EP1891191B1 - Schnell zerfallende bentonitgranulate - Google Patents
Schnell zerfallende bentonitgranulate Download PDFInfo
- Publication number
- EP1891191B1 EP1891191B1 EP06742901A EP06742901A EP1891191B1 EP 1891191 B1 EP1891191 B1 EP 1891191B1 EP 06742901 A EP06742901 A EP 06742901A EP 06742901 A EP06742901 A EP 06742901A EP 1891191 B1 EP1891191 B1 EP 1891191B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bentonite
- water
- alkali metal
- sodium
- granulate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 title claims abstract description 158
- 229910000278 bentonite Inorganic materials 0.000 title claims abstract description 140
- 239000000440 bentonite Substances 0.000 title claims abstract description 140
- 239000008187 granular material Substances 0.000 title claims abstract description 82
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 62
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 52
- 239000011734 sodium Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 31
- 229910001413 alkali metal ion Inorganic materials 0.000 claims abstract description 29
- 238000005341 cation exchange Methods 0.000 claims abstract description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 8
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 8
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 4
- 239000011591 potassium Substances 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 57
- 239000000243 solution Substances 0.000 claims description 40
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 22
- 230000008961 swelling Effects 0.000 claims description 15
- 239000004115 Sodium Silicate Substances 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 13
- 238000004090 dissolution Methods 0.000 claims description 10
- 229910000281 calcium bentonite Inorganic materials 0.000 claims description 9
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 8
- 235000017550 sodium carbonate Nutrition 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 6
- 229910001415 sodium ion Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical class [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 4
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910001414 potassium ion Inorganic materials 0.000 claims description 3
- 239000001488 sodium phosphate Substances 0.000 claims description 3
- 235000011008 sodium phosphates Nutrition 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 239000001509 sodium citrate Substances 0.000 claims description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims 2
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims 1
- 235000017557 sodium bicarbonate Nutrition 0.000 claims 1
- 235000011083 sodium citrates Nutrition 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 239000007858 starting material Substances 0.000 abstract description 7
- 235000012216 bentonite Nutrition 0.000 description 133
- 229940092782 bentonite Drugs 0.000 description 119
- 239000004927 clay Substances 0.000 description 22
- 239000003599 detergent Substances 0.000 description 20
- 229910004298 SiO 2 Inorganic materials 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 238000005469 granulation Methods 0.000 description 14
- 230000003179 granulation Effects 0.000 description 14
- ONCZQWJXONKSMM-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] ONCZQWJXONKSMM-UHFFFAOYSA-N 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 11
- 229910000280 sodium bentonite Inorganic materials 0.000 description 11
- 229940080314 sodium bentonite Drugs 0.000 description 11
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 10
- 150000001339 alkali metal compounds Chemical class 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000005054 agglomeration Methods 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229960000907 methylthioninium chloride Drugs 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 5
- 229910052901 montmorillonite Inorganic materials 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000001177 diphosphate Substances 0.000 description 3
- IRXRGVFLQOSHOH-UHFFFAOYSA-L dipotassium;oxalate Chemical compound [K+].[K+].[O-]C(=O)C([O-])=O IRXRGVFLQOSHOH-UHFFFAOYSA-L 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000000622 irritating effect Effects 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 3
- 241000288105 Grus Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 206010027146 Melanoderma Diseases 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000003868 ammonium compounds Chemical class 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 2
- 229910000271 hectorite Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 229960003975 potassium Drugs 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 229910001950 potassium oxide Inorganic materials 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910001948 sodium oxide Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000002522 swelling effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- -1 ammonium ions Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001669 calcium Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229940093956 potassium carbonate Drugs 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- 150000003112 potassium compounds Chemical class 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 229940093916 potassium phosphate Drugs 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 1
- 229940039790 sodium oxalate Drugs 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
- C11D3/126—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
- C11D7/04—Water-soluble compounds
- C11D7/10—Salts
- C11D7/14—Silicates
Definitions
- the invention relates to a process for the production of rapidly disintegrating bentonite granules and bentonite granules which can be obtained by this process.
- Detergent formulations use bentonites to create a built-in soft-grip effect. These bentonites have a high swelling capacity, especially when activated as sodium bentonite. In the application, however, difficulties arise because rapidly forms a gel layer on the surface of the bentonite particles in contact with water, which hinders the further access of water. After a rapid initial formation of the gel layer, therefore, the decay of the bentonite granules slows down in the water, because the core of the particles remains stable for a long time and is only very slowly swollen by the penetrating water and thus decays.
- This paste is then extruded through a 4 to 10 mm diameter orifice and the extrudate is dried to a moisture content of 10 to 14% by weight. After drying, the extrudates are calcined at 120 to 250 ° C until they have an ignition loss of less than 4% at 190 ° C.
- the bentonite extrudates are then comminuted again. For the preparation of this bentonite with a low swelling capacity a bentonite is already used as starting material, which even after activation with sodium ions in contact with water only in proportion swells small extent or shows only a slight tendency to form a gel.
- Bentonite agglomerates are described, which are prepared by spraying finely divided bentonite with sodium silicate as a binder.
- the agglomerates contain 1 to 5% binder. Although they have a different bulk density, the agglomerates do not separate from the other detergent ingredients after incorporation into detergent powder because they have an irregular surface.
- the agglomerates have an increased stability, so that they do not disintegrate in the further production steps of the detergent production. Nevertheless, they dissolve easily on contact with water.
- a clay is used which has large proportions of montmorillonite. Particular preference is given to using a sodium bentonite.
- the Na 2 O content of the agglomerates should be at least 0.5%, preferably at least 1%, particularly preferably at least 2%.
- a water glass with a modulus Na 2 O: SiO 2 of 1: 1.6 to 1: 3.2, preferably 1: 2 to 1: 2.8 or 1: 3.0 is used for binding the bentonite agglomerates.
- the bentonite agglomerates are prepared by spraying an aqueous solution of the binder onto finely divided bentonite while it is being agitated.
- the binder used is a water glass solution having a solids content of 7% and a Na 2 O: SiO 2 module of about 1: 2.4. Furthermore, it is described that when using water glass solutions with another module Na 2 O: SiO 2 , which is chosen within a range of 1: 2 to 1: 3, a good agglomeration can be achieved, non-dusting agglomerates are obtained.
- Similar bentonite agglomerates are used in the US 4,767,546 .
- US 4,851,137 such as US 4,488,972 described, wherein the examples are each selected identically.
- the bentonite agglomerates contain 1 to 5% sodium silicate as binder.
- a water glass solution having a solids content of from 2 to 4% by weight and a modulus of Na 2 O: SiO 2 of from 1: 2 to 1: 3 is used in each case.
- the content of sodium oxide in the bentonite can be selected in the range of 0.5 to 10 wt .-%.
- detailed data is not executed in the examples.
- commercially available sodium bentonites are used.
- exact details of the degree of activation are missing.
- the DE 33 11 568 C2 describes a particulate and softening laundry detergent for textiles, which contains, inter alia, sodium bentonite.
- the sodium bentonite is present as an agglomerate of smaller particles of ground sodium bentonite from which the attendant Grus has been removed after milling and before agglomeration.
- the bentonite agglomerates are coated with a silicate or partially coated to prevent the bentonite agglomerates from sticking to surfaces. The agglomeration of the bentonite takes place with the addition of dilute sodium silicate solution.
- bentonite particles which consist of 82.3 parts by weight of anhydrous bentonite, 16.1 parts by weight of water, 1.5 parts by weight of sodium silicate and 0.06 parts by weight of a blue dye, based on the Surface of the particles is applied, exist.
- the bentonite used is a sodium carbonate-treated bentonite which, after the sodium carbonate treatment, is freed from its Grus contents by centrifugation.
- bentonite sodium bentonite is preferably used, wherein both a natural sodium bentonite as well as a Na 2 CO 3 activated calcium bentonite can be used.
- the bentonite has a content of Na 2 O of 0.8 to 2.8%.
- Example 1 an agglomerate of finely divided sodium bentonite and sodium sulfate is prepared using water as the binder. If the resulting agglomerates are compared in their softening properties with agglomerates obtained by agglomeration of the same bentonite with dilute sodium silicate solution, the agglomerates described first have much better properties.
- the detergent additive contains (A) 30 to 90% by weight of a layered silicate, (B) 1 to 40% by weight of fine crystalline synthetic Zeolite NaA, (C) 0 to 30% by weight of water-soluble salts from the class of sulphates, carbonates, silicates and phosphates of sodium or potassium, and (D) the remainder to 100% by weight of water.
- the detergent additives are free of phosphates and alkali silicates.
- Preferred components of group (C) are sodium sulfate and sodium carbonate, both of which are used as anhydrous salts individually or in admixture. The components are dry blended, then mixed with an aqueous component containing a portion of the zeolite. Granulate formation thus takes place without the addition of water glass.
- the softener mixture contains discrete softening particles containing at least about 75% by weight of a smectite-type clay and less than about 5% by weight of anionic, nonionic, ampholytic and zwitterionic surfactants.
- the plasticizer particles are prepared by spraying the smectite clay with a solution containing a quaternary ammonium compound. Since there is no exchange reaction with the clay, as long as the ammonium compound is adsorbed only on the surface of the clay, the amount of the ammonium compound can be remarkably reduced.
- the clays used are preferably sodium bentonites.
- the plasticizer particles may optionally contain, in addition to the smectite-type clay, substances which soften the desired fabric or do not adversely affect washing, examples of suitable materials being binder or agglomerating agents, e.g. For example sodium silicate.
- a suitable sodium silicate has a modulus Na 2 P: SiO 2 of, for example, 1: 2.4.
- a detergent additive for producing a soft handle effect is described, which contains a natural hectorite of certain composition. The agglomeration of the natural hectorite is carried out in Example 1 with water as the agglomerating agent. The wet agglomerates are dried and sieved to the desired particle size.
- a process is described for the preparation of sorbents which are used, for example, as animal litter.
- a weakly swelling bentonite preferably a calcium bentonite, with a Montmorrilonitgehalt of about 40 to 65 wt .-% with a basic reacting alkali metal compound homogenized by intimate kneading and transferred under ion exchange in a swellable bentonite.
- the alkali metal compound preferably the corresponding sodium compound, is used in an amount of from 0.1 to 1.5% by weight, preferably from 0.25 to 1.5% by weight, based on the dried crude bentonite.
- the alkali metal compound among others, a water glass solution is used.
- the added amounts correspond to a Na 2 O content of 0.5%, 1.0% and 1.5%.
- the crude calcium bentonite is not first activated with an alkali metal compound, and then the activated bentonite is granulated.
- the CH 656 394 A5 describes a particulate, bleaching and softening laundry detergent.
