet d'augmenter l'énergie de collage entre les deux substrats. Selon une caractéristique, le matériau semiconducteur est choisi parmi les matériaux suivants : silicium, InP, germanium et arséniure de galium,
GaN, SiC, SiGe. Il peut être massif ou être obtenu par épitaxie.
Par ailleurs, l'autre substrat peut être réalisé dans un matériau amorphe tel qu'un verre, comme le BPSG. L'invention trouve une application particulièrement intéressante lorsque l'un des matériaux à assembler est un matériau amorphe doté de capacités de fluage tel qu'un verre.
En effet, la rugosité d'une couche en verre est généralement trop élevée pour permettre de réaliser un collage moléculaire sans étape préalable de polissage.
Or, le polissage d'un verre est une opération difficile à mettre en place et donc peu souhaitable dans le présent cas. Cependant, dès lors qu'une couche de verre a été obtenue par dépôt sur un substrat, par exemple de silicium, il est possible d'effectuer une opération de traitement thermique de fluage après dépôt de la couche de verre.
Le rôle de ce traitement thermique est double : d'une part, il densifie et stabilise chimiquement le verre et, d'autre part, il aplanit la surface supérieure de la couche de verre par fluage.
Ainsi, une fois la surface plane obtenue, le dépôt d'une couche mince d'oxyde ou de nitrure suivi d'un traitement d'hydrophilisation peuvent être réalisés en vue du collage moléculaire de cette couche de verre avec un substrat réalisé dans un matériau semiconducteur, conformément à l'invention.
Selon un autre aspect, l'invention concerne un procédé d'assemblage par collage moléculaire de plusieurs substrats avec un substrat formant support, caractérisé en ce que chacun des substrats, appelé premier substrat, qui est à assembler avec le substrat formant support, appelé deuxième substrat, est assemblé par le procédé d'assemblage tel que brièvement décrit ci-dessus.
Selon une caractéristique, chaque premier substrat est un circuit intégré reporté sur le substrat formant support.
Le procédé d'assemblage selon l'invention permet d'obtenir une structure comportant au moins deux substrats comportant entre eux au moins une couche mince d'oxyde ou de nitrure déposée et assemblés par collage moléculaire.
Une telle structure peut être obtenue plus facilement et plus rapidement que dans l'art antérieur puisqu'aucune étape de polissage n'est nécessaire en vue de réaliser le collage moléculaire.
En outre, les substrats composant cette structure peuvent être particulièrement minces, par exemple, d'une épaisseur de 200 μm.
Par ailleurs, les substrats qui sont assemblés par collage moléculaire selon l'invention peuvent également être d'une nature telle qu'ils supportent mal le traitement en chimie humide de leur surface.
Il convient de noter que le procédé d'assemblage selon l'invention permet d'obtenir une structure comportant plus de deux substrats (ex. circuits intégrés) réalisés dans des matériaux différents et assemblés par collage moléculaire sur un substrat support commun par l'intermédiaire d'une ou plusieurs couches minces d'oxyde ou de nitrure identiques ou différentes déposées sur les surfaces à coller. Selon une caractéristique, le deuxième substrat est un substrat formant support pour plusieurs substrats assemblés chacun par collage moléculaire, par une de leurs surfaces au moins localement plane et dotée d'une rugosité initiale de surface compatible avec le collage moléculaire, avec une surface au moins localement plane du substrat support, le collage moléculaire étant assuré par une couche mince de collage d'oxyde ou de nitrure d'épaisseur suffisamment faible pour être compatible avec le collage moléculaire et qui est déposée sur au moins une des surfaces au moins localement planes mises en contact.
Selon une caractéristique, le premier substrat et le ou les autres substrats sont assemblés avec le substrat support par des surfaces de dimensions réduites par rapport à celles de la surface totale du substrat support.
