EP1882050B1 - Materiau resistant a l'usure et produit par metallurgie des poudres - Google Patents

Materiau resistant a l'usure et produit par metallurgie des poudres Download PDF

Info

Publication number
EP1882050B1
EP1882050B1 EP06742765.8A EP06742765A EP1882050B1 EP 1882050 B1 EP1882050 B1 EP 1882050B1 EP 06742765 A EP06742765 A EP 06742765A EP 1882050 B1 EP1882050 B1 EP 1882050B1
Authority
EP
European Patent Office
Prior art keywords
wear
powder
resistant material
finished product
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06742765.8A
Other languages
German (de)
English (en)
Other versions
EP1882050A2 (fr
Inventor
Hans Berns
Andreas Packeisen
Werner Theisen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOEPPERN ENTWICKLUNGS-GMBH
Original Assignee
Koppern Entwicklungs-Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koppern Entwicklungs-Gmbh filed Critical Koppern Entwicklungs-Gmbh
Priority to SI200632073A priority Critical patent/SI1882050T1/sl
Publication of EP1882050A2 publication Critical patent/EP1882050A2/fr
Application granted granted Critical
Publication of EP1882050B1 publication Critical patent/EP1882050B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the invention relates to a powder metallurgically produced, wear-resistant material made of an alloy, and to a method for producing the material according to the invention, its use and a powder material.
  • Wear resistant alloys based on iron are widely used.
  • the wear resistance of the hardness of the martensitic metal matrix and the content of hard carbides, nitrides or borides of the elements chromium, tungsten, molybdenum, vanadium, molybdenum, niobium or titanium is achieved.
  • This group includes cold and high speed steels as well as white cast iron and hardfacing alloys.
  • the starting powder of these materials is an alloyed powder that is produced by atomizing a melt.
  • such powders are filled into thin sheet metal capsules which are compacted to a dense body after evacuation and seal welding in special autoclaves using hot isostatic pressing technique (HIP) at a temperature below the melting point and at an isostatic gas pressure of up to 2,000 bar.
  • HIP hot isostatic pressing technique
  • Subsequent hot forming (forging or rolling) converts the compacted capsules into semi-finished tool steel, which are available in different sizes on the market. From these semi-finished tools are generally made, which receive their hardness by a known as hardening heat treatment.
  • Hardening consists of austenitizing and cooling with such a Speed that mainly hard martensite is formed. With increasing wall thickness of the workpiece, the required cooling rate in the core is no longer achieved and the high hardness of martensite can only be adjusted to a certain depth of the workpiece. It is referred to as Einhärtungstiefe. In this case, the core is not through hardened.
  • the described alloy essentially comprises 1.4 to 3.77 wt.% Carbon, 0.2 to 2.0 wt.% Manganese, up to 0.10 wt.% Phosphorus, up to 0.10 wt % Sulfur, up to 2.0 wt% silicon, 0.3-1.8 wt% nickel, 11.5-14.5 wt% chromium, up to 3 wt% molybdenum , 8.0-15.0% by weight of vanadium, 0.03-0.46% by weight of nitrogen, the remainder being iron.
  • a design rule for adjusting the proportions of carbon and nickel is provided, which is based on an adjustment of the alloying constituents chromium, molybdenum and vanadium.
  • the addition of the nickel content serves in particular to increase the hardenability of the material. Specifically, nickel additions in specific ranges of 0.30 - 1.80, and 0.30 - 1.00% and 0.30 - 0.60% are proposed. For uses where the manufactured items are not handled quickly by the Austenitization be cooled, a nickel content of 0.30 - 1.00% or 0.30% is specified as particularly suitable.
  • the HIP technique can not only be used in the production of semi-finished products made of powder metallurgy steel, but is also suitable for applying a layer made of powder with a thickness in the mm to cm range on a low-cost, usually tough steel substrate.
  • This technology known in the English-speaking world as HIP-Cladding, is being used more and more widely for the production of highly wear-stressed components, which are used in processing technology and polymer processing.
  • wear-resistant coating materials here u.a. atomized steel powders are used for which hard powder powders are sometimes added in view of high wear resistance. In this way, it is already possible today to provide workpieces with extremely wear-resistant layers, which exceed conventional wear components which are not produced by the powder-metallurgical method many times over.
  • New HIP systems are being manufactured for ever larger components, which in turn increase their wall thickness. This results in the problem of lack of hardening for the heat treatment of large-walled composite components necessary after tapping.
  • the aim of this heat treatment is the martensitic hardening of the coating material, which is largely consumed by wear during operation and therefore must be consistently hard. Because of the large risk of cracking and distortion in hard-containing alloys and abrupt cooling in water or oil, these cooling media precipitate, especially in the case of thick wall thicknesses, because of the associated high thermal stresses. It therefore layer materials are required, even at slower Cooling of large composite components, eg in air, in vacuum ovens with nitrogen pressure ⁇ 6 bar or in the HIP plant can be transferred across into the hard, for a high wear resistance necessary, martensite phase.