- the detergent contains 5 to 25 wt .-% of an agglomerated bentonite.
- the starting material used is a swellable bentonite. This can also be provided by treating calcium or magnesium bentonite with alkali carbonate so that 5 to 100% or 10 to 90% or 15 to 50% of the exchangeable calcium and / or magnesium is replaced by sodium or potassium, respectively becomes.
- the bentonite particles can be agglomerated using water glass.
- water glass as a binder for the production of bentonite agglomerates, as are customary in detergent additives, has been known for some time.
- water glasses with a modulus of Na 2 O: SiO 2 of about 2.4 are used.
- the water glasses must be strongly alkaline to prevent premature polymerization of the water glass. This would lead to a solidification of the granules and thus to a poor disintegration in the wash liquor.
- the bentonite granules become detergent compositions further processed, for which the bentonite granules must first be packaged after production and then, for example, transported to the detergent producer. In the process, workers come into contact with the bentonite granules or the dust they produce. Because of the highly alkaline properties of the water glass, especially when used in higher amounts, the bentonite granules are irritating, ie when handling the bentonite granules appropriate safety precautions must be taken.
- the invention was based on the object to provide a process for the production of bentonite granules are available, which are obtained with which bentonite granules that can be handled without major safety precautions.
- the granules should be able to be stored for a long time and show rapid disintegration in the wash liquor.
- alkali metal ion overactivated bentonite which is overactivated with at least 110% of its cation exchange capacity with alkali metal ions
- the over-activated with alkali metal ions bentonite is granulated with a water glass solution.
- a bentonite overactivated with alkali metal ions is meant a bentonite which has been reacted with a larger amount of an alkali metal compound, for example soda or potassium oxalate, than corresponds to its cation exchange capacity.
- the cation exchange capacity is determined on the starting material, ie the non-activated bentonite, by first exchanging the exchangeable cations for ammonium ions and then the nitrogen content of the washed and dried bentonite is determined by elemental analysis. From the found amount of exchangeable cations then the amount of alkali metal compounds to be used can be calculated.
- the molar excess of the amount of alkali metal ion used is at least 110%, preferably at least 120%, particularly preferably at least 140%, based on the cation exchange capacity of the bentonite.
- the excess is selected in the range of 140% to 200%, more preferably in the range of 150% to 180% of the cation exchange capacity.
- the activation of the bentonite used as starting material takes place in a manner known per se.
- the wet bentonite which usually has a water content of 20 to 40 wt .-%, is kneaded with a suitable alkali metal compound, for example. Soda or potassium oxalate, and then dried.
- a suitable alkali metal compound for example. Soda or potassium oxalate
- the obtained with alkaline metal ions overactivated bentonite may optionally be ground again.
- the bentonite overactivated with alkali metal ions before granulation has a dry sieve residue on a sieve with a mesh size of 75 ⁇ m, preferably less than 15% of the weighed amount.
- the activation can also be carried out by first slurrying the bentonite used as starting material in water and then activating it by adding a solid or dissolved in water alkali metal compound.
- concentration of the reaction components is chosen so that an activated with alkali metal ions bentonite is obtained, which has the required overactivation.
- a water glass solution which has a modulus SiO 2 : Na 2 O of more than 3.2.
- the waterglass solution preferably has a modulus SiO 2 : Na 2 O of more than 3.3, particularly preferably a modulus in the range of 3.3 to 4.0.
- a water glass with a modulus SiO 2 : Na 2 O of more than 3.2 When using a water glass with a modulus SiO 2 : Na 2 O of more than 3.2, the irritant effect of the granules decreases significantly, which is why the granules are easier to transport and handle. For example, the granules no longer have to be classified as "irritating".
- a potassium water glass solution or a sodium / potassium water glass solution having the above-mentioned modulus can be used in the same manner.
- the modulus here is based on potassium oxide or the mixture of potassium oxide and sodium oxide, but has the abovementioned range of values.
- the granulation preferably uses a water glass solution which has a solids content of at least 10% by weight, preferably at least 15% by weight, particularly preferably at least 30% by weight, particularly preferably at least 40% by weight, particularly preferably at least 50 % By weight.
- the water glass solution is added in such an amount to the over-activated sodium bentonite that the bentonite granules at a water content of 8 wt .-% of alkali metal silicate, preferably sodium silicate, of less than 4.0 wt .-%, preferably less than 3, 5 wt .-%, particularly preferably less than 3.0 wt .-%, preferably less than 2.6 wt .-%, in particular less than 2.0 wt .-%.
- alkali metal silicate preferably sodium silicate
- the bentonite overactivated with alkali metal ions is prepared from a bentonite having a pH of more than 7, preferably a pH of more than 8, more preferably a pH of more than 9 in an aqueous slurry containing 2% by weight of bentonite , in particular has a pH in the range of 8-10.
- the over-activated with alkali metal ions bentonite has a swelling capacity in water of at least 15 ml / 2 g. Due to the high swelling capacity of the rapid disintegration of the granules is supported. In spite of the high swelling capacity of the bentonite overactivated with alkali metal ions, no delay in the disintegration of the granules due to gelation on the bentonite grains is observed.
- the over-activated alkali metal ion bentonite is preferably prepared by activation of a calcium bentonite.
- a calcium bentonite Common calcium bentonites can be used.
- Such calcium bentonites usually have cation exchange capacities in the range of 50 meq / 100 g to 120 meq / 100 g.
- the alkali metal ions with which the bentonite is overactivated are preferably selected from the group of sodium ions and Selected potassium ions, with sodium ions being particularly preferred.
- the bentonite used as starting material is activated preferably with a compound from the group of sodium carbonate, sodium bicarbonate, sodium phosphate, sodium oxalate and sodium citrate. Suitable sodium phosphates are, for example, trisodium monophosphate and trisodium polyphosphate.
- the potassium compound is preferably selected from the group of potassium carbonate, potassium hydrogencarbonate, potassium phosphate, potassium citrate and potassium oxalate.
- the activation of the bentonite, in particular calcium bentonite is carried out in a conventional manner.
- the bentonite which may have a moisture in the range of 20 to 40 wt .-%, is kneaded with the calculated amount of the alkali metal compound. Subsequently, the over-activated with alkali metal ions bentonite can be dried, ground and optionally sifted to adjust the desired grain size.
- the granulation of the over-activated with alkali metal bentonite takes place per se by conventional methods.
- the waterglass solution can be sprayed onto the agitated bentonite which has been overactivated with alkali metal ions.
- free-fall mixers can be used, in which a curtain of falling particles of the overactivated bentonite is formed, on which the water glass solution is then sprayed.
- the water content of the granules can be lowered, for example, by introducing heated air to the desired value.
- the water content of the finished bentonite granules is 6 to 14 wt .-%, preferably 7 to 12 wt .-%, particularly preferably 8 to 10 wt .-%.
- the granulation of the over-activated alkali metal ion bentonite, in particular sodium bentonite but in such a way that the overactivated bentonite is placed in a high-speed mixer and the water glass is added within a short period of time in its entirety.
- the granulation can be carried out both in a batch process and in a continuous process.
- a so-called Eirich mixer and for continuous granulation for example, a continuously operating ploughshare mixer, as offered for example by the company Lödige, or a ring layer mixer, such as a Lödige CB mixer, can be used.
- Another object of the invention is a bentonite granules, as it can be obtained, for example, with the method described above.
- Bentonitgranulat is characterized by the fact that it dissolves very quickly in water or disintegrates very quickly.
- the bentonite granules preferably have a decomposition in water after 90 seconds of at least 90%, particularly preferably of at least 95% and especially preferably of at least 99%.
- the granulated overactivated bentonite preferably has a pH of more than 10 in an aqueous slurry containing 2% by weight of granules.
- Nessler's reagent (Merck, item No. 9028); Boric acid solution, 2%; Caustic soda, 32%; 0.1 N hydrochloric acid; NaCl solution, 0.1%; KCl solution, 0.1%.
- Detection of the ionic freedom of the wash water is performed on NH 4 + ions with the sensitive Nessler's reagent.
- the washing time can vary between 30 minutes and 3 days, depending on the key.
- the leached NH 4 + clay is removed from the filter, dried at 110 ° C for 2 h, ground, sieved (63 micron sieve) and dried again at 110 ° C for 2 h. Thereafter, the NH 4 + content of the clay is determined by elemental analysis.
- the CEC (cation exchange capacity) of the clay is conventionally determined by the NH 4 + content of the NH 4 + clay, which was determined by elemental analysis of the N content.
- the device Vario EL 3 of the company Elementar-Heraeus, Hanau, DE was used according to the manufacturer's instructions. The data are given in mval / 100 g clay (meq / 100g).
- the water content of the products at 105 ° C is determined using the method DIN / ISO-787/2.
- the dissolution rate of the granules is investigated by a method as described in US Pat WO 99/32591 is described.
- the granules are first screened with a sieve of mesh size 200 microns. 8 g of the sieved material are placed in one liter of water, which is heated to 30 ° C and 21 ° German hardness. With a paddle stirrer is for 90 sec. At 800 revolutions / min. touched. The remaining residue of the granules is sieved with a sieve of mesh size 0.2 mm and then dried to constant weight at 40 ° C. The residue is weighed and the solubility determined as the difference to the weighed-in amount of granules.
- 105 to 115 g of the granules are placed on a sieve of mesh size 0.15 mm and sieved finely divided portions of the granules.
- a graduated 100 ml graduated cylinder is filled with 100 ml of distilled water or an aqueous solution of 1% soda and 2% trisodium polyphosphate.
- 2 g of bentonite are added slowly and in portions, each about 0.1 to 0.2 g, with a spatula on the surface of the water. After a drop of added portion, the next portion is added. After the 2 g of bentonite have been added and dropped to the bottom of the graduated cylinder, the cylinder is allowed to stand for one hour at room temperature. Then the height of the swollen substance in ml / 2g is read on the graduation of the measuring cylinder.
- the X-ray images are taken on a Philips high-resolution powder diffractometer (X'-Pert-MPD (PW3040)) equipped with a CO anode.
- the bentonite used was a natural Ca bentonite which has the following properties: ⁇ u> Table 1: Properties of the bentonite ⁇ / u> property value Montmorillonite content via methylene blue adsorption 75% Minor mineral content via X-ray measurements quartz ⁇ 1% by weight cristobalite ⁇ 5% by weight feldspar ⁇ 12% by weight Cation exchange capacity via the NH 4 method 75 meq / 100g
- the granules were examined for their dispersion rate in the manner described above.
- the data obtained are summarized in Table 4 for a granulation with a water glass with a modulus SiO 2 : Na 2 O of 2.65 and in Table 5 for a granulation with a water glass with a modulus SiO 2 : Na 2 O of 3.2 ,
- the swelling volumes of the granules obtained and the pH during dissolution of the granules in water are also included in Tables 4 and 5.
