EP1854213A2 - Electronic module - Google Patents

Electronic module

Info

Publication number
EP1854213A2
EP1854213A2 EP06707102A EP06707102A EP1854213A2 EP 1854213 A2 EP1854213 A2 EP 1854213A2 EP 06707102 A EP06707102 A EP 06707102A EP 06707102 A EP06707102 A EP 06707102A EP 1854213 A2 EP1854213 A2 EP 1854213A2
Authority
EP
European Patent Office
Prior art keywords
organic
electronic
circuit
clock
electronic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP06707102A
Other languages
German (de)
French (fr)
Inventor
Andreas Ullmann
Alexander Knobloch
Merlin Welker
Walter Fix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
PolyIC GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PolyIC GmbH and Co KG filed Critical PolyIC GmbH and Co KG
Publication of EP1854213A2 publication Critical patent/EP1854213A2/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/354Astable circuits

Definitions

  • RFID Radio Frequency Identification
  • RFID transponders are increasingly being used to provide goods, articles or security products with electronically readable information. They are thus used, for example, as an electronic barcode for consumer goods, as a luggage tag for identifying luggage, or as a security element incorporated in the cover of a passport, which stores authentication information.
  • RFID transponders usually consist of two components, an antenna and a silicon chip.
  • the RF carrier signal transmitted by the base station is coupled into the antenna resonant circuit of the RFID transponder. Additional information is modulated by the silicon chip on the signal fed back to the base station.
  • the modulation is controlled by an implemented in digital circuit technology on the silicon chip I D-code generator. In this case, the circuit clock for the electronic circuits on the silicon chip is derived directly from the frequency of the radio signal received by the antenna.
  • the digital circuits of the silicon chip are thus operated synchronously to the radio carrier frequency.
  • WO 99/30432 proposes to use in an RFID transponder an integrated circuit constructed essentially of organic material, which performs the function of an I D code generator.
  • I D code generator For carrier frequencies of greater than 10 MHz, in particular in the 13.56 MHz range which is particularly interesting for RFID transponders and in the UHF range beyond 900 MHz, it is currently not possible to use organic circuits of RFID transponders, as is the case with silicon RFID tags.
  • Transponder usual to operate synchronously to the radio carrier frequency. Due to the limited carrier mobility and the resulting switching times, organic logic circuits are currently too slow to operate at such high switching frequencies in synchronism with the carrier frequency.
  • clock generators which provide a clock signal for the operation of logic circuits, in particular of processors.
  • Such clock generators usually have a resonant circuit from which the clock signal is derived.
  • the invention is based on the object of specifying an improved electronic assembly with organic components.
  • the object of the invention is achieved by an electronic assembly with organic components, in particular by an RFID transponder having a clock generator and a first electronic circuit, wherein the clock generator n serially connected in series organic switching elements, each of organic components, in particular organic Field effect transistors are constructed, wherein the output of the nth organic switching element of the clock generator with the input of the first organic
  • Switching element of the clock generator is connected, and wherein the outputs of two or more of the organic switching elements of the clock generator to respective inputs of the first electronic circuit for tapping two or more clock signals are connected, so that at the output of a first of the switching elements, a first clock signal for the first electronic circuit is tapped and at the output of a second, different from the first switching element switching element, a second, compared to the first clock signal phase-shifted clock signal for the first electronic circuit is tapped.
  • periodic output signals are optimally adapted to the switching speed of organic circuits and can therefore be optimally used as clock signals, for example, for the organic circuit of an RFID transponder.
  • the frequency and phase of the clock signals is essentially only dependent on the structure of the clock generator assembly described above (length of the chain, component geometry, etc.), but not on the carrier frequency of the radio link of the RFID transponder.
  • the first electronic circuit is preferably a logic circuit constructed of organic components.
  • the Output signals of the clock generator optimally adapted to the switching speed of organic circuits, so that the two or more derived from the clock generator clock signals can be used to implement a variety of functions that would otherwise be only a considerably higher component cost or not feasible.