  • the steel powders known today are unsuitable for this purpose, since they have been optimized for semi-finished products and workpieces of smaller wall thicknesses.
  • T H is the hardening temperature
  • the nickel content in the matrix is slightly higher than in the alloy.
  • the nickel content acts mainly in the metal matrix and expands the austenite area with increasing content. It can be assumed that the nickel content in the metal matrix per volume percent of carbide is 0.025 wt% above the nickel content in the alloy.
  • the austenite-stabilizing effect of the nickel makes it possible to convert the alloys into the hard, wear-resistant martensite even at very slow cooling.
  • the carbon Since in addition to the nickel content for austenite stabilization, in particular the carbon is important, but the same is bound in different grades of carbide in different grades, it must be set in relation to the desired hardenability with the other alloying elements in relation.
  • the C content calculated in summands S1 and S2 stands for the proportion of carbon that is indissolubly bound in the various carbide types.
  • Summand S3 represents a proportion of carbon which, with sufficient molybdenum content in the alloy, can be solved by choosing the austenitizing temperature in the metal matrix. As the hardening temperature increases, more molybdenum-containing carbides are dissolved. As a result, the austenite becomes richer in molybdenum and carbon which expand the austenite area and thereby increase the critical cooling rate.
  • the material according to the invention can be hardened cost-effectively by known measures, wherein even thick-walled components are cured without increased costs.
  • the proportion of vanadium in the alloy of the wear-resistant material may be less than 11.5% by weight, preferably less than 9.5% by weight, more preferably less than 6.0% by weight. In this case, it is particularly preferred if the volume fraction of the vanadium carbide in the alloy is less than 18.5% by volume. Corresponding areas have proven to be particularly suitable in the practice of the invention.
  • the alloy of the wear-resistant material 2.0 to 2.5 wt .-% carbon, max. 1.0% by weight of silicon, max. 0.6% by weight of manganese, 12.0 to 14.0% by weight of chromium, 1.0 to 2.0% by weight of molybdenum, 1.1 to 4.2% by weight of vanadium, 2, 0 - 3.5 wt .-% nickel residue iron and unavoidable impurities include.
  • This specific composition has proven to be particularly suitable in practice.
  • the alloy may comprise 1-6% by weight of Co.
  • the alloy may have 0.3 to 3.5 wt% N.
  • the addition of nitrogen has been found to be advantageous.
  • the nickel content is between 2.0 and 3.5%. In practice, it has been found that a corresponding nickel content is particularly suitable, in particular for quenching the material in static air.
  • the Ni content may be between 1.3 and 2.0%.
  • An alloy with a corresponding amount of nickel is particularly suitable for cooling by gas ⁇ 6 bar.
  • a Ni content of 1.0 to 1.3% is suitable.
  • the object is achieved by a material having the features of claim 4.
  • This condition is used in the case where a corrosion resistant alloy is desired.
  • a prerequisite is that in the metal matrix a minimum chromium content of 12% is solved.
  • the summand S2 K is used for the summand S2 of the above equation, which takes into account the necessary chromium content.
  • the wear-resistant material can be produced by a method, wherein first a melt is produced and the melt is further processed by one of the following methods: atomizing the melt into a powder or spray-compacting the melt. Consequently, the material according to the invention can be produced by various processes, thus making it possible on the one hand to produce powders and, on the other hand, by using spray compacting to produce the most varied semi-finished products as well as end products.
  • Another preferred embodiment comprises a production method in which first a melt is formed and then poured into a semifinished product and wherein the semifinished product is processed further to produce chips and / or powder.
  • the powder can be compacted at high pressure and / or elevated temperature into a semifinished product or end product.
  • Kompaktier compiler here is exemplified by cold isostatic pressing, uniaxial pressing, extrusion, powder forging, hot isostatic pressing, diffusion alloying and sintering. In practice, it is thus possible to select a suitable method without limitation to produce a final product.
  • the powder can also be further processed by thermal spraying.
  • the semifinished product or an end product can be heated to the hardening temperature and then quenched.
  • a quenching process can be selected from the group comprising: quenching in an oil, salt or polymer bath, quenching in a fluidized bed or spray, low and high pressure gas quenching.
  • the semifinished product or an end product may be heated to the hardening temperature and then cooled.
  • the preferred methods for cooling include cooling in slightly agitated air, cooling in still air, furnace cooling under normal atmosphere or inert gas, cooling in a HIP plant.