Selon une autre caractéristique, les substrats assemblés avec le substrat support forment ainsi une pluralité de mesas qui font saillie par rapport à la surface du substrat support.
Grâce à l'invention, il est ainsi possible d'intégrer, par collage moléculaire, des puces (circuits intégrés) aux fonctions diverses réalisées dans des matériaux différents sur un même substrat support à l'aide d'au moins une couche mince de collage d'oxyde ou de nitrure déposée. II convient de noter que le procédé selon l'invention peut s'appliquer à Ia réalisation d'hétérostructures, c'est-à-dire qu'il permet d'assembler des substrats et/ou des couches minces de matériaux différents et, notamment, des matériaux présentant des coefficients de dilatation thermique très différents.
A titre d'exemple, on peut citer des assemblages tel que InP sur Si ou GaAs sur Si et, plus généralement, des assemblages impliquant des matériaux IN1 V. L'ensemble du procédé peut être réalisé à basse température, ce qui convient tout à fait à des structures dont les matériaux présentent des coefficients de dilatation thermique très différents : le dépôt d'oxyde (densification comprise) peut être réalisé entre 120 et 380°, le collage à l'ambiante et le traitement thermique de renforcement de collage entre 200 et 4500C.
Exemple 1
Pour cette expérience, huit substrats ou plaques planes de silicium numérotées de 1 à 8 de dimensions standards (100 mm de diamètre et 525 μm d'épaisseur) ont été préparés.
Sur la face supérieure de chacune de ces huit plaques, on a fait croître un oxyde thermique sur une épaisseur de 400 nm.
Les huit plaques ainsi oxydées ont ensuite été nettoyées dans une solution d'eau et d'acide sulfurique, puis rincées à l'eau. Les surfaces oxydées et nettoyées des huit plaques ont été polies par un polissage mécano-chimique CMP ("Chemical Mechanical Polishing" en terminologie anglosaxonne) afin de conférer aux surfaces une faible rugosité inférieure à 0,5 nm (microrugosité mesurée par AFM).
On notera que lors du polissage une épaisseur d'environ 150 nm d'oxyde a été enlevée. Un dépôt de type PECVD d'une couche mince de collage d'oxyde de SiÛ2 d'une épaisseur de 14 nm a été effectué sur les plaques numérotées 3 et 4.
Les plaques 1 à 4 ont ensuite été nettoyées et activées chimiquement de la façon suivante : - nettoyage des plaques 1 à 4 dans l'eau, puis exposition au rayonnement ultraviolet en présence d'ozone afin de saturer en groupements hydroxyles les surfaces oxydées des plaques ;
- les plaques ainsi traitées ont ensuite été trempées dans un bain contenant une solution d'ammoniaque et d'eau oxygénée de type SC ("Standard Clearing" en terminologie anglosaxonne) afin d'améliorer la saturation en groupements hydroxyles ;
- les plaques ont ensuite été rincées dans de l'eau, puis séchées. Les surfaces ainsi préparées des plaques 1 à 4 ont ensuite été mises en contact par paires respectivement avec les surfaces oxydées des plaques 5 à 8 afin de réaliser un collage moléculaire à température ambiante.
La plaque 1 a ainsi été collée avec la plaque 5, la plaque 2 avec la plaque 6, la plaque 3 avec la plaque 7 et la plaque 4 avec la plaque 8.
En outre, une opération de traitement thermique de renforcement de collage a été effectuée à une température d'environ 2000C.
Les quatre structures de plaques ainsi collées 1/5, 2/6, 3/7 et 4/8 ont été exposées à un rayonnement infrarouge, afin de vérifier la qualité du collage moléculaire et ce test d'imagerie infrarouge n'a révélé aucun défaut de collage visible.
Afin de quantifier le collage moléculaire, une mesure de l'énergie de collage des quatre structures 1/5, 2/6, 3/7 et 4/8 a été effectuée par la méthode de la lame de Maszara. Les mesures ont révélé une même valeur de 610 mJ/m2 pour les quatre structures collées.