- the swelling volume of the unactivated bentonite is 12 ml / 2 mg, increases in stoichiometrically activated bentonite to 20 ml / 2 g, and then the overactivated bentonite back to 15 ml / 2 g to fall off.
- the overactivated bentonite 3 is already at a water glass content of 1.2% after 30 s achieved a complete resolution, while the stoichiometrically activated bentonite 2 a much higher water glass content of 7.3% is required within 30 s to achieve a complete dissolution of the granules.
Landscapes
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Detergent Compositions (AREA)
- Disintegrating Or Milling (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Glanulating (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung schnell zerfallender Bentonitgranulate sowie Bentonitgranulate, welche mit diesem Verfahren erhalten werden können.
- In Waschmittelformulierungen werden Bentonite für die Erzeugung eines eingebauten Weichgriffeffektes eingesetzt. Diese Bentonite weisen insbesondere im aktivierten Zustand als Natriumbentonit ein hohes Quellvermögen auf. Bei der Anwendung ergeben sich jedoch Schwierigkeiten, da sich auf der Oberfläche der Bentonitpartikel beim Kontakt mit Wasser rasch eine Gelschicht ausbildet, welche den weiteren Zutritt von Wasser behindert. Nach einer raschen anfänglichen Ausbildung der Gelschicht verlangsamt sich daher der Zerfall der Bentonitgranulate im Wasser, da der Kern der Partikel über längere Zeit stabil bleibt und erst sehr langsam durch das eindringende Wasser aufgequollen wird und damit zerfällt. Letztlich führt dies dazu, dass ein erheblicher Anteil des Bentonitgranulats mit der Waschlauge ausgetragen wird oder dass größere Bentonitpartikel auf den Fasern der gewaschenen Stoffe zurückbleiben. In beiden Fällen gehen also erhebliche Anteile des eingesetzten Bentonits verloren und können nicht zum Weichgriffeffekt beitragen.
- Hochquellende Bentonite können potenziell auch in Waschmitteltabletten eingesetzt werden, wo sie zusätzlich als Tablettensprengmittel wirken können. Dies ist aber nur dann möglich, wenn der Zerfall der Bentonitpartikel schnell erfolgt. Bei Waschmitteltabletten werden im Vergleich zu normalem Pulverwaschmittel noch höhere Anforderungen an den Zerfall gestellt, um zu gewährleisten, dass keine gröberen Partikel auf der gewaschenen Wäsche verbleiben. Hier ist es also besonders wichtig, dass die Waschmitteltabletten möglichst rasch in der Waschflotte zerfallen.
- In der
EP 1 102 729 B1 wird das Problem eines mangelhaften Zerfalls der Bentonitgranulate dadurch zu lösen versucht, dass die Quellfähigkeit der Bentonitgranulate herabgesetzt wird, ohne dass dadurch der Zerfall des Bentonits in einzelne Lamellen gestört wird, so dass der in der Waschlauge vorhandene Bentonit in erheblichem Ausmaß zur Ausbildung eines Weichgriffeffektes zur Verfügung steht. Dabei wird ein Bentonit mit einem Montmorillonitgehalt von mindestens 85 Gew.-% zunächst auf einen Feuchtegehalt von 25 bis 35 Gew.-% getrocknet. Der getrocknete Bentonit wird anschließend zerkleinert und durch Zugabe von Wasser zu einer extrudierbaren Paste verarbeitet, welche einen Feuchtegehalt von 25 bis 40 Gew.-% aufweist. Diese Paste wird dann durch eine Öffnung mit einem Durchmesser von 4 bis 10 mm extrudiert und das Extrudat auf einen Feuchtegehalt von 10 bis 14 Gew.-% getrocknet. Nach dem Trocknen werden die Extrudate bei 120 bis 250°C calciniert, bis sie bei 190°C einen Glühverlust von weniger als 4 % aufweisen. Anschließend werden die Bentonitextrudate erneut zerkleinert. Für die Herstellung dieses Bentonits mit einer niedrigen Quellfähigkeit wird bereits als Ausgangsmaterial ein Bentonit verwendet, welcher auch nach Aktivierung mit Natriumionen bei Kontakt mit Wasser nur in verhältnismäßig geringem Umfang quillt bzw. nur eine geringe Neigung zur Ausbildung eines Gels zeigt. - In der
US 4,746,445 werden Bentonitagglomerate beschrieben, welche hergestellt werden, indem feinteiliger Bentonit mit Natriumsilikat als Bindemittel besprüht wird. Die Agglomerate enthalten 1 bis 5 % Bindemittel. Obwohl sie eine andere Schüttdichte aufweisen, trennen sich die Agglomerate nach einer Einarbeitung in Waschmittelpulver nicht von den weiteren Waschmittelbestandteilen, da sie eine unregelmäßige Oberfläche besitzen. Die Agglomerate weisen eine erhöhte Stabilität auf, so dass sie bei den weiteren Produktionsschritten der Waschmittelherstellung nicht zerfallen. Dennoch lösen sie sich bei Kontakt mit Wasser leicht auf. Für die Herstellung der Bentonitagglomerate wird ein Ton verwendet, welcher große Anteile an Montmorillonit aufweist. Besonders bevorzugt wird ein Natriumbentonit eingesetzt. Dieser kann aus natürlichen Quellen gewonnen werden, bspw. ein Wyoming- oder ein Western-Bentonit. Es kann jedoch auch ein Calciumbentonit verwendet werden, der mit Alkaliverbindungen, wie Natriumcarbonat, aktiviert wurde. Der Na2O Gehalt der Agglomerate sollte zumindest 0,5 % betragen, vorzugsweise zumindest 1 %, insbesondere bevorzugt zumindest 2 %. Zum Binden der Bentonitagglomerate wird ein Wasserglas mit einem Modul Na2O:SiO2 von 1:1,6 bis 1:3,2, vorzugsweise 1:2 bis 1:2,8 bzw. 1:3,0 verwendet. Die Bentonitagglomerate werden hergestellt, indem eine wässrige Lösung des Bindemittels auf fein zerteilten Bentonit aufgesprüht wird, während dieser bewegt wird. In den Beispielen wird als Bindemittel eine Wasserglaslösung mit einem Feststoffgehalt von 7 % und einem Modul Na2O:SiO2 von etwa 1:2.4 verwendet. Ferner wird beschrieben, dass bei Verwendung von Wasserglaslösungen mit einem anderen Modul Na2O:SiO2, welches innerhalb eines Bereiches von 1:2 bis 1:3 gewählt wird, eine gute Agglomeration erreicht werden kann, wobei nicht staubende Agglomerate erhalten werden. - Ähnliche Bentonitagglomerate werden in der
US 4,767,546 ,US 4,851,137 , sowieUS 4,488,972 beschrieben, wobei die Beispiele jeweils identisch gewählt sind. Die Bentonitagglomerate enthalten 1 bis 5 % Natriumsilikat als Bindemittel. Zur Herstellung der Agglomerate wird jeweils eine Wasserglaslösung mit einem Feststoffgehalt von 2 bis 4 Gew.-% und einem Modul Na2O:SiO2 von 1:2 bis 1:3 verwendet. Der Gehalt an Natriumoxid im Bentonit kann im Bereich von 0,5 bis 10 Gew.-% gewählt werden. Genaue Daten werden in den Beispielen jedoch nicht ausgeführt. Hier werden jeweils kommerziell erhältliche Natriumbentonite verwendet. Genaue Angaben zum Aktivierungsgrad fehlen jedoch. - In der
DE 33 11 568 C2 wird ein teilchenförmiges und weichmachendes Grobwaschmittel für Textilien beschrieben, welches u.a. Natriumbentonit enthält. Der Natriumbentonit liegt als Agglomerat von kleineren Teilchen gemahlenen Natriumbentonits vor, von denen der begleitende Grus nach dem Mahlen und vor dem Agglomerieren entfernt worden ist. Die Bentonitagglomerate sind mit einem Silikat beschichtet oder teilweise beschichtet, um zu verhindern, dass die Bentonitagglomerate an Flächen ankleben. Die Agglomeration des Bentonits erfolgt unter Zugabe verdünnter Natriumsilikatlösung. Im Beispiel werden Bentonitteilchen beschrieben, welche aus 82,3 Gew.-Teilen wasserfreiem Bentonit, 16,1 Gew.-Teilen Wasser, 1,5 Gew.-Teilen Natriumsilikat und 0,06 Gew.-Teilen eines blauen Farbstoffs, der auf die Oberfläche der Teilchen aufgebracht wird, bestehen. Als Bentonit wird ein mit Natriumcarbonat behandelter Bentonit verwendet, der nach der Natriumcarbonatbehandlung von seinen Grusanteilen durch Zentrifugieren befreit wird. - In der
US 4,699,729 wird ein Verfahren zur Herstellung einer Waschmittelzusammensetzung beschrieben, welche einen geringen Anteil an fein zerteiltem Bentonitpulver enthält. Der Bentonit wird auf der Oberfläche eines teilchenförmigen Granulats agglomeriert. Als Bindemittel wird eine Natriumsilikatlösung verwendet, welche ein Modul Na2O:SiO2 von 1:2,4 aufweist. Allgemein können Natriumsilikatlösungen mit einem Modul Na2O:SiO2 von 1:1,6 bis 1:3,2, vorzugsweise 1:2 bis 1:3, insbesondere bevorzugt 1:2,35 oder 1:2,4 verwendet werden. - Als Bentonit wird bevorzugt Natriumbentonit verwendet, wobei sowohl ein natürlicher Natriumbentonit wie auch ein mit Na2CO3 aktivierter Calciumbentonit eingesetzt werden kann. Typischerweise weist der Bentonit einen Gehalt an Na2O von 0,8 bis 2,8 % auf.