  • the first electronic circuit here has one or more logic gates constructed from organic components, which logically link the supplied two or more clock signals and thereby generate one or more output signals for a second electronic circuit, which likewise preferably has one is constructed of organic components logic circuit.
  • a second electronic circuit which likewise preferably has one is constructed of organic components logic circuit.
  • two clock signals are tapped to switching elements of the clock generator, which are each other INT (n / 2) switching elements away from each other, wherein n is preferably even to choose. In this way, two clock signals can be generated that are 90 ° out of phase with each other.
  • second clock signals are linked by a NOR or an AND gate to generate an asymmetrical pulse-shaped output signal.
  • the pulse width of the pulses of the output signal are in this case determined by the number of arranged between the tapping of the clock signals organic switching elements, so that the relative position of the two tapping points to each other is chosen so that there is the desired pulse width of the pulses of the output signal.
  • the asymmetric signals generated in this way make it easier to distinguish the useful signal from the unavoidable noise in a radio transmission, so that the use of a clock signal produced in this way results in advantages in the operation of an RFID transponder.
  • the outputs of three or more of the organic switching elements of the clock generator are connected to respective inputs of the first electronic circuit for tapping off three or more clock signals phase-shifted with respect to one another.
  • the first electronic circuit comprises two or more organic gates constructed of logic gates which combine the three or more clock signals to produce two or more output signals having non-overlapping pulses. These output signals can be used, for example, for addressing memory locations. The addressing signals can be generated here with very low component cost.
  • the three or more clock signals phase-shifted with respect to one another are thus linked, for example, in pairs by a logic gate, and the number of electronic switching elements arranged between the respective tapping points of the clock signals are selected such that the two or more output signals have non-overlapping pulses.
  • the first electronic circuit is constructed as a two-stage or multi-stage logic circuit, which can be implemented with very low component complexity very complex waveforms, which are used for example as I D information of an RFID transponder can.
  • the electronic assembly according to the invention can be used to perform a variety of functions and is not limited to the application in an RFID transponder. Particular advantages arise here, if the electronic assembly is made in the form of a flexible film element that serves as a security element for securing documents of value, such as banknotes or passports or the security of goods.
  • Fig. 1 shows a functional representation of an electronic assembly according to the invention.
  • Fig. 2 shows a functional representation of an electronic assembly according to the invention for a further embodiment of the invention.
  • FIG. 3 shows a circuit diagram of a clock generator module for an electronic module according to FIG. 1 or FIG. 2.
  • FIG. 4 shows a circuit diagram of a clock generator module for an electronic module according to FIG. 1 or FIG. 2.
  • FIG. 1 shows an electronic assembly 10, which is a flexible, multilayer film body with one or more electrical functional layers.
  • the electrical functional layers of the film body consist of
  • the multilayer film body optionally also comprises one or more carrier layers, protective layers, decorative layers, adhesion-promoting layers or adhesive layers.
  • the electrically conductive functional layers preferably consist of a conductive, structured metallization, preferably of gold or silver. However, it can also be provided that these
  • Functional layers are formed of an inorganic electrically conductive material, for example, indium-tin oxide or a conductive polymer, for example of polyaniline or polypyrene.
  • the organic semiconducting functional layers consist, for example, of conjugated polymers, such as polythiophenes, polythlenylenevinylenenes or polyflorene derivatives, which are applied as a solution by spin-coating, raking or printing.
  • organic semiconductor layer also suitable as the organic semiconductor layer are so-called "small molecules", ie oligomers such as sexithiophene or pentacene, which are vapor-deposited by a vacuum technique.
  • These organic layers are preferably applied in a patterned pattern by a printing process (gravure printing, screen printing, pad printing)
  • the organic materials provided for the layers are in the form of soluble polymers, the term “polymer” also including oligomers and "small molecules” as already described above.
  • the electrical functional layers of the film body are in this case designed so that they realize the clarify the following functions.
  • the electronic assembly 10 is used as an RFID transponder.