  • the quenching or cooling serves primarily for the purpose of curing.
  • the cooling can be interrupted by an isothermal holding step (interrupted hardening).
  • tempering may be carried out once or several times in the temperature range of 150-750 ° C. in order to achieve a desired combination of properties of hardness and toughness.
  • the material according to the invention is used as a powder.
  • the material can be converted to a desired semifinished or final shape by a variety of different methods.
  • This also includes the use form as a layer component of composite components, in particular as a matrix powder for hard-metal matrix composites (metal matrix composites).
  • a field of application is the use of the wear-resistant material for the production of solid and hollow rolls.
  • Corresponding rolls can be used, inter alia, for the purpose of comminution, briquetting and compaction of natural, chemical or mineral feedstuffs, in particular cement clinker, ore and rock.
  • corresponding rollers can also be used for the purpose of moving and transporting wear-promoting products, in particular of metallic rolled and forged products.
  • full or segmented rings of the wear-resistant material can be arranged by shrinking on full or hollow rollers. This is a practice proven method of applying the rings.
  • the wear-resistant material can be used for the production of thick-walled or compact components.
  • Corresponding components can be used, inter alia, in the field of wear protection in the extraction and processing and transport of natural, chemical or mineral goods, as well as metallic goods, polymeric goods, and ceramic goods.
  • the powder can be used as a semi-finished product. This makes it possible, inter alia, that a customer transfers the semi-finished product to the desired final shape.
  • Another field of application is the use of the powder in powder form or as semifinished product as a layer material or layer component of composite components.
  • Yet another area of use is the use of the powder as a matrix powder for hard-metal-matrix composite elements.
  • Corresponding hard-metal matrix composite elements are particularly suitable for the production of semi-finished products and composite components.
  • the heat treatment characteristics of hardenable steels and alloys are generally judged by time-temperature conversion charts (ZTU charts).
  • ZTU charts This in FIG. 1 illustrated ZTU graph is used to compare an alloy of the invention with a commercially available powder metallurgical steel having the composition X230CrVMo13-4 (material no. 1.2380). Since the formation of martensite is indispensable for the mentioned group of materials, the cooling from the hardening temperature (in this case 1,050 ° C.) must take place so quickly that the soft structural phases ferrite and perlite are avoided in the coating material. For this reason, the cooling rate of increased attention, which is described in the heat treatment technique by the cooling time of 800 ° C to 500 ° C applies. By dividing the cooling time (in seconds) by 100, the Abkühlparameter ⁇ is formed, which for some cooling curves in illustration 1 is noted as a numerical value.
  • FIG. 1 a shown ZTU diagram for the steel X230CrVMo13-4 it can be seen that in a component only in the areas in which the cooling parameter ⁇ ⁇ 9, the high hardness required for a high wear resistance can be achieved.
  • is larger in the interior of thick-walled components than at the edge, and also depends on the cooling medium, the hardenability of steel is often described using the example of cylindrical body. For this simple geometry, the heat transfer during quenching in various media (air, oil, water) is known, so that ⁇ values can be given for the interior of the cylinder.
  • the mode of action of the alloy according to the invention and in particular the addition of nickel and molybdenum can be determined on the basis of the ZTU diagram in FIG. 1b for an alloy variant PM1 with 12.5% Cr, 3% Ni, 1.5% V, 2% Mo, 2.5% C, 0.2% Ti, balance iron (X250CrNiVMo13-3-2- 2) was determined.
  • the pearlite field has been shifted far to the right by the addition of nickel and molybdenum on the logarithmic time axis and the beginning of the martensitic transformation (martensite start temperature) has been shifted downwards.
  • the addition of nickel and molybdenum, in conjunction with high tempering temperature leads to an increase in retained austenite, as the martensite finish temperature is pushed lower than room temperature.
  • FIG. 1b For such cooling of the alloy PM1, it has a macrohardness between 763 and 814 HV30, compared to the hardness of the conventional powder metallurgy steel of only 345 HV30. Consequently, considerably larger layer or wall thicknesses can also be through-cured in air, without having to resort to brittle quenching agents (Table 1).
  • the alloys according to the invention open up the possibility of even martensitic hardening of thick-walled components in the case of the usually slow cooling of HIP temperature ( ⁇ approx. 130) (cf. FIG. 1b ). By this measure, the process of subsequent expensive vacuum curing can be completely saved. Since the cooling in many HIP systems can also be carried out under pressure, the risk of cracking, which increases with the hard phase content, can additionally be counteracted by isostatic pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Claims (25)