- In der
US 4,609,473 werden Agglomerate aus Bentonit und Natriumsulfat beschrieben, welche Textilien einen Weichgriffeffekt verleihen können. Die Agglomerate werden hergestellt, indem der fein zerteilte Bentonit sowie das Natriumsulfat mit Hilfe eines Bindemittels agglomeriert werden. Im einfachsten Fall kann dazu Feuchtigkeit verwendet werden. Es ist jedoch auch möglich, Natriumsilikat als anorganisches Bindemittel einzusetzen, wobei jedoch genauere Werte zu Menge und Modul nicht angegeben sind. Als Bentonit werden vorzugsweise natürliche Natriumbentonite verwendet. Es können auch Calciumbentonite verwendet werden, welche mit Natriumcarbonat aktiviert wurden. Im Beispiel 1 wird ein Agglomerat aus fein zerteiltem Natriumbentonit und Natriumsulfat hergestellt, wobei als Bindemittel Wasser verwendet wird. Werden die erhaltenen Agglomerate in ihren Weichmacheigenschaften mit Agglomeraten verglichen, welche durch Agglomeration des gleichen Bentonits mit verdünnter Natriumsilikatlösung erhalten wurden, so weisen die zuerst beschriebenen Agglomerate wesentlich bessere Eigenschaften auf. - In der
DE 39 42 066 A1 wird ein Verfahren zur Herstellung eines granularen, avivierend wirkenden Waschmitteladditivs beschrieben. Das Waschmitteladditiv enthält (A) 30 bis 90 Gew.-% eines Schichtsilikats, (B) 1 bis 40 Gew.-% feinkristallinen, synthetischen Zeolith NaA, (C) 0 bis 30 Gew.-% an wasserlöslichen Salzen aus der Klasse der Sulfate, Carbonate, Silikate und Phosphate des Natriums oder Kaliums, sowie (D) den Rest auf 100 Gew.-% Wasser. Vorzugsweise sind die Waschmitteladditive jedoch frei von Phosphaten und Alkalisilikaten. Bevorzugte Bestandteile der Gruppe (C) sind Natriumsulfat und Natriumcarbonat, die beide als wasserfreie Salze einzeln oder im Gemisch eingesetzt werden. Die Komponenten werden trocken vermischt, dann mit einer wässrigen Komponente vermischt, welche einen Anteil des Zeoliths enthält. Die Granulatbildung erfolgt also ohne Zusatz von Wasserglas. - In der
DE 34 19 571 wird ein als Zusatz zu einem teilchenförmigen Waschmittel anwendbares Textilweichmachungsgemisch beschrieben. Das Weichmachungsgemisch enthält diskrete Weichmachungsteilchen, die mindestens etwa 75 Gew.-% eines Tons vom Smektittyp und weniger als etwa 5 Gew.-% waschaktive Substanzen der Gruppe aus anionischen, nichtionischen, ampholytischen und zwitterionischen Tensiden enthalten. Die Weichmachungsteilchen werden hergestellt, indem der smektitische Ton mit einer Lösung besprüht wird, welche eine quaternäre Ammoniumverbindung enthält. Da keine Austauschreaktion mit dem Ton stattfindet, solange die Ammoniumverbindung lediglich an der Oberfläche des Tons adsorbiert wird, kann die Menge an Ammoniumverbindung deutlich reduziert werden. Als Tone werden bevorzugt Natriumbentonite verwendet. Es können aber auch Calciumbentonite eingesetzt werden, die durch Behandlung mit Natriumcarbonat aktiviert wurden. Die Weichmachungsteilchen können wahlweise zusätzlich zu dem Ton vom Smektittyp Substanzen enthalten, die das erwünschte Textil weich machen oder das Waschen nicht nachteilig beeinflussen, wobei Beispiele für geeignete Materialien Binde- oder Agglomerierungsmittel sind, z. B. Natriumsilikat. Ein geeignetes Natriumsilikat weist ein Modul Na2P : SiO2 von bspw. 1:2,4 auf. In derEP 0 387 426 A2 wird ein Waschmittelzusatz zur Erzeugung eines Weichgriffeffekts beschrieben, welcher einen natürlichen Hectorit bestimmter Zusammensetzung enthält. Die Agglomeration des natürlichen Hectorits wird in Beispiel 1 mit Wasser als Agglomerierungsmittel durchgeführt. Die nassen Agglomerate werden getrocknet und auf die gewünschte Partikelgröße gesiebt. - In der
DE 42 43 389 A1 wird ein Verfahren zur Herstellung von Sorptionsmitteln beschrieben, die beispielsweise als Tierstreu verwendet werden. Dazu wird ein schwach quellender Bentonit, vorzugsweise ein Calciumbentonit, mit einem Montmorrilonitgehalt von etwa 40 bis 65 Gew.-% mit einer basisch reagierenden Alkalimetallverbindung durch innige Verknetung homogenisiert und unter Ionenaustausch in einen quellfähigen Bentonit überführt. Die Alkalimetallverbindung, vorzugsweise die entsprechende Natriumverbindung, wird in einer Menge von 0,1 bis 1,5 Gew.-%, vorzugsweise von 0,25 bis 1,5 Gew.-%, bezogen auf den getrockneten Rohbentonit, eingesetzt. In den Beispielen wird als Alkalimetallverbindung unter anderen eine Wasserglaslösung verwendet. Die zugesetzten Mengen entsprechen einem Na2O-Gehalt von 0,5 %, 1,0 % und 1,5 %. Bei diesem Verfahren wird der Calcium-Rohbentonit jedoch nicht zunächst mit einer Alkalimetallverbindung aktiviert und anschließend der aktivierte Bentonit granuliert. - Die
CH 656 394 A5 - Der Einsatz von Wasserglas als Bindemittel für die Herstellung von Bentonitagglomeraten, wie sie in Waschmittelzusätzen üblich sind, ist bereits seit längerem bekannt. Üblicherweise werden dabei Wassergläser mit einem Modul Na2O:SiO2 von etwa 2,4 eingesetzt. Die Wassergläser müssen stark alkalisch sein, um zu verhindern, dass eine vorzeitige Polymerisierung des Wasserglases eintritt. Dies würde zu einer Verfestigung der Granulate führen und damit zu einem schlechten Zerfall in der Waschlauge. Die Bentonitgranulate werden zu Waschmittelzusammensetzungen weiterverarbeitet, wozu die Bentonitgranulate nach der Herstellung zunächst verpackt und dann bspw. zum Waschmittelproduzenten transportiert werden müssen. Dabei geraten Arbeiter in Kontakt mit den Bentonitgranulaten bzw. dem aus ihnen entwickelten Staub. Wegen der stark alkalischen Eigenschaften des Wasserglases, insbesondere, wenn dies in höheren Mengen eingesetzt wird, wirkt das Bentonitgranulat reizend, d. h. bei der Handhabung der Bentonitgranulate müssen entsprechende Sicherheitsvorkehrungen getroffen werden.
- Der Erfindung lag nun die Aufgabe zugrunde, ein Verfahren zur Herstellung von Bentonitgranulaten zur Verfügung zu stellen, mit welchem Bentonitgranulate erhalten werden, die ohne größere Sicherheitsvorkehrungen handhabbar sind. Die Granulate sollten über längere Zeit gelagert werden können und in der Waschflotte einen schnellen Zerfall zeigen.
- Die Aufgabe wird mit einem Verfahren mit dem Merkmal des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen des Verfahrens sind Gegenstand der abhängigen Ansprüche.
- Überraschend wurde gefunden, dass bei Verwendung von mit Alkalimetallionen überaktiviertem Bentonit Granulate erhalten werden können, die einen sehr schnellen Zerfall in Wasser zeigen. Der in das Wasser bzw. eine Waschflotte eingebrachte Bentonit kann sich daher in Zeiträumen, wie sie beim Ablauf eines normalen Waschzyklus in einer Waschmaschine zur Verfügung stehen, vollständig auflösen und steht daher vollständig für die Erzeugung eines guten Weichgriffeffekt bei der Anwendung auf Textilien zur Verfügung. Die Verluste durch den Austrag nicht gelöster Bentonitpartikel mit dem Waschwasser können minimiert werden und es verbleiben keine Rückstände von größeren Bentonitagglomeraten auf den gewaschenen Textilien.
- Die besten Quelleigenschaften von Bentoniten in Wasser werden an sich mit stöchiometrisch mit Alkalimetallionen aktiviertem Bentonit erreicht. Wird die zum Aktivieren des Bentonits verwendete Alkalimenge weiter erhöht, sinkt das Quellvolumen wieder ab. Man erwartet daher an sich die besten Quelleigenschaften und damit einen raschen Zerfall des Granulats bei Verwendung eines stöchiometisch aktivierten Bentonits. Überraschend hat sich jedoch gezeigt, dass bei der Granulierung mit Wasserglas die Granulate, die einen überstöchiometrisch mit Alkalimetallionen aktivierten Bentonit enthalten, einen schnelleren Zerfall zeigen, als Granulate, die aus einem stöchiometrisch aktivierten Bentonit hergestellt wurden.
- Ohne von dieser Theorie gebunden sein zu wollen, nehmen die Erfinder an, dass der Eintrag von Ionen über die zur Aktivierung benötigte Menge hinaus zu einer elektrostatischen Abschirmung der negativen Ladungen der Bentonitplättchen führt.
- Bei der Herstellung der schnell zerfallenden Bentonitgranulate wird in der Weise vorgegangen, dass
- ein mit Alkalimetallionen überaktivierter Bentonit bereitgestellt wird, welcher mit zumindest 110 % seiner Kationenaustauschkapazität mit Alkalimetallionen überaktiviert ist; und
- der mit Alkalimetallionen überaktivierte Bentonit mit einer Wasserglaslösung granuliert wird.
- Unter einem mit Alkalimetallionen überaktivierten Bentonit wird ein Bentonit verstanden, welcher mit einer größeren Menge einer Alkalimetallverbindung, bspw. Soda oder Kaliumoxalat, umgesetzt wurde, als dies seiner Kationenaustauschkapazität entspricht. Die Kationenaustauschkapazität wird am Ausgangsmaterial, also dem nicht aktivierten Bentonit, bestimmt, indem die austauschbaren Kationen zunächst gegen Ammoniumionen ausgetauscht werden und anschließend der Stickstoffgehalt des gewaschenen und getrockneten Bentonits durch Elementaranalyse ermittelt wird. Aus der gefundenen Menge an austauschbaren Kationen kann dann die einzusetzende Menge an Alkalimetallverbindungen errechnet werden. Der molare Überschuss der eingesetzten Alkalimetallionenmenge beträgt dabei zumindest 110 %, vorzugsweise zumindest 120 %, insbesondere bevorzugt zumindest 140 %, bezogen auf die Kationenaustauschkapazität des Bentonits. Vorzugsweise wird der Überschuss im Bereich von 140 % bis 200 %, insbesondere bevorzugt im Bereich von 150 % bis 180 % der Kationenaustauschkapazität gewählt.
- Die Aktivierung des als Ausgangsmaterials verwendeten Bentonits erfolgt in an sich bekannter Weise. Der feuchte Bentonit, welcher üblicherweise einen Wassergehalt von 20 bis 40 Gew.-% aufweist, wird mit einer geeigneten Alkalimetallverbindung, bspw. Soda oder Kaliumoxalat, verknetet und anschließend getrocknet. Der erhaltene mit Alkalimetallionen überaktivierte Bentonit kann ggf. erneut vermahlen werden. Üblicherweise weist der mit Alkalimetallionen überaktivierte Bentonit vor dem Granulieren einen Trockensiebrückstand auf einem Sieb mit einer Maschenweite von 75 µm von vorzugsweise weniger als 15 % der eingewogenen Menge auf.