Ces résultats confirment que la préparation de surface réalisée sous rayonnement ultraviolet en présence d'ozone est efficace et que le dépôt d'une couche mince d'oxyde (14 nm d'épaisseur) ne développe pas une rugosité de surface qui entraverait le collage moléculaire postérieur.
Exemple 2
Dans cet exemple huit plaques planes de silicium numérotées de 1 à 8, de 525 μm d'épaisseur et de 100 mm de diamètre ont été préparées.
Un dépôt d'une couche mince d'oxyde de SiO2 d'une épaisseur de 19 nm a été effectué par la technique de type PECVD sur les plaques numérotées de 1 à 4.
Ces plaques ont ensuite subi un nettoyage et une activation chimique comme indiqué ci-après :
- nettoyage dans l'eau et insolation sous un rayonnement ultraviolet en présence d'ozone pour saturer les surfaces supérieures de ces plaques en groupements hydroxyles ;
- séchage des plaques 1 et 2 ; - les plaques 3 et 4 ont été nettoyées dans une solution d'ammoniaque et d'eau oxygénée (SC), puis rincées dans l'eau et séchées.
Par ailleurs, un dépôt de type PECVD d'oxyde de silicium de 400 nm d'épaisseur a été réalisé sur la surface supérieure des plaques supports en silicium numérotées de 5 à 8.
Ces plaques ont ensuite été nettoyées dans une solution d'acide sulfurique et d'eau oxygénée (solution de type CARO), polies lors d'une étape de polissage de type CMP afin d'enlever environ 100 nm d'oxyde, puis rincées dans l'eau et séchées.
Les surfaces préparées des plaques 1 et 2 ont ensuite été mises en contact respectivement avec les surfaces préparées des plaques support 5 et 6 pour qu'un collage moléculaire intervienne à température ambiante, donnant ainsi lieu aux structures assemblées de plaques collées 1/5 et 2/6. Les surfaces préparées des plaques 3 et 4 ont de même été mises en contact respectivement avec les surfaces préparées des plaques supports 7 et 8, pour qu'un collage moléculaire des surfaces mises en contact intervienne à température ambiante, aboutissant ainsi aux structures assemblées de plaques collées 3/7 et 4/8. En outre, une opération de traitement thermique de renforcement de collage a été effectuée à une température d'environ 2000C, conduisant ainsi à une interface de bonne tenue mécanique.
L'énergie de collage des différentes structures ainsi obtenues a été mesurée de façon identique à ce qui a été décrit dans l'exemple 1 ci-dessus et les valeurs suivantes ont ainsi été obtenues :
- 625 mJ/m2 pour les structures 1/5 et 2/6
- 687 mJ/m2 pour la structure 3/7
- 756 mJ/m2 pour la structure 4/8.
Au vu de ces résultats, on constate que l'énergie de collage est légèrement supérieure lorsqu'un nettoyage du type SC ("Standard Cleaning" en terminologie anglosaxonne), est appliqué en complément du traitement UV/ozone pour nettoyer et saturer les surfaces en groupements hydroxyles. Exemple 3
Une couche mince d'oxyde de Siθ2 de 19 nm d'épaisseur a été déposée suivant la technique de dépôt de type PECVD sur deux plaques planes ou substrats de silicium. Ces plaques ont ensuite été nettoyées et activées chimiquement de la façon suivante :
- nettoyage dans de l'eau (rinçage), puis insolation sous un rayonnement ultraviolet en présence d'ozone ;
- immersion des plaques ainsi nettoyées dans un mélange d'ammoniaque et d'eau oxygénée (SC) ;
- rinçage dans l'eau et séchage.
Les plaques ainsi nettoyées et activées chimiquement ont ensuite été mises en contact par une de leurs surfaces traitées afin d'assurer un collage moléculaire à température ambiante. Les plaques ainsi collées ont ensuite subi une opération de traitement thermique à une température de 2000C pour renforcer le collage moléculaire.
L'énergie de collage de la structure ainsi obtenue a été mesurée dans des conditions identiques aux conditions précédentes et a révélé une valeur de 850 mJ/m2, correspondant à un collage de très bonne qualité.
Les figures 1 à 9 annexées illustrent les étapes successives d'assemblage d'un exemple de structure assemblée composite selon l'invention.