  • the electronic assembly 10 has an antenna resonant circuit 11, a rectifier 12, a modulator 13, an electronic circuit 4 and a clock generator 2 for this purpose.
  • the rectifier 12 provides the supply voltage for the modulator 13, the electronic circuit 4 and the clock generator 2.
  • the clock generator 2 provides the switching clock for the electronic circuit 4 and supplies the electronic circuit 4 further to a plurality of clock signals 31 to 35, which are out of phase with each other.
  • the electronic circuit generates the control signal for the modulator 13 and provides, for example, the function of an ID code generator or a control module, which exchanges authorization or identification information by controlling the modulator 13 via the air interface with a corresponding base station via a specific communication protocol.
  • the clock generator 2 consists of an annular arrangement of similar organic switching elements 21, which are each constructed of organic components. As shown in FIG. 2, the output of one of the organic switching elements 21 is connected to the input of the subsequent organic switching element 21 and the input of the organic switching element 21 is connected to the output of the preceding organic switching element 21.
  • the organic switching elements 21 are preferably in each case an inverter constructed from organic components. Examples of the circuitry realization of such an annular arrangement of uniform organic switching elements are shown in FIGS. 3 and 4.
  • Fig. 4 illustrates an annular arrangement of five inverter circuits, each consisting of a resistor 91 and an organic field effect transistor 92 are constructed.
  • the circuit has a connection 94 for the supply voltage and a clock connection 93.
  • FIG. 3 shows an annular arrangement of series-connected organic switching elements, each formed by four organic field-effect transistors 81 and 82.
  • the circuit according to FIG. 3 has a terminal 83 for a positive operating voltage, a terminal 85 for a negative operating voltage, a ground terminal 84 and a clock output with the terminals 87 and 86.
  • field-effect transistors 81 are used and 82 are used, which have different conductive current channels.
  • Switchover process is done by applying a negative gate voltage to the field effect transistor with the less conductive current channel and simultaneous Applying a positive gate voltage to the organic field effect transistor with the better conductive current channel.
  • the clock frequency of a clock signal tapped at the clock generator 2 according to FIG. 1 is thus determined solely by the number of organic switching elements 21 as well as by the switching speed of the organic components 21, which essentially consist of the circuit-type design (see FIG. 3, FIG ) and the structure of the organic field-effect transistors used for this purpose.
  • the clock signals 31 to 35 which are supplied to the respective assemblies 41 to 45 of the electronic circuit 4, are tapped here at the outputs of different organic switching elements 21.
  • the clock signals 31 to 35 are tapped at the tapping points 22 to 26.
  • the clock signals 31 to 35 thus have the same clock frequency but have a different phase position which is determined by the number of organic switching elements 21 arranged between the respective tap points.
  • Fig. 2 shows a clock generator 5 and an electronic circuit 6.
  • the clock generator 5 is composed of n organic switching elements 51 which, as indicated in Fig. 2, are linked together in a ring shape.
  • the organic switching elements can, as already explained with reference to FIGS. 1, 3 and 4, be constructed.
  • a first clock signal 71 is tapped off and supplied to the electronic circuit 6.
  • a second clock signal 72 is tapped off and supplied to the electronic circuit 6.
  • the clock signals 71 and 72 are periodic clock signals which are out of phase with each other. 2 shows a representation of the time profile of the signal level V of the respective clock signal, which is plotted against time t.
  • the clock signals 71 and 72 are thus periodic, rectangular, binary signals, which are phase-shifted by 90 ° to each other.
  • the electronic circuit 6 is a logic gate, for example an AND or NOR gate.
  • a pulse-shaped output signal 73 is generated by the electronic circuit, whose pulse width on the one hand of the type of logical operation (AND, NOR one hand, OR, NAND on the other hand) and the spacing of Abgriffsis 52 and 53rd is determined.
  • the phase position of this pulse signal is determined by the position of the tapping points 52 and 53 and by the type of connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

The invention relates to an electronic module (10) with organic components. The electronic module comprises a clock generator (2) with n serially-wired organic circuit elements (21) each made from organic components. The output of the nth organic circuit element of the clock generator (2) is connected to the input of the first organic circuit element of the clock generator (2). The outputs of two or more organic circuit elements (21) of the clock generator are connected to the