- Neben dem beschriebenen Aktivierungsverfahren können auch andere übliche Verfahren angewendet werden. Bspw. kann die Aktivierung auch erfolgen, indem der als Ausgangsmaterial verwendete Bentonit zunächst in Wasser aufgeschlämmt wird und die Aktivierung dann durch Zugabe einer festen oder in Wasser gelösten Alkalimetallverbindung erfolgt. Die Konzentration der Reaktionskomponenten wird so gewählt, dass ein mit Alkalimetallionen aktivierter Bentonit erhalten wird, welcher die geforderte Überaktivierung aufweist.
- Für die Granulierung des mit Alkalimetallionen überaktivierten Bentonits wird eine Wasserglaslösung verwendet, die ein Modul SiO2 : Na2O von mehr als 3,2 aufweist. Vorzugsweise weist die Wasserglaslösung ein Modul SiO2:Na2O von mehr als 3,3, insbesondere bevorzugt ein Modul im Bereich von 3,3 bis 4,0 auf. Bei der Herstellung des Granulats kann daher vorteilhaft ein Wasserglas verwendet werden, dass ein höheres Modul SiO2 : Na2O aufweist, als es die üblicherweise verwendeten Wassergläser aufweisen. Dies bedeutet, dass der Alkaligehalt des Wasserglases, und damit auch des Bentonitgranulats, im Vergleich zu den bisher verfügbaren Bentonitgranulaten deutlich gesenkt werden kann. Bei Verwendung eines Wasserglases mit einem Modul SiO2 : Na2O von mehr als 3,2 sinkt die reizende Wirkung der Granulate deutlich, weshalb sich die Granulate einfacher Transportieren und Handhaben lassen. Beispielsweise müssen die Granulate nicht mehr als "reizend" klassifiziert werden. Neben der oben beschriebenen Natriumwasserglaslösung kann gleich wirkend eine Kaliumwasserglaslösung oder eine Natrium/Kaliumwasserglaslösung eingesetzt werden, die das oben angegebene Modul aufweist. Das Modul ist hierbei auf Kaliumoxid bzw. das Gemisch aus Kaliumoxid und Natriumoxid bezogen, weist aber den oben genannten Wertebereich auf.
- Vorzugsweise wird bei der Granulierung eine Wasserglaslösung eingesetzt, welche einen Feststoffgehalt von wenigstens 10 Gew.-%, bevorzugt wenigstens 15 Gew.-%, insbesondere bevorzugt wenigstens 30 Gew.-%, besonders bevorzugt wenigstens 40 Gew.-%, insbesondere bevorzugt wenigstens 50 Gew.-% aufweist.
- Ein weiterer Vorteil der Verwendung von mit Alkalimetallionen überaktiviertem Bentonit besteht darin, dass sehr geringe Mengen an Wasserglas verwendet werden können, wobei dennoch ein Granulat erhalten wird, das einerseits eine hohe mechanische Stabilität und andererseits einen schnellen Zerfall zeigt. Vorzugsweise wird die Wasserglaslösung in einer solchen Menge zum mit Alkalimetallionen überaktivierten Natriumbentonit gegeben, dass das Bentonitgranulat bei einem Wassergehalt von 8 Gew.-% einen Anteil an Alkalimetallsilikat, vorzugsweise Natriumsilikat, von weniger als 4,0 Gew.-%, bevorzugt weniger als 3,5 Gew.-%, insbesondere bevorzugt weniger als 3,0 Gew.-%, vorzugsweise weniger als 2,6 Gew.-%, insbesondere weniger als 2,0 Gew.-% enthält.
- Bevorzugt wird der mit Alkalimetallionen überaktivierte Bentonit aus einem Bentonit hergestellt, welcher in einer wässrigen Aufschlämmung mit einem Gehalt von 2 Gew.-% Bentonit einen pH von mehr als 7, vorzugsweise einen pH von mehr als 8, insbesondere bevorzugt einen pH von mehr als 9, insbesondere einen pH im Bereich von 8 - 10 aufweist.
- Bevorzugt weist der mit Alkalimetallionen überaktivierte Bentonit eine Quellfähigkeit in Wasser von mindestens 15 ml/2 g auf. Durch die hohe Quellfähigkeit wird der schnelle Zerfall des Granulats unterstützt. Trotz der hohen Quellfähigkeit des mit Alkalimetallionen überaktivierten Bentonits wird dabei keine Verzögerung des Zerfalls des Granulats durch Gelbildung an den Bentonitkörnern beobachtet.
- Der mit Alkalimetallionen überaktivierte Bentonit wird vorzugsweise durch Aktivierung eines Calciumbentonits hergestellt. Es können übliche Calciumbentonite verwendet werden. Derartige Calciumbentonite haben üblicherweise Kationenaustauschkapazitäten im Bereich von 50 meq/100 g bis 120 meq/100 g. An sich ist es jedoch auch möglich, für die Überaktivierung bereits einen Natriumbentonit zu verwenden.
- Die Alkalimetallionen, mit welchen der Bentonit überaktiviert ist, werden vorzugsweise aus der Gruppe von Natriumionen und Kaliumionen ausgewählt, wobei Natriumionen besonders bevorzugt sind.
- Bei einer Aktivierung mit Natriumionen wird der als Ausgangsmaterial verwendete Bentonit, insbesondere Calciumbentonit, vorzugsweise mit einer Verbindung aus der Gruppe von Natriumcarbonat, Natriumhydrogencarbonat, Natriumphosphat, Natriumoxalat und Natriumcitrat aktiviert. Geeignete Natriumphosphate sind beispielsweise Trinatriummonophosphat und Trinatriumpolyphosphat. Bei einer Aktivierung mit Kaliumionen wird die Kaliumverbindung vorzugsweise aus der Gruppe von Kaliumcarbonat, Kaliumhydrogencarbonat, Kaliumphosphat, Kaliumcitrat und Kaliumoxalat ausgewählt. Die Aktivierung des Bentonits, insbesondere Calciumbentonits, wird an sich in üblicher Weise durchgeführt. Dazu wird der Bentonit, der eine Feuchte im Bereich von 20 bis 40 Gew.-% aufweisen kann, mit der berechneten Menge der Alkalimetallverbindung verknetet. Anschließend kann der mit Alkalimetallionen überaktivierte Bentonit getrocknet, gemahlen und ggf. gesichtet werden, um die gewünschte Korngröße einzustellen.
- Die Granulierung des mit Alkalimetallionen überaktivierten Bentonits, insbesondere bevorzugt Natriumbentonits, erfolgt an sich nach üblichen Verfahren. Bspw. kann die Wasserglaslösung auf den bewegten mit Alkalimetallionen überaktivierten Bentonit aufgesprüht werden. Dazu können bspw. Freifallmischer verwendet werden, in welchen sich ein Vorhang aus herabfallenden Teilchen des überaktivierten Bentonits ausbildet, auf welchen dann die Wasserglaslösung aufgesprüht wird.
- Nach dem Granulieren kann der Wassergehalt des Granulats bspw. durch Einleiten von erwärmter Luft auf den gewünschten Wert erniedrigt werden. Üblicherweise beträgt der Wassergehalt der fertigen Bentonitgranulate 6 bis 14 Gew.-%, vorzugsweise 7 bis 12 Gew.-%, insbesondere bevorzugt 8 bis 10 Gew.-%. Vorzugsweise erfolgt die Granulation des mit Alkalimetallionen überaktivierten Bentonits, insbesondere Natriumbentonits, jedoch in der Weise, dass der überaktivierte Bentonit in einem schnell laufenden Mischer vorgelegt wird und das Wasserglas innerhalb eines kurzen Zeitraums in seiner gesamten Menge zugegeben wird. Die Granulierung kann sowohl in einem Batchvervahren als auch in einem kontinuierlichen Verfahren durchgeführt werden. Für die Granulation im Batchverfahren kann ein sogenannter Eirichmischer und für die kontinuierliche Granulation beispielsweise ein kontinuierlich arbeitender Pflugscharmischer, wie er z.B. von der Firma Lödige angeboten wird, oder ein Ringschichtmischer, wie ein Lödige CB Mischer, verwendet werden.
- Ein weiterer Gegenstand der Erfindung ist ein Bentonitgranulat, wie es bspw. mit dem oben beschriebenen Verfahren erhalten werden kann. Ein derartiges Bentonitgranulat zeichnet sich dadurch aus, dass es sich in Wasser sehr schnell auflöst bzw. sehr schnell zerfällt.
- Das erfindungsgemäße Bentonitgranulat weist die folgenden Eigenschaften auf:
- ein Quellvolumen von mindestens 15 ml/2g
- einen Zerfall in Wasser nach 30 Sekunden von zumindest 80 %.
- Bevorzugt weist das Bentonitgranulat einen Zerfall in Wasser nach 90 Sekunden von zumindest 90 %, insbesondere bevorzugt von zumindest 95 % und insbesondere bevorzugt von zumindest 99 % auf.
- Der granulierte überaktivierte Bentonit weist in einer wässrigen Aufschlämmung mit einem Gehalt von 2 Gew.-% Granulat vorzugsweise einen pH von mehr als 10 auf.
- Die Erfindung wird anhand von Beispielen näher erläutert.
- Prinzip: Der Ton wird mit einem großen Überschuss an wässriger NH4Cl-Lösung behandelt, ausgewaschen und die auf dem Ton verbliebene NH4 +-Menge mittels Elementaranalyse bestimmt.
Me+(Ton)-+ NH4 +― NH4 +(Ton)-+Me+
(Me+ = H+, K+, Na+, 1/2 Ca2+, 1/2 Mg2+....)
- Geräte: Sieb, 63 µm; Erlenmeyer-Schliffkolben, 300 ml; Analysenwaage; Membranfilternutsche, 400 ml; Cellulose-Nitrat-Filter, 0,15 µm (Fa. Sartorius); Trockenschrank; Rückflusskühler; Heizplatte; Destillationseinheit, VAPODEST-5 (Fa. Gerhardt, No. 6550); Messkolben, 250 ml; Flammen-AAS.
- Chemikalien: 2N NH4Cl-Lösung Neßlers-Reagens (Fa. Merck, Art.Nr. 9028); Borsäure-Lösung, 2 %-ig; Natronlauge, 32 %-ig; 0,1 N Salzsäure; NaCl-Lösung, 0,1 %-ig; KCl-Lösung, 0,1 %-ig.