  1. Matériau résistant à l'usure, produit par métallurgie des poudres, comprenant un alliage qui continent : de 1,5 à 5,5 % en poids de carbone de 0,1 à 2,0 % en poids de silicium un maxi de 2,0 % en poids de manganèse de 3,5 à 30,0 % en poids de chrome de 0,3 à 10 % en poids de molybdène de 0 à 10 % en poids de tungstène de 0,1 à 30 % en poids de vanadium de 0 à 12 % en poids de niobium de 0,1 à 12 % en poids de titane de 2,0 à 3,5 % en poids de nickel en option de 1 à 6 % en poids de cobalt en option de 0,3 à 3,5 % en poids d'azote
    un radical de fer et des impuretés dues à la fabrication, la teneur en carbone satisfaisant aux conditions suivantes : C alliage w % = S 1 + S 2 + S 3
    Figure imgb0026
    avec : S 1 = Nb + 2 Ti + V 0 , 9 / a
    Figure imgb0027
    S 2 = Mo + W / 2 + Cr b / 5
    Figure imgb0028
    S 3 = c = T H 900 + 0 , 0025
    Figure imgb0029
    sachant que
    TH est la température de trempe,
    7 < a < 9
    6 < b < 8
    0,3 < c < 0,5
    900°C<TH<1220 °C.
  2. Matériau résistant à l'usure selon la revendication 1, caractérisé en ce que la part en vanadium est inférieure à 11,5 % en poids, de préférence inférieure à 9,5 % en poids, de manière particulièrement préférée, inférieure à 6,0 % en poids.
  3. Matériau résistant à l'usure selon la revendication 1, caractérisé en ce que l'alliage comprend : de 2,0 à 2,5 % en poids de carbone un maxi de 1,0 % en poids de silicium un maxi de 0,6 % en poids de manganèse de 12,0 à 14,0 % en poids de chrome de 1,0 à 2,0 % en poids de molybdène de 1,1 à 4,2 % en poids de vanadium de 2,0 à 3,5 % en poids de nickel
  4. Matériau résistant à l'usure, résistant à la corrosion, fabriqué par métallurgie des poudres comprenant un alliage qui contient : de 1,5 à 5,5 % en poids de carbone de 0,1 à 2,0 % en poids de silicium un maxi de 2,0 % en poids de manganèse de 12,0 à 30,0 % en poids de chrome de 0,3 à 10 % en poids de molybdène de 0 à 10 % en poids de tungstène de 0,1 à 30 % en poids de vanadium de 0 à 12 % en poids de niobium de 0,1 à 12 % en poids de titane de 2,0 à 3,5 % en poids de nickel en option de 1 à 6 % en poids de cobalt en option de 0,3 à 3,5 % en poids d'azote
    un radical de fer et des impuretés dues à la fabrication, la teneur en carbone satisfaisant aux conditions suivantes : C alliage w % = S 1 + S 2 K + S 3
    Figure imgb0030
    avec : S 1 = Nb + 2 Ti + V 0 , 9 / a
    Figure imgb0031
    S 2 K = Mo + W / 2 + Cr b 12 / 5
    Figure imgb0032
    S 3 = c = T H 900 + 0 , 0025
    Figure imgb0033
    sachant que
    TH est la température de trempe,
    7 < a < 9
    6 < b < 8
    0,3 < c < 0,5
    900°C<TH<1220 °C.
  5. Matériau résistant à l'usure selon la revendication 4, caractérisé en ce que la part en vanadium est inférieure à 11,5 % en poids, de préférence inférieure à 9,5 % en poids, de manière particulièrement préférée, inférieure à 6,0 % en poids.
  6. Matériau résistant à l'usure selon la revendication 4, caractérisé en ce que l'alliage comprend : de 2,0 à 2,5 % en poids de carbone un maxi de 1,0 % en poids de silicium un maxi de 0,6 % en poids de manganèse de 12,0 à 14,0 % en poids de chrome de 1,0 à 2,0 % en poids de molybdène de 1,1 à 4,2 % en poids de vanadium de 2,0 à 3,5 % en poids de nickel.
  7. Procédé destiné à fabriquer un matériau résistant à l'usure selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on fabrique d'abord une masse fondue et en ce qu'on transforme la masse fondue à l'aide de l'un des procédés suivants :
    - atomisation de la masse fondue en une poudre,
    - compactage par pulvérisation de la masse fondue.
  8. Procédé destiné à fabriquer un matériau résistant à l'usure selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on fabrique d'abord une masse fondue, on coule la masse fondue en un produit semi-fini et en ce qu'on transforme le produit semi-fini pour créer des copeaux de poudre.
  9. Procédé selon la revendication 7 ou la revendication 8, caractérisé en ce qu'on compacte la poudre en un produit-semi fini ou en un produit final.
  10. Procédé selon la revendication 9, caractérisé en ce que le procédé de compactage est choisi dans le groupe comprenant : la compression isostatique à froid, la compression uni-axiale, le filage à chaud, le forgeage de poudre, la compression isostatique à chaud, l'alliage par diffusion et le frittage.
  11. Procédé selon la revendication 7 ou la revendication 8, caractérisé en ce qu'on transforme la poudre par injection thermique.