Comme représenté sur la figure 1 , la surface d'un substrat formant support 10, par exemple en silicium, a été revêtue d'une couche d'oxyde thermique (Siθ2 thermique).
Alternativement, le substrat formant support est, par exemple, réalisé en silicium processé CMOS, c'est-à-dire ayant subi des étapes technologiques permettant la réalisation de tout ou partie de composants électroniques. En général, les substrats CMOS sont recouverts d'une couche finale de passivation en oxyde épais déposé. Cette couche d'oxyde épais a ensuite été polie par un polissage mécano-chimique afin d'obtenir un niveau de rugosité compatible avec un collage moléculaire, puis saturée en groupements hydroxyles en vue de favoriser le collage moléculaire ultérieur du substrat 10 revêtu de cette couche préparée 12.
On notera que la couche 12 formée à la surface du substrat support
10 pourrait, si le substrat présente une rugosité satisfaisante, également être réalisée sous la forme d'une couche mince d'oxyde, ne nécessitant donc pas d'étape de polissage, et qui serait ultérieurement saturée en groupements hydroxyles.
Sur la figure 2, on a représenté un substrat référencé 14 réalisé par exemple dans un matériau semiconducteur choisi parmi le silicium, InP, le germanium Parséniure de galium, SiGe, SiC, GaN, les grenats ...
Le matériau choisi est, par exemple, InP. La surface A du substrat 14 est revêtue d'une couche mince de collage 16 de nitrure de silicium (Si3N4), d'une épaisseur par exemple égale à 15 nm obtenue par une technique de dépôt de type PECVD.
On procède ensuite au découpage du substrat 14 revêtu de la couche mince 16 de manière à former une pluralité de substrats S1 référencés 14a, 14b, 14c de dimensions réduites chacun par rapport à celles du substrat support 10.
Chaque substrat 14a, 14b, 14c est revêtu d'une couche mince de collage 16a, 16b, 16c et ces dernières sont saturées chacune en groupements hydroxyles afin de rendre les surfaces hydrophiles en vue du collage moléculaire ultérieur.
Les substrats 14a et 14b revêtus d'une couche mince sont ensuite mis en contact par l'intermédiaire de cette couche mince avec la couche 12 du substrat support 10, comme représenté sur la figure 4, afin qu'un collage moléculaire de type hydrophile intervienne entre les couches mises en contact, permettant ainsi d'assembler par collage moléculaire les différents substrats par l'intermédiaire de liaisons hydrogène. On notera que sur la structure composite ainsi assemblée représentée sur la figure 4, les substrats 14a et 14b munis de leurs couches minces respectives 16a et 16b forment une pluralité de mesas (circuits intégrés reportés) qui font saillie par rapport à la surface du substrat support 10. II convient en outre de noter qu'un traitement thermique de renforcement de collage peut être mis en œuvre une fois que les substrats (puces ou circuits intégrés) ont été collés.
Des étapes technologiques peuvent être alors réalisées avant le report d'autres éléments (puces...). Pour pouvoir coller d'autres substrats (puces ou circuits intégrés), réalisés dans Ie même matériau ou dans un ou plusieurs autres matériaux différents, sur le substrat support de la structure assemblée représentée à la figure 4, il faut rendre à nouveau hydrophile la surface non encore occupée du substrat support 10. Pour ce faire, on procède, comme représenté à la figure 5, à un dépôt d'une couche mince d'oxyde, par exemple de SiO2, d'une épaisseur par exemple égale à 20 nm sur les surfaces supérieures de la structure obtenue à la figure 4.
On obtient ainsi sur la surface supérieure des mesas une couche mince d'oxyde 18 et sur la surface supérieure de la couche 12 du substrat support 10, une couche mince d'oxyde 20.
A titre de variante, l'oxyde peut être déposé localement dans les zones sur lesquelles le collage doit s'effectuer.