- Durchführung: 5 g Ton werden durch ein 63 µm-Sieb gesiebt und bei 110°C getrocknet. Danach werden genau 2 g auf der Analysenwaage in Differenzwägung in den Erlenmeyer-Schliffkolben eingewogen und mit 100 ml 2N NH4Cl-Lösung versetzt. Die Suspension wird unter Rückfluss eine Stunde lang gekocht. Bei stark CaCO3-haltigen Bentoniten kann es zu einer Ammoniak-Entwicklung kommen. In diesen Fällen muss solange NH4Cl-Lösung zugegeben werden, bis kein Ammoniak-Geruch mehr wahrzunehmen ist. Eine zusätzliche Kontrolle kann mit einem feuchten Indikator-Papier durchgeführt werden. Nach einer Standzeit von ca. 16 h wird der NH4 +-Bentonit über eine Membranfilternutsche abfiltriert und bis zur weitgehenden Ionenfreiheit mit vollentsalztem Wasser (ca. 800 ml) gewaschen. Der Nachweis der Ionenfreiheit des Waschwassers wird auf NH4 +-Ionen mit dem dafür empfindlichen Neßlers-Reagens durchgeführt. Die Waschzeit kann je nach Tonart zwischen 30 Minuten und 3 Tagen variieren. Der ausgewaschene NH4 +-Ton wird vom Filter abgenommen, bei 110°C 2 h lang getrocknet, gemahlen, gesiebt (63 µm-Sieb) und nochmals bei 110 °C 2 h lang getrocknet. Danach wird der NH4 +-Gehalt des Tons mittels Elementaranalyse bestimmt.
- Berechnung der CEC: Die CEC (Kationenaustauschkapazität) des Tons wird in herkömmlicher Weise über den NH4 +-Gehalt des NH4 +-Tons, der über Elementaranalyse des N-Gehalts ermittelt wurde, bestimmt. Hierzu wurde das Gerät Vario EL 3 der Firma Elementar-Heraeus, Hanau, DE, nach den Angaben des Herstellers eingesetzt. Die Angaben erfolgen in mval/100 g Ton (meq/100g).
-
- Der Wassergehalt der Produkte bei 105°C wird unter Verwendung der Methode DIN/ISO-787/2 ermittelt.
- 2 g der Probe werden in 98 ml destilliertem Wasser dispergiert. Danach wird mit einer kalibrierten Glaselektrode der pH-Wert bestimmt.
- Die Auflösegeschwindigkeit der Granulate wird mit einem Verfahren untersucht, wie es in der
WO 99/32591 - Die Granulate werden zunächst mit einem Sieb der Maschenweite 200 µm gesiebt. 8 g des gesiebten Materials werden in einen Liter Wasser gegeben, das auf 30°C temperiert ist und 21° deutscher Härte aufweist. Mit einem Flügelrührer wird für 90 Sek. bei 800 Umdrehungen/Min. gerührt. Der verbliebene Rückstand des Granulats wird mit einem Sieb der Maschenweite 0,2 mm abgesiebt und anschließend zur Gewichtskonstanz bei 40 °C getrocknet. Der Rückstand wird ausgewogen und die Löslichkeit als Differenz zur eingewogenen Granulatmenge bestimmt.
- 105 bis 115 g des Granulats werden auf ein Sieb der Maschenweite 0,15 mm gegeben und feinteilige Anteile des Granulats abgesiebt.
- 100 g des von Feinanteilen befreiten Granulats werden auf ein Sieb der Maschenweite 0,15 mm gegeben, welches auf einer Auffangschale befestigt ist. Auf das Granulat werden 3 Gummibälle gegeben, welche einen Durchmesser von 2,9 mm aufweisen. Das Sieb wird mit einem Deckel abgedeckt, wobei zwischen Sieb und Deckel ein Abstand von 25 mm vorgesehen ist. Die aus Auffangschale, Sieb und Deckel zusammengesetzte Vorrichtung wird auf einen Rotationsschüttler gegeben und dort 15 Min. geschüttelt. Anschließend wird das in der Auffangschale aufgefangene Granulat ausgewogen. Diese Zahl entspricht der Brechbarkeitszahl für 15 Min. Schüttelzeit.
- Das Sieb wird nochmals 15 Min. geschüttelt und erneut das Material ausgewogen, welches sich in der Auffangschale angesammelt hat. Aus der Summe der Siebdurchgänge ergibt sich Brechbarkeitszahl für 30 Min.
- Ein graduierter 100 ml Messzylinder wird mit 100 ml destilliertem Wasser bzw. einer wässrigen Lösung aus 1 % Soda und 2 % Trinatriumpolyphosphat gefüllt. 2 g Bentonit werden langsam und portionsweise, je etwa 0,1, bis 0,2 g, mit einem Spatel auf die Oberfläche des Wassers gegeben. Nach dem Absinken einer zugegebenen Portion wird die nächste Portion zugegeben. Nachdem die 2 g Bentonit zugegeben und auf den Grund des Messzylinders abgesunken sind, wird der Zylinder für eine Stunde bei Raumtemperatur stehen gelassen. Anschließend wird an der Graduierung des Messzylinders die Höhe der gequollenen Substanz in ml/2g abgelesen.
- Etwa 50 g des zu untersuchenden lufttrockenen Tonmaterials werden auf einem Sieb der entsprechenden Maschenweite eingewogen. Das Sieb wird an einen Staubsauger angeschlossen, der über ein unter dem Siebboden kreisenden Saugschlitz alle Anteile, die feiner als das Sieb sind, durch das Sieb heraussaugt. Das Sieb wird mit einem Plastikdeckel abgedeckt und der Staubsauger eingeschaltet. Nach 5 Minuten wird der Staubsauger abgeschaltet und die Menge der auf dem Sieb verbliebenen gröberen Anteile durch Differenzwägung ermittelt.
- Die Röntgenaufnahmen werden an einem hochauflösendeh Pulverdiffraktometer der Fa. Philips (X'-Pert-MPD (PW3040)) erstellt, das mit einer CO-Anode ausgerüstet war.
- Der Methylenblauwert ist ein Maß für die innere Oberfläche der Tonmaterialien.
- a) Herstellung einer Tetranatriumdiphosphat-Lösung
5,41 g Tetranatriumdiphosphat werden auf 0,001 g genau in einen 1000 ml Messkolben eingewogen und unter Schütteln bis zur Eichmarke mit dest. Wasser aufgefüllt. - b) Herstellung einer 0,5 %-igen Methylenblaulösung
In einem 2000 ml Becherglas werden 125 g Methylenblau in ca. 1500 ml dest. Wasser gelöst. Die Lösung wird abdekantiert und auf 25 1 mit dest. Wasser aufgefüllt.
0,5 g feuchter Testbentonit mit bekannter innerer Oberfläche werden in einem Erlenmeyerkolben auf 0,001 g genau eingewogen. Es werden 50 ml Tetranatriumdiphosphatlösung zugegeben und die Mischung 5 Minuten zum Sieden erhitzt. Nach dem Abkühlen auf Raumtemperatur werden 10 ml 0,5 molare H2SO4 zugegeben und 80 bis 95 % des zu erwartenden Endverbrauchs an Methylenblaulösung zugegeben. Mit dem Glasstab wird ein Tropfen der Suspension aufgenommen und auf ein Filterpapier gegeben. Es bildet sich ein blau-schwarzer Fleck mit einem farblosen Hof. Es wird nun in Portionen von 1 ml weitere Methylenblaulösung zugegeben und die Tüpfelprobe wiederholt. Die Zugabe erfolgt solange, bis sich der Hof leicht hellblau färbt, also die zugegebene Methylenblaumenge nicht mehr vom Testbentonit absorbiert wird. - c) Prüfung von Tonmaterialien
Die Prüfung des Tonmaterials wird in der gleichen Weise durchgeführt wie für den Testbentonit. Aus der verbrauchten Menge an Methylenblaulösung lässt sich die innere Oberfläche des Tonmaterials berechnen.
381 mg Methylenblau/g Ton entsprechen nach diesem Verfahren einem Gehalt von 100 % Montmorillonit. - Als Bentonit wurde ein natürlicher Ca-Bentonit eingesetzt, der die folgenden Eigenschaften aufweist:
Tabelle 1: Eigenschaften des Bentonits Eigenschaft Wert Montmorillonitgehalt über Methylenblauadsorption 75 % Nebenmineralgehalt über Röntgenmessungen Quarz < 1 Gew.% Cristobalit < 5 Gew.% Feldspat < 12 Gew. % Kationenaustauschkapazität über die NH4-Methode 75 meq/100 g - Dieser Bentonit wurde mit unterschiedlichen Anteilen an Soda aktiviert. Als Vergleich wurde eine Probe des Bentonits, die keiner Aktivierung unterzogen worden war. Die erhaltenen Bentonitproben sind in Tabelle 2 zusammengefasst.
Tabelle 2: Aktivierungsgrad der eingesetzten Bentonite Bentonit Aktivierung Zugegebene Sodamenge (Gew.-% Konzentration von Na+ im Eluat (meq/100 g) Anteil Na+ an der Gesamt CEC (%) 1 keine 0 15 20 2 stöchiometrisch 3 76 100 3 überstöchiometrisch 4,3 96 126 - Die in Tabelle 2 aufgeführten Bentonite wurden jeweils mit Wasserglas granuliert, wobei zwei Sorten von Wasserglas verwendet wurden, die sich in ihrem Modul unterscheiden. Die Daten des verwendeten Wasserglases sind in Tabelle 3 zusammengefasst.
Tabelle 3: Eigenschaften der für die Granulierung verwendeten Wassergläser Wasserglas Modul SiO2 : Na2O A 2,65 B 3,2 - Jeweils 350 g Bentonit, welcher auf einen Wassergehalt von ca. 30 % getrocknet worden war, wird in einen Werner & Pfleiderer Mischer Typ LUK 050 T gegeben und 1 Min. geknetet. Danach wird unter Weiterlaufen des Mischers die entsprechende Menge Soda zugefügt und die Mischung für weitere 10 Min. geknetet. Die Knetmasse wird per Hand in kleine Stücke zerkleinert und in einem Umlufttrockenschrank bei ca. 75°C während 2 bis 4 Stunden auf einen Wassergehalt von 10 ± 2 % getrocknet. Das Trockengut wird dann in einer Schlagrotormühle Retsch Typ SR 3 mit einem 0,12 mm Sieb vermahlen.