  12. Procédé selon l'une quelconque des revendications 9 à 11, caractérisé en ce qu'on réchauffe la produit semi-fini ou un produit final à la température de solidification et on le trempe par la suite.
  13. Procédé selon la revendication 12, caractérisé en ce que pour la trempe, on choisi un procédé dans le groupe comprenant : la trempe dans un bain d'huile, de sel ou de polymère, la trempe dans un lit fluidisé ou dans un brouillard de pulvérisation, la trempe à basse pression et à haute pression.
  14. Procédé selon l'une quelconque des revendications 9 à 11, caractérisé en ce qu'on réchauffe le produit semi-fini ou un produit final à la température de solidification et on le refroidit par la suite.
  15. Procédé selon l'une quelconque des revendications 9 à 14, caractérisé en ce que de la température de solidification, on refroidit le produit semi-fini ou un produit final par l'un des procédés suivants, le refroidissement à de l'air légèrement agité, le refroidissement à de l'air stationnaire, le refroidissement au four sous atmosphère normale ou sous gaz inerte, le refroidissement dans une installation HIP (compression isostatique à chaud).
  16. Procédé selon l'une quelconque des revendications 9 à 15, caractérisé en ce qu'on interrompt un refroidissement continu par maintien isothermique.
  17. Procédé selon l'une quelconque des revendications 9 à 16, caractérisé en ce qu'à la suite du refroidissement à partir de la température de solidification, on procède à un revenu unique ou multiple dans l'ordre de températures de 150 à 750 °C.
  18. Utilisation du matériau résistant à l'usure selon l'une quelconque des revendications 1 à 10 ou du matériau fabriqué d'après le procédé selon les revendications 9 à 17 pour la fabrication de cylindres pleins ou de cylindres creux.
  19. Utilisation du matériau résistant à l'usure selon l'une quelconque des revendications 1 à 10 ou du matériau fabriqué d'après le procédé des revendications 9 à 17 pour la fabrication de bagues pleines ou segmentées que l'on place sur des corps de cylindres pleins ou creux.
  20. Utilisation du matériau résistant à l'usure selon la revendication 18, caractérisée en ce qu'on place les bagues par frettage sur des cylindres pleins ou creux.
  21. Utilisation du matériau résistant à l'usure selon l'une quelconque des revendications 1 à 10 ou du matériau fabriqué d'après le procédé des revendications 9 à 17 pour la fabrication d'éléments de construction à paroi mince ou compacts.
  22. Poudre pour la fabrication d'un matériau résistant à l'usure, comprenant de 1,5 à 5,5 % en poids de carbone de 0,1 à 2,0 % en poids de silicium un maxi de 2,0 % en poids de manganèse de 3,5 à 30,0 % en poids de chrome de 0,3 à 10 % en poids de molybdène de 0 à 10 % en poids de tungstène de 0,1 à 30 % en poids de vanadium de 0 à 12 % en poids de niobium de 0,1 à 12 % en poids de titane de 2,0 à 3,5 % en poids de nickel en option de 1 à 6 % en poids de cobalt en option de 0,3 à 3,5 % en poids d'azote
    un radical de fer et des impuretés dues à la fabrication, la teneur en carbone satisfaisant aux conditions suivantes : C alliage w % = S 1 + S 2 + S 3
    Figure imgb0034
    avec : S 1 = Nb + 2 Ti + V 0 , 9 / a
    Figure imgb0035
    S 2 = Mo + W / 2 + Cr b / 5
    Figure imgb0036
    S 3 = c = T H 900 + 0 , 0025
    Figure imgb0037
    sachant que
    TH est la température de trempe,
    7 < a < 9
    6 < b < 8
    0,3 < c < 0,5
    900°C<TH<1220 °C.
  23. Utilisation de la poudre selon la revendication 22, caractérisée en ce qu'on fabrique le produit semi-fini par compactage par pulvérisation.
  24. Utilisation de la poudre selon la revendication 22 sous la forme de poudre ou sous la forme d'un produit semi-fini en tant que composant de couche d'éléments de construction composites.
  25. Utilisation de la poudre selon la revendication 22 comme poudre de matrice pour des éléments composites en substance dure à matrice métallique.
EP06742765.8A 2005-04-29 2006-05-02 Materiau resistant a l'usure et produit par metallurgie des poudres Active EP1882050B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200632073A SI1882050T1 (sl) 2005-04-29 2006-05-02 S prašno metalurgijo izdelan, proti obrabi odporen material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005020081A DE102005020081A1 (de) 2005-04-29 2005-04-29 Pulvermetallurgisch hergestellter, verschleißbeständiger Werkstoff
PCT/EP2006/004086 WO2006117186A2 (fr) 2005-04-29 2006-05-02 Materiau resistant a l'usure et produit par metallurgie des poudres