Par ailleurs, comme représenté sur la figure 6, un autre substrat 22 est réalisé, par exemple, dans un matériau semiconducteur tel que GaAs ou, par exemple, dans un matériau amorphe et est revêtu d'une couche mince 24, par exemple, d'oxyde de silicium.
La couche mince d'oxyde 24 est déposée, par exemple, par une technique de dépôt de type PECVD et présente une épaisseur, par exemple, égale à 15 nm. Comme expliqué en référence à la figure 3, le substrat 22 ainsi revêtu est découpé en plusieurs substrats S2 référencés 22a, 22b, 22c, revêtus chacun respectivement d'une couche mince d'oxyde 24a, 24b, 24c (figure 7).
Ces couches sont ensuite saturées en groupements hydroxyles afin de favoriser le collage moléculaire de type hydrophile ultérieur.
Les substrats ainsi obtenus sont ensuite mis en contact par l'intermédiaire de leurs couches minces respectives saturées en groupements hydroxyles avec la couche mince 20 du substrat support de la figure 5 afin qu'un collage moléculaire des surfaces ainsi mises en contact intervienne à température ambiante (figure 8).
On notera là aussi que les substrats nouvellement collés sur le substrat support forment une pluralité de mesas qui font saillie par rapport à la surface du substrat support.
Il convient en outre de noter qu'une opération de traitement thermique de renforcement de collage peut être mise en œuvre si nécessaire.
Comme illustré sur la figure 9, des opérations de finition sont mises en œuvre afin de faire disparaître la couche mince d'oxyde 18 déposée à la surface supérieure des mesas formés par les substrats S1 et des opérations de gravure peuvent également être mises en œuvre. La structure composite ainsi assemblée de la figure 9 comporte une pluralité de substrats formant des mesas qui font saillie par rapport à la surface du support et qui sont, par exemple, intercalés les uns par rapport aux autres.
Le procédé peut être ainsi réitéré pour reporter d'autres éléments (puces électroniques ou circuits intégrés). On notera en outre que les différents substrats collés moléculairement par l'intermédiaire d'une couche mince d'oxyde ou de nitrure sur la surface du substrat support peuvent être placés de façon sélective dans des zones appropriées du substrat support, sans nécessairement être intercalés les uns par rapport aux autres. Dans l'exemple de réalisation représenté sur les figures, les substrats S1 et S2 sont réalisés dans des matériaux différents l'un par rapport à l'autre et différents de celui du substrat support. Toutefois, des structures comportant un ou plusieurs substrats réalisés dans le même matériau et formant des mesas en saillie par rapport au substrat support sont également envisageables.
Sur les figures, le substrat support a été représenté sous forme plane mais on notera qu'il peut présenter un relief, des trous, des structures micromécaniques...
De manière générale, le dépôt de couche mince d'oxyde ou de nitrure selon l'invention peut être réalisé sur toute la surface d'un substrat plan ou seulement sur des zones privilégiées planes de cette dernière, selon les applications envisagées.
Il convient de noter qu'il est préférable de ne pas empiler les couches minces sur les substrats, même si l'on contrôle parfaitement l'épaisseur et la rugosité de ces dernières afin de ne pas risquer de développer une rugosité de surface qui s'avérerait néfaste pour un collage moléculaire ultérieur.
Sur les figures 3 et 7, on a représenté des substrats (puces ou circuits intégrés) séparés à partir d'un substrat unique (respectivement le substrat des figures 2 et 6) et qui comporte une couche mince avant séparation. Cependant, la couche mince peut alternativement être déposée sur la pluralité de substrats résultant de l'opération de séparation ("dicing" en terminologie anglosaxonne).
En effet, il a été observé que la redéposition de particules lors de l'opération de découpe n'est pas gênante pour le collage postérieur dans la mesure où ces particules peuvent être éliminées par rinçage dans l'eau.