- In einem Eirich Intensivmischer R02E wurden jeweils 1000 g des in Tabelle 2 charakterisierten Bentonits vorgelegt und über einen Trichter als Agglomerisationsmittel Wasser oder Wasserglaslösung (Wasserglas A bzw. B) zudosiert. Es wurden jeweils Wasserglaslösungen mit einem Feststoffgehalt von 10 %, 20 % sowie 40 % verwendet. Dabei wurde die niedrige Einstellung für die Umdrehungsgeschwindigkeit des Tellers sowie die maximale Umdrehungsgeschwindigkeit für den Wirbler gewählt. Die Agglomerationsparameter wurden, wenn nicht anders angegeben, im Folgenden jeweils so gewählt, dass mehr als 50 % der Granulate in einem Teilchengrößenbereich von 0,4 bis 1,4 mm lagen. Dazu wurden die Granulate nach dem Granulieren und Trocknen entsprechend abgesiebt.
- Die Granulate wurden in der oben beschriebenen Weise bezüglich ihrer Dispersionsgeschwindigkeit untersucht. Die ermittelten Daten sind in Tabelle 4 für eine Granulation mit einem Wasserglas mit einem Modul SiO2 : Na2O von 2,65 und in Tabelle 5 für eine Granulation mit einem Wasserglas mit einem Modul SiO2 : Na2O von 3,2 zusammengefasst. Neben den Daten zum Zerfall der Granulate sind in Tabelle 4 und 5 jeweils noch das Quellvolumen der erhaltenen Granulate und der pH-Wert beim Auflösen des Granulats in Wasser mit aufgenommen.
Tabelle 4: Eigenschaften von Granulaten, die mit unterschiedlichen Mengen an Wasserglas Modul SiO 2 : Na 2 O von 2,65 granuliert wurden (Vergleich) Bentonit Agglomeration smittel Quellvolumen Löslichkeit pH-Wert Wasserglasanteil ml/2 mg 90 s 30 s (%) 1 Wasser 12 70 52 9,5 - 1 296 g A (10%) 12 75 61 1,2 1 313 g A (20%) 18 91 83 2,6 1 426 g A (40%) 18 99 98 10,6 7,2 2 314 g Wasser 20 66 30 10,7 - 2 352 g A (10%) 14 63 44 10,7 1,5 2 364 g A (20%) 14 98 91 10,6 3,1 2 430 g A (40%) 14 >99,5 > 99,5 10,6 7,3 3 450 g Wasser 15 90 74 10,5 - 3 284 g A (10%) 20 100 100 10,5 1,2 3 330 g A (20%) 19 100 99,5 10,6 2,8 3 352 g A (40%) 17 >99,5 >99,5 10,5 6,0 - Betrachtet man zunächst die Granulate, die lediglich mit Wasser granuliert wurden, erkennt man, dass das Quellvolumen beim nicht aktivierten Bentonit 12 ml/2 mg beträgt, beim stöchiometrisch aktivierten Bentonit auf 20 ml/2 g ansteigt, um dann beim überaktivierten Bentonit wieder auf 15 ml/2 g abzufallen.
- Betrachtet man die Löslichkeit, wird beim überaktivierten Bentonit 3 bereits bei einem Wasserglasanteil von 1,2 % nach 30 s eine vollständige Auflösung erreicht, während beim stöchiometrisch aktivierten Bentonit 2 ein deutlich höherer Wasserglasanteil von 7,3 % erforderlich ist, um innerhalb von 30 s eine vollständige Auflösung des Granulats zu erreichen.
- Alle Granulate zeigten eine hohe mechanische Stabilität und der Abrieb nach der vorher beschriebenen Testmethode betrug ≤ 2%. Auch bei niedriger Wasserglaskonzentration wurde ein Granulat erhalten, das eine für den technischen Einsatz ausreichende mechanische Stabilität aufwies.
Tabelle 5: Eigenschaften von Granulaten, die mit unterschiedlichen Mengen an Wasserglas Modul SiO 2 : Na 2 O von 3,2 granuliert wurden Bentonit Agglomerationsmittel Quellvolumen Löslichkeit pH-Wert Wasserglasanteil ml/2 mg 90 s 30 s (%) 1 Wasser 12 70 52 9,5 - 1 252 g B (10%) 11 77 62 0,9 1 275 g B (20%) 13 96 84 1,9 1 341 g B (40%) 16 97 93 4,8 2 314 g Wasser 20 66 30 10,7 - 2 519 g B (10%) 13 99 94 10,4 1,5 2 410 g B (20%) 13 98 94 10,4 3,0 2 457 g B (40%) 18 > 99,5 > 99,5 10,1 6,6 3 258 g Wasser 15 90 74 10,5 -- 3 305 g B (10%) 16,5 > 99,0 97,0 10,7 0,85 3 330 g B (20%) 17,0 > 99,5 > 99,5 10,6 1,8 3 352 g B (40%) 19,0 > 99,5 > 99,5 10,5 3,9 - Verwendet man ein Wasserglas mit einem Modul SiO2 : Na2O von 3,2, das also einen geringeren Anteil an starken Basen aufweist, reicht bereits ein Wasserglasanteil von 1,8 % aus, um beim überaktivierten Bentonit 3 innerhalb von 30 s eine praktisch vollständige Auflösung des Granulats zu erreichen. Beim stöchiometrisch aktivierten Bentonit sind wiederum höhere Anteile an Wasserglas erforderlich, um eine schnelle Auflösung des Granulats zu erreichen.
- Alle Granulate zeigten eine hohe mechanische Stabilität und der Abrieb nach der vorher beschriebenen Testmethode betrug ≤ 2%. Auch bei niedriger Wasserglaskonzentration wurde ein Granulat erhalten, das eine für den technischen Einsatz ausreichende mechanische Stabilität aufwies.
Claims (13)
- Verfahren zur Herstellung schnell zerfallender Bentonitgranulate, wobei:ein mit Alkalimetallionen überaktivierter Bentonit bereitgestellt wird, welcher mit zumindest 110 % seiner Kationenaustauschkapazität mit Alkalimetallionen überaktiviert ist; undder mit Alkalimetallionen überaktivierte Bentonit mit einer Wasserglaslösung granuliert wird, wobei die Wasserglaslösung ein Modul SiO2:X2O von mehr als 3,2 aufweist, wobei X ausgewählt ist aus Natrium und Kalium.
- Verfahren nach Anspruch 1, wobei die Wasserglaslösung einen Feststoffgehalt von wenigstens 10 Gew.-% aufweist.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei das Alkalimetallion aus der Gruppe von Natriumionen und Kaliumionen ausgewählt ist.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die Wasserglaslösung in einer solchen Menge zum mit Alkalimetallionen überaktivierten Bentonit gegeben wird, dass das Bentonitgranulat bei einem Wassergehalt von 8 Gew.-% einen Anteil an Alkalimetallsilikat, insbesondere Natriumsilikat, von weniger als 3,0 Gew.-% enthält.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei der mit Alkalimetallionen überaktivierte Bentonit aus einem Bentonit hergestellt ist, welcher in einer wässrigen Aufschlämmung mit einem Gehalt von 2 Gew.-% Bentonit einen pH von mehr als 8 aufweist.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei der mit Alkalimetallionen überaktivierte Bentonit eine Quellfähigkeit in Wasser von mindestens 15 ml/2 g aufweist.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei der mit Alkalimetallionen überaktivierte Bentonit durch Aktivierung eines Calciumbentonits hergestellt wird.
- Verfahren nach Anspruch 7, wobei der Calciumbentonit mit einer Verbindung aus der Gruppe von Natriumcarbonat, Natriumcitrat, Natriumhydrogencarbonat sowie der Natriumphosphate aktiviert ist.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei das Bentonitgranulat auf einen Wassergehalt im Bereich von 6 bis 14 Gew.-% getrocknet wird.
- Schnell zerfallendes Bentonitgranulat, erhalten mit einem Verfahren nach einem der Ansprüche 1 bis 9, welches die folgenden Eigenschaften aufweist:- ein Quellvolumen von mindestens 15 ml/2g;- einen Zerfall in Wasser nach 30 Sekunden von zumindest 80 %, bestimmt nach dem in der Beschreibung angegebenen Verfahren zur Bestimmung der Auflösegeschwindigkeit von Granulaten.
- Schnell zerfallendes Bentonitgranulat nach Anspruch 10, wobei das Bentonitgranulat einen Zerfall in Wasser nach 90 Sekunden von zumindest 90 % aufweist, bestimmt nach dem in der Beschreibung angegebenen Verfahren zur Bestimmung der Auflösegeschwindigkeit von Granulaten.
- Schnell zerfallendes Bentonitgranulat nach Anspruch 10 oder 11, wobei das Bentonitgranulat in einer wässrigen Aufschlämmung mit einem Gehalt von 2 Gew.-% Granulat einen pH von mehr als 10 aufweist.