Publications (2)

Publication Number Publication Date
EP1882050A2 EP1882050A2 (fr) 2008-01-30
EP1882050B1 true EP1882050B1 (fr) 2016-04-13

Family

ID=36088287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06742765.8A Active EP1882050B1 (fr) 2005-04-29 2006-05-02 Materiau resistant a l'usure et produit par metallurgie des poudres

Country Status (6)

Country Link
US (2) US20080253919A1 (fr)
EP (1) EP1882050B1 (fr)
DE (1) DE102005020081A1 (fr)
DK (1) DK1882050T3 (fr)
SI (1) SI1882050T1 (fr)
WO (2) WO2006117030A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3801958B1 (fr) * 2018-05-28 2023-06-21 Damasteel AB Ébauche pour article à motifs damassés

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0600841L (sv) * 2006-04-13 2007-10-14 Uddeholm Tooling Ab Kallarbetsstål
US9546412B2 (en) 2008-04-08 2017-01-17 Federal-Mogul Corporation Powdered metal alloy composition for wear and temperature resistance applications and method of producing same
US9624568B2 (en) 2008-04-08 2017-04-18 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder
US9162285B2 (en) 2008-04-08 2015-10-20 Federal-Mogul Corporation Powder metal compositions for wear and temperature resistance applications and method of producing same
SE533991C2 (sv) * 2008-11-06 2011-03-22 Uddeholms Ab Förfarande för tillverkning av en kompoundprodukt med ett område med slitstark beläggning, en sådan kompoundprodukt och användningen av ett stålmaterial för åstadkommande av beläggningen
DE102008064190A1 (de) * 2008-12-22 2010-07-01 Corodur Verschleiss-Schutz Gmbh Verfahren zum Herstellen eines Pulvers
AT507215B1 (de) 2009-01-14 2010-03-15 Boehler Edelstahl Gmbh & Co Kg Verschleissbeständiger werkstoff
KR101091839B1 (ko) * 2009-03-10 2011-12-12 캐터필라정밀씰 주식회사 씰 제조용 합금주철, 씰 및 씰의 제조 방법
IT1395649B1 (it) * 2009-07-31 2012-10-16 Avio Spa Procedimento di fabbricazione di componenti ottenuti per sinterizzazione di leghe co-cr-mo aventi migliorata duttilita' alle alte temperature
US9540711B2 (en) * 2011-01-31 2017-01-10 Robin William Sinclair FIFIELD Hardbanding alloy
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
RU2477200C1 (ru) * 2011-07-01 2013-03-10 Государственное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Способ термической обработки спеченных изделий
GB2499837B (en) 2012-03-01 2018-02-21 Phoenix Product Development Ltd Toilet Systems
US20150007704A1 (en) * 2013-07-08 2015-01-08 Branson Ultrasonics Corporation Ultrasonic steel horn for tire cutting and method of manufacturing
DE102014103555A1 (de) * 2014-03-14 2015-09-17 Rwe Power Ag Formzeug aus pulvermetallurgischem Werkstoff
CN103938112B (zh) * 2014-04-10 2016-05-18 铜陵南江鑫钢实业有限公司 一种超高碳钢
CN103993217B (zh) * 2014-04-23 2016-05-18 中建材宁国新马耐磨材料有限公司 大型破碎机锤头的制备方法
CN103981427B (zh) * 2014-05-07 2017-01-18 中建材宁国新马耐磨材料有限公司 一种破碎机锤头及其制备方法
US9284631B2 (en) * 2014-05-16 2016-03-15 Roman Radon Hypereutectic white iron alloys comprising chromium and nitrogen and articles made therefrom
EP2975146A1 (fr) * 2014-07-16 2016-01-20 Uddeholms AB Acier d'outillage pour le travail à froid
US9580777B1 (en) 2016-02-08 2017-02-28 Roman Radon Hypereutectic white iron alloys comprising chromium, boron and nitrogen and articles made therefrom
DE102016122673A1 (de) 2016-11-24 2018-05-24 Saar-Pulvermetall GmbH Eisen-Kohlenstoff-Legierung sowie Verfahren zur Herstellung und Verwendung der Legierung
RU2665643C1 (ru) * 2018-03-02 2018-09-03 Юлия Алексеевна Щепочкина Сплав на основе железа
CN109576604B (zh) * 2019-01-30 2021-04-27 沈阳大陆激光工程技术有限公司 一种用于激光制造的抗冲击耐磨材料
CN113862575A (zh) * 2021-09-29 2021-12-31 重庆长安汽车股份有限公司 一种铌钒复合微合金化热成形钢及其生产方法
CN114346238B (zh) * 2022-01-14 2022-08-26 中国科学院兰州化学物理研究所 一种超高温自润滑抗磨复合材料及其制备方法和应用
CN115233220A (zh) * 2022-08-04 2022-10-25 沈阳大陆激光先进制造技术创新有限公司 一种用于激光熔覆碳、硼共同强化的耐磨材料