Claims

REVENDICATIONS
1. Procédé d'assemblage par collage moléculaire de deux substrats dont au moins un est réalisé dans un matériau semi-conducteur, caractérisé en ce que l'un des substrats, appelé premier substrat, comporte une surface (A) dont au moins une partie est plane et dotée d'une rugosité initiale de surface compatible avec le collage moléculaire, le procédé comportant les étapes suivantes :
- dépôt, sur au moins une portion (14a, 14b) de la partie plane de la surface (A) du premier substrat, d'une couche mince (16a, 16b) de collage d'oxyde ou de nitrure d'épaisseur comprise entre 10 et 20 nm pour permettre un collage moléculaire sans étape préalable de polissage,
- saturation en groupements hydroxyles de la couche mince de collage, - mise en contact de la couche mince (16a, 16b) de collage saturée en groupements hydroxyles avec une surface (B) du deuxième substrat (10), au moins localement plane en regard de la portion de la partie plane de la surface (A) et saturée en groupements hydroxyles,
- collage moléculaire de type hydrophile entre les deux substrats.
2. Procédé selon la revendication 1 , caractérisé en ce que la surface (A) a une rugosité initiale de surface (rms) inférieure à 0,5 nm.
3. Procédé selon l'une des revendications 1 à 2, caractérisé en ce que l'oxyde est choisi parmi les oxydes suivants : Siθ2, AbO3, oxydes de métaux.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le nitrure est choisi parmi les composés suivants : Si3N4, AIN, AINO3.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la saturation en groupements hydroxyles est réalisée par traitement chimique.
6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la saturation en groupements hydroxyles est réalisée au moyen d'un rayonnement ultraviolet et en présence d'ozone.
7. Procédé selon l'une, des revendications 1 à 4, caractérisé en ce que la saturation en groupements hydroxyles est réalisée par traitement plasma.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que, après saturation en groupements hydroxyles de la couche mince de collage d'oxyde ou de nitrure, cette dernière est trempée dans une solution d'ammoniaque.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le matériau semiconducteur est choisi parmi les matériaux suivants : silicium, InP, Ge, arséniure de galium, GaN, SiC, SiGe.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'autre substrat est réalisé dans un matériau amorphe.
11. Procédé d'assemblage par collage moléculaire de plusieurs substrats avec un substrat formant support, caractérisé en ce que chacun des substrats, appelé premier substrat, qui est à assembler avec le substrat formant support, appelé deuxième substrat, est assemblé par le procédé d'assemblage selon l'une des revendications 1 à 10.
12. Procédé selon la revendication 11 , caractérisé en ce que chaque premier substrat est un circuit intégré reporté sur le substrat formant support.
EP06778776A 2005-07-06 2006-07-05 Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure Withdrawn EP1900020A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0507206A FR2888402B1 (fr) 2005-07-06 2005-07-06 Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure et structure ainsi assemblee
PCT/FR2006/001596 WO2007006914A1 (fr) 2005-07-06 2006-07-05 Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure

Publications (1)

Publication Number Publication Date
EP1900020A1 true EP1900020A1 (fr) 2008-03-19

Family

ID=36021781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778776A Withdrawn EP1900020A1 (fr) 2005-07-06 2006-07-05 Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure

Country Status (5)

Country Link
US (1) US20080311725A1 (fr)
EP (1) EP1900020A1 (fr)
JP (1) JP2009500819A (fr)
FR (1) FR2888402B1 (fr)
WO (1) WO2007006914A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460984B2 (ja) * 2007-08-17 2014-04-02 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5268305B2 (ja) 2007-08-24 2013-08-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
FR2926748B1 (fr) * 2008-01-25 2010-04-02 Commissariat Energie Atomique Objet muni d'un element graphique reporte sur un support et procede de realisation d'un tel objet.
FR2926747B1 (fr) * 2008-01-25 2011-01-14 Commissariat Energie Atomique Objet comportant un element graphique reporte sur un support et procede de realisation d'un tel objet.
FR2946435B1 (fr) 2009-06-04 2017-09-29 Commissariat A L'energie Atomique Procede de fabrication d'images colorees avec une resolution micronique enfouies dans un support tres robuste et tres perenne
FR2948318B1 (fr) * 2009-07-22 2011-08-19 Commissariat Energie Atomique Procede de realisation d'un dispositif a element graphique
EP2562789A4 (fr) * 2010-04-20 2015-03-04 Sumitomo Electric Industries Procédé de production d'un substrat composite
FR2967016B1 (fr) * 2010-11-08 2012-12-07 Commissariat Energie Atomique Procédé de réalisation d'une pièce contenant un motif enfoui dont les dimensions sont au plus micrométriques, et pièce ainsi obtenue
US9227295B2 (en) 2011-05-27 2016-01-05 Corning Incorporated Non-polished glass wafer, thinning system and method for using the non-polished glass wafer to thin a semiconductor wafer
WO2014057748A1 (fr) * 2012-10-12 2014-04-17 住友電気工業株式会社 Substrat composite à nitrure du groupe iii, procédé pour sa fabrication et procédé de fabrication d'un dispositif semi-conducteur à nitrure du groupe iii
CN111146141A (zh) * 2019-12-13 2020-05-12 中国科学院微电子研究所 一种片上单晶材料的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112451A (ja) * 1992-09-29 1994-04-22 Nagano Denshi Kogyo Kk Soi基板の製造方法
JP2001501368A (ja) * 1996-09-04 2001-01-30 シボンド・リミテッド・ライアビリテイ・カンパニー 接着した半導体基板の平坦化方法
US6902987B1 (en) * 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US6537846B2 (en) * 2001-03-30 2003-03-25 Hewlett-Packard Development Company, L.P. Substrate bonding using a selenidation reaction
US6562127B1 (en) * 2002-01-16 2003-05-13 The United States Of America As Represented By The Secretary Of The Navy Method of making mosaic array of thin semiconductor material of large substrates
US6995430B2 (en) * 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US20040126993A1 (en) * 2002-12-30 2004-07-01 Chan Kevin K. Low temperature fusion bonding with high surface energy using a wet chemical treatment
FR2851079B1 (fr) * 2003-02-12 2005-08-26 Soitec Silicon On Insulator Structure semi-conductrice sur substrat a forte rugosite
FR2857982B1 (fr) * 2003-07-24 2007-05-18 Soitec Silicon On Insulator Procede de fabrication d'une couche epitaxiee
US20080211061A1 (en) * 2004-04-21 2008-09-04 California Institute Of Technology Method For the Fabrication of GaAs/Si and Related Wafer Bonded Virtual Substrates
JP2005347302A (ja) * 2004-05-31 2005-12-15 Canon Inc 基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007006914A1 *