- Schnell zerfallendes Bentonitgranulat nach einem der Ansprüche 10 bis 12, wobei das Granulat bei einem Wassergehalt von 8 Gew.-% einen Gehalt an Natriumsilikat von weniger als 3 Gew.-% aufweist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL06742901T PL1891191T3 (pl) | 2005-05-12 | 2006-05-12 | Granulaty bentonitowe ulegające szybkiemu rozkładowi |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005022075A DE102005022075A1 (de) | 2005-05-12 | 2005-05-12 | Schnell zerfallende Betonitgranulate |
PCT/EP2006/004489 WO2006120011A1 (de) | 2005-05-12 | 2006-05-12 | Schnell zerfallende bentonitgranulate |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1891191A1 EP1891191A1 (de) | 2008-02-27 |
EP1891191B1 true EP1891191B1 (de) | 2010-12-22 |
Family
ID=36657017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06742901A Active EP1891191B1 (de) | 2005-05-12 | 2006-05-12 | Schnell zerfallende bentonitgranulate |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1891191B1 (de) |
JP (1) | JP4971310B2 (de) |
CN (1) | CN101175844B (de) |
AT (1) | ATE492622T1 (de) |
BR (1) | BRPI0608600A2 (de) |
DE (2) | DE102005022075A1 (de) |
ES (1) | ES2358212T3 (de) |
MX (1) | MX2007013874A (de) |
PL (1) | PL1891191T3 (de) |
WO (1) | WO2006120011A1 (de) |
ZA (1) | ZA200709019B (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008290923A (ja) * | 2007-05-28 | 2008-12-04 | Kurosaki Hakudo Kogyo Kk | 水分散性強化型改質ベントナイト及びその製造方法 |
WO2014051278A1 (ko) * | 2012-09-28 | 2014-04-03 | 한국에너지기술연구원 | 그래뉼화 된 벤토나이트 성형체의 제조방법 및 이에 따라 제조된 그래뉼화 된 벤토나이트 성형체 |
KR101348134B1 (ko) | 2012-09-28 | 2014-01-07 | 한국에너지기술연구원 | 그래뉼화 된 벤토나이트 성형체의 제조방법 및 이에 따라 제조된 그래뉼화 된 벤토나이트 성형체의 제조방법 |
CN108004054B (zh) * | 2017-12-20 | 2020-04-14 | 苏州国建慧投矿物新材料有限公司 | 一种用于洗衣粉的柔顺功能粒子及其制备方法 |
CN111024884B (zh) * | 2019-12-02 | 2022-04-22 | 武汉科技大学 | 一种用于冶金球团粘结剂的膨润土质量检测评价方法 |
NL2032305B1 (nl) * | 2022-06-28 | 2024-01-16 | Trisoplast Int B V | Geconsolideerd droog mengsel dat granulair materiaal en bentoniet |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58117294A (ja) * | 1981-12-30 | 1983-07-12 | ライオン株式会社 | 芳香性洗剤組成物 |
DE3362488D1 (en) * | 1982-02-19 | 1986-04-17 | Laporte Industries Ltd | A process for the manufacture of absorbent materials |
US4746445A (en) * | 1982-04-08 | 1988-05-24 | Colgate-Palmolive Company | Process for manufacturing bentonite agglomerates |
US4767546A (en) * | 1982-04-08 | 1988-08-30 | Colgate-Palmolive Co. | Fabric softening bentonite agglomerates for use in laundry detergents |
DE3311368A1 (de) * | 1982-04-08 | 1983-10-27 | Colgate-Palmolive Co., 10022 New York, N.Y. | Teilchenfoermiges, bleichendes und weichmachendes textilwaschmittel |
DE3311568C2 (de) * | 1982-04-08 | 1994-10-20 | Colgate Palmolive Co | Teilchenförmiges und weichmachendes Grobwaschmittel, Verfahren zu dessen Herstellung und als Zusatz für Grobwaschmittel geeignetes Bentonit-Agglomerat |
US4536316A (en) * | 1983-06-01 | 1985-08-20 | Colgate-Palmolive Co. | Fabric softening composition containing surface modified clay |
US4609473A (en) * | 1984-11-26 | 1986-09-02 | Colgate Palmolive Company | Bentonite-sulfate fabric softening particulate agglomerate, processes for manufacture and use thereof, and detergent compositions containing it |
JPS63150390A (ja) * | 1986-12-15 | 1988-06-23 | 株式会社豊田中央研究所 | 洗剤組成物 |
US4997695A (en) * | 1988-11-21 | 1991-03-05 | James Clem Corporation | Clay mixture having contamination resistance |
DE3908628A1 (de) * | 1989-03-16 | 1990-09-20 | Manfred Dr Ing Braun | Brikettierung von tonmehlgemengen mit zusaetzen auf walzenpressen mit formmulden und verarbeitung dieser briketts zur errichtung von wasserdichten sperrschichten |
DE4243389A1 (de) * | 1992-12-21 | 1994-06-23 | Sued Chemie Ag | Verfahren zur Herstellung von Sorptionsmitteln zur Aufnahme von Flüssigkeiten |
CN1061946C (zh) * | 1997-03-31 | 2001-02-14 | 孙忠 | 一种用钙基膨润土生产钠基膨润土的方法 |
DE19943551A1 (de) * | 1999-09-11 | 2001-03-15 | Clariant Gmbh | Schwerlösliches Alkalisilikat |
DE10121051A1 (de) * | 2001-04-28 | 2002-10-31 | Clariant Gmbh | Builder-Zusammensetzung |
CN1155515C (zh) * | 2002-04-16 | 2004-06-30 | 张兴华 | 颗粒膨润土的生产方法 |
JP2004073053A (ja) * | 2002-08-14 | 2004-03-11 | Kurosaki Hakudo Kogyo Kk | ペット用トイレ砂 |
-
2005
- 2005-05-12 DE DE102005022075A patent/DE102005022075A1/de not_active Withdrawn
-
2006
- 2006-05-12 DE DE502006008561T patent/DE502006008561D1/de active Active
- 2006-05-12 CN CN2006800160818A patent/CN101175844B/zh not_active Expired - Fee Related
- 2006-05-12 ES ES06742901T patent/ES2358212T3/es active Active
- 2006-05-12 MX MX2007013874A patent/MX2007013874A/es active IP Right Grant
- 2006-05-12 EP EP06742901A patent/EP1891191B1/de active Active
- 2006-05-12 BR BRPI0608600-4A patent/BRPI0608600A2/pt active IP Right Grant
- 2006-05-12 JP JP2008510506A patent/JP4971310B2/ja active Active
- 2006-05-12 AT AT06742901T patent/ATE492622T1/de active
- 2006-05-12 WO PCT/EP2006/004489 patent/WO2006120011A1/de active Search and Examination
- 2006-05-12 PL PL06742901T patent/PL1891191T3/pl unknown
- 2006-05-12 ZA ZA200709019A patent/ZA200709019B/xx unknown
Also Published As
Publication number | Publication date |
---|---|
DE502006008561D1 (de) | 2011-02-03 |
WO2006120011A1 (de) | 2006-11-16 |
MX2007013874A (es) | 2008-01-28 |
JP4971310B2 (ja) | 2012-07-11 |
CN101175844B (zh) | 2010-06-09 |
JP2008540749A (ja) | 2008-11-20 |
PL1891191T3 (pl) | 2011-07-29 |
EP1891191A1 (de) | 2008-02-27 |
ES2358212T3 (es) | 2011-05-06 |
DE102005022075A1 (de) | 2006-11-16 |
ZA200709019B (en) | 2009-02-25 |
ATE492622T1 (de) | 2011-01-15 |
BRPI0608600A2 (pt) | 2010-01-19 |
CN101175844A (zh) | 2008-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1891191B1 (de) | Schnell zerfallende bentonitgranulate | |
DE3855037T2 (de) | Körnige Kalziumhypochloritmischung und Verfahren zur Herstellung | |
DE69423542T2 (de) | Synthetisiertes, anorganisches Ionenaustauschermaterial sowie dieses enthaltende Waschmittelzusammensetzung | |
EP0253323A2 (de) | Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation | |
WO2006097325A2 (de) | Granulate aus natürlichen schichtmineralien und verfahren zu deren herstellung | |
DE69020963T2 (de) | Zeolith-Agglomerierverfahren und -Produkt. | |
EP1904588B1 (de) | Schichtsilicat-slurries mit hohem feststoffgehalt | |
EP0604861B1 (de) | Verfahren zur Herstellung von Sorptionsmitteln auf smektitbasis zur Aufnahme von Flüssigkeiten | |
EP0753568B1 (de) | Granularer Waschmittelbuilder | |
DE3509661C2 (de) | Verfahren zur Herstellung eines körnigen, Natriumtriphosphat enthaltenden Produktes | |
EP2057257B1 (de) | Waschmitteladditiv auf der basis von tonmineralien und pvp-haltigen copolymeren | |
EP0006618B1 (de) | Verwendung von Alumosilikat-Granulat als Kationen-austauscher | |
EP0613943B1 (de) | Waschmittelzusatz für gewebeweichmachende Waschmittel | |
WO1991009101A1 (de) | Verfahren zur herstellung eines granularen, avivierend wirkenden waschmitteladditivs | |
EP0970918B1 (de) | Feinteiliges kristallines Natriumdisilikat | |
EP0716682B1 (de) | Gerüststoffkomponente für wasch- oder reinigungsmittel | |
EP0273334A1 (de) | Verfahren zur Herstellung von rieselfähigen, stabilen Persäure-Konzentraten durch kompaktierende Granulation | |
EP0048435B1 (de) | Verfahren zur Herstellung von Granulaten kondensierter Phosphate | |
EP0716684B1 (de) | Gerüststoffkomponente für wasch- oder reinigungsmittel | |
DE19925928A1 (de) | Feinteiliges kristallines Natriumsilikat | |
EP0768276A1 (de) | Verfahren zur Herstellung von hochaustauschfähigem Natriumsdisilikat | |
DE102013010766A1 (de) | Verfahren zur Herstellung von Granulaten enthaltend Kaliumchlorid und Magnesiumsulfat-Hydrat | |
DE10323499A1 (de) | Mittel zur Adsorption von Eiweiß aus eiweißhaltigen Flüssigkeiten auf dem Lebensmittelsektor | |
WO2021018942A1 (de) | Filtermaterial zur wasseraufbereitung | |
DE3007998A1 (de) | Geschirreinigungsmittel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071203 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MORTAIGNE, OLIVIER Inventor name: SOHLING, ULRICH Inventor name: WERNER, ANDREAS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20100208 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502006008561 Country of ref document: DE Date of ref document: 20110203 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006008561 Country of ref document: DE Effective date: 20110203 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2358212 Country of ref document: ES Kind code of ref document: T3 Effective date: 20110425 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110322 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110422 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110422 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110323 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 |
|
26N | No opposition filed |
Effective date: 20110923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006008561 Country of ref document: DE Effective date: 20110923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: SUD-CHEMIE IP GMBH & CO.KG Effective date: 20121002 Ref country code: AT Ref legal event code: PC Ref document number: 492622 Country of ref document: AT Kind code of ref document: T Owner name: SUED-CHEMIE IP GMBH & CO. KG, DE Effective date: 20120904 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006008561 Country of ref document: DE Representative=s name: PATENTANWAELTE STOLMAR & PARTNER, DE Effective date: 20121025 Ref country code: DE Ref legal event code: R082 Ref document number: 502006008561 Country of ref document: DE Effective date: 20121025 Ref country code: DE Ref legal event code: R082 Ref document number: 502006008561 Country of ref document: DE Representative=s name: STOLMAR & PARTNER, DE Effective date: 20121025 Ref country code: DE Ref legal event code: R081 Ref document number: 502006008561 Country of ref document: DE Owner name: SUED-CHEMIE IP GMBH & CO. KG, DE Free format text: FORMER OWNER: SUED-CHEMIE AG, 80333 MUENCHEN, DE Effective date: 20121025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101222 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006008561 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190524 Year of fee payment: 14 Ref country code: PL Payment date: 20190507 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190527 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20190528 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: CLARIANT INTERNATIONAL LTD. Effective date: 20201023 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 492622 Country of ref document: AT Kind code of ref document: T Effective date: 20200512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200512 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006008561 Country of ref document: DE Owner name: CLARIANT INTERNATIONAL LTD., CH Free format text: FORMER OWNER: SUED-CHEMIE IP GMBH & CO. KG, 80333 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200512 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220421 AND 20220427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200512 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20230504 Year of fee payment: 18 Ref country code: FR Payment date: 20230523 Year of fee payment: 18 Ref country code: ES Payment date: 20230612 Year of fee payment: 18 Ref country code: DE Payment date: 20230530 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230428 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230523 Year of fee payment: 18 |