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411767B2 (fr) 1973-01-24 1979-05-17
JPS52141406A (en) * 1976-05-21 1977-11-25 Kobe Steel Ltd Tool steel containing nitrogen made by powder metallurgy
US4249945A (en) * 1978-09-20 1981-02-10 Crucible Inc. Powder-metallurgy steel article with high vanadium-carbide content
DE3508982A1 (de) * 1985-03-13 1986-09-18 Seilstorfer GmbH & Co Metallurgische Verfahrenstechnik KG, 8092 Haag Stahlmatrix-hartstoff-verbundwerkstoff
JP2777716B2 (ja) * 1988-04-26 1998-07-23 株式会社小松製作所 焼結合金製フローティングシール及びその製造方法
JPH03257144A (ja) 1990-03-07 1991-11-15 Mitsubishi Materials Corp 耐焼付性および耐摩耗性のすぐれたF↓e基焼結合金
US5238482A (en) * 1991-05-22 1993-08-24 Crucible Materials Corporation Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same
US5458703A (en) * 1991-06-22 1995-10-17 Nippon Koshuha Steel Co., Ltd. Tool steel production method
DE4202828C2 (de) 1992-01-31 1994-11-10 Werner Dr Ing Theisen Verwendung einer verschleißbeständigen Legierung
JPH07166300A (ja) * 1993-12-13 1995-06-27 Kubota Corp 高速度鋼系粉末合金
GB9404786D0 (en) 1994-03-11 1994-04-27 Davy Roll Company The Limited Rolling mill rolls
US5900560A (en) * 1995-11-08 1999-05-04 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and method for producing the same
JP3447031B2 (ja) * 1996-01-19 2003-09-16 日立粉末冶金株式会社 耐摩耗性焼結合金およびその製造方法
FI109555B (fi) * 1998-11-16 2002-08-30 Trueflaw Oy Menetelmä vikojen ja jäännösjännitysten tuottamiseksi
AT410448B (de) * 2001-04-11 2003-04-25 Boehler Edelstahl Kaltarbeitsstahllegierung zur pulvermetallurgischen herstellung von teilen
US6916444B1 (en) * 2002-02-12 2005-07-12 Alloy Technology Solutions, Inc. Wear resistant alloy containing residual austenite for valve seat insert
JP2004238721A (ja) 2003-02-10 2004-08-26 Sanyo Special Steel Co Ltd 耐食性に優れる高剛性鋼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3801958B1 (fr) * 2018-05-28 2023-06-21 Damasteel AB Ébauche pour article à motifs damassés