Also Published As

Publication number Publication date
FR2888402B1 (fr) 2007-12-21
US20080311725A1 (en) 2008-12-18
JP2009500819A (ja) 2009-01-08
WO2007006914A1 (fr) 2007-01-18
FR2888402A1 (fr) 2007-01-12

Similar Documents

Publication Publication Date Title
EP1900020A1 (fr) Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure
EP1378004B1 (fr) Procede de realisation d'un substrat demontable a tenue mecanique controlee
EP1378003B1 (fr) Procede de realisation d'un substrat ou structure demontable
EP1671361B1 (fr) Procede de fabrication d'une structure en forme de plaque, en particulier en silicium, application de procede, et structure en forme de plaque, en particulier en silicium
WO2003083930A1 (fr) Procede de manipulation de couches semiconductrices pour leur amincissement
FR2878076A1 (fr) Amincissement d'une plaquette semiconductrice
EP1879220A2 (fr) Procédé de collage hydrophobe direct de deux substrats utilisés en électronique, optique ou opto-électronique.
EP1299905A1 (fr) Procede de decoupage d'un bloc de materiau et de formation d'un film mince
WO2005019094A1 (fr) Structure empilée, et procédé pour la fabriquer
EP0996150A1 (fr) Procédé de réalisation de composants passifs et actifs sur un même substrat isolant
FR2874455A1 (fr) Traitement thermique avant collage de deux plaquettes
FR2938702A1 (fr) Preparation de surface d'un substrat saphir pour la realisation d'heterostructures
FR2938975A1 (fr) Procede de realisation d'une heterostructure de type silicium sur saphir
WO2007074242A1 (fr) Procede de fabrication d’une structure demontable en forme de plaque, en particulier en silicium, et application de ce procede
EP2302671A1 (fr) Procédé de collage et de transfert d'une couche
FR3064398B1 (fr) Structure de type semi-conducteur sur isolant, notamment pour un capteur d'image de type face avant, et procede de fabrication d'une telle structure
EP4088309B1 (fr) Procede d'assemblage de deux substrats semi-conducteurs
FR2971885A1 (fr) Procédé de réalisation d'un support de substrat
FR2939151A1 (fr) Lingots formes d'au moins deux lingots elementaires, un procede de fabrication et une plaquette qui en est issue
EP3939078A1 (fr) Procede de transfert d'une couche utile sur une substrat support
FR2866982A1 (fr) Procede de fabrication de composants electroniques
WO2016180917A1 (fr) Procédé de collage direct
FR3136107A1 (fr) Procédé de collage direct assisté par une base forte
WO2024074797A1 (fr) Procede de fabrication d'une structure composite comprenant des paves
EP3961684A1 (fr) Procédé de fabrication d'un substrat-poignée destiné au collage temporaire d'un substrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZUSSY, MARC

Inventor name: KOSTRZEWA, MAREK

Inventor name: DI CIOCCIO, LEA

17Q First examination report despatched

Effective date: 20080714

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091229