Also Published As

Publication number Publication date
EP1882050A2 (fr) 2008-01-30
US9410230B2 (en) 2016-08-09
WO2006117186A2 (fr) 2006-11-09
WO2006117186A3 (fr) 2007-02-01
US20130084462A1 (en) 2013-04-04
DK1882050T3 (en) 2016-08-01
DE102005020081A1 (de) 2006-11-09
SI1882050T1 (sl) 2016-08-31
WO2006117030A1 (fr) 2006-11-09
US20080253919A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
EP1882050B1 (fr) Materiau resistant a l&#39;usure et produit par metallurgie des poudres
EP3228724B1 (fr) Acier à outil, en particulier pour travail à chaud et objet en acier
AT507215B1 (de) Verschleissbeständiger werkstoff
DE69818138T2 (de) Kaltarbeitswerkzeugstahlteilchen mit hoher Schlagfestigkeit aus Metallpulver und Verfahren zu seiner Herstellung
DE1533275B1 (de) Verfahren zur pulvermetallurgischen Herstellung von Hartlegierungen
DE102010050499B3 (de) Verwendung eines verschleißfesten Stahlbauteils
DE1298293B (de) Hochverschleissfeste, bearbeitbare und haertbare Sinterstahllegierung und Verfahren zu deren Herstellung
EP3323902B1 (fr) Matériau en acier contenant des particules dures, produit de la métallurgie des poudres, procédé de production d&#39;un composant à partir d&#39;un tel matériau d&#39;acier et composant ainsi fabriqué
DE60019758T2 (de) Pulvermetallurgisch hergestellter schnellarbeitsstahl
EP1274872B1 (fr) Procede de production d&#39;un acier allie a l&#39;azote, compacte par pulverisation
DE102011088234A1 (de) Bauteil
DE60002669T2 (de) Hochfester pulvermetallurgischer werkzeugstahl und daraus hergestellter gegenstand
WO2021032893A1 (fr) Acier à outils pour applications de travail à froid et à grande vitesse
EP3323903B1 (fr) Matériau en acier fabriqué par métallurgie des poudres, procédé de production d&#39;un composant à partir d&#39;un tel matériau en acier et composant fabriqué en matériau en acier
DE102010010321A1 (de) Heißisostatisch gepresster Verbundkörper, Verfahren zu seiner Herstellung sowie dessen Verwendung
DE102018220222A1 (de) Verfahren zur Herstellung eines Werkstoffverbundes, Werkstoffverbund und seine Verwendung
DE60204449T2 (de) Stahlgegenstand
EP4000762A1 (fr) Poudre d&#39;acier, utilisation d&#39;un acier pour produire une poudre d&#39;acier et procédé de fabrication d&#39;un composant à partir d&#39;une poudre d&#39;acier
AT407646B (de) Bauteil aus einem verschleissfesten, schmelzmetallurgisch hergestellten werkstoff
DE102011079955A1 (de) Stahl, Bauteil und Verfahren zum Herstellen von Stahl
EP2453027A1 (fr) Produit déformé à chaud et son procédé de fabrication
WO1998017835A1 (fr) ACIER CONTENANT DU Ni ET PROCEDE POUR LA FABRICATION DE PRODUITS LAMINES ET FORGES AVEC CET ACIER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071010

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THEISEN, WERNER

Inventor name: PACKEISEN, ANDREAS

Inventor name: BERNS, HANS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090205

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOEPPERN ENTWICKLUNGS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOEPPERN ENTWICKLUNGS-GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 790237

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014878

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014878

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060502

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KOEPPERN ENTWICKLUNGS-GMBH, DE

Free format text: FORMER OWNER: KOEPPERN ENTWICKLUNGS-GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 18

Ref country code: IT

Payment date: 20230526

Year of fee payment: 18

Ref country code: FR

Payment date: 20230525

Year of fee payment: 18

Ref country code: DK

Payment date: 20230524

Year of fee payment: 18

Ref country code: DE

Payment date: 20230414

Year of fee payment: 18

Ref country code: CH

Payment date: 20230602

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230420

Year of fee payment: 18

Ref country code: SE

Payment date: 20230519

Year of fee payment: 18

Ref country code: FI

Payment date: 20230523

Year of fee payment: 18

Ref country code: AT

Payment date: 20230522

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230519

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014878

Country of ref document: DE

Owner name: KOEPPERN ENTWICKLUNGS-GMBH, DE

Free format text: FORMER OWNER: KOEPPERN ENTWICKLUNGS-GMBH, 45529 HATTINGEN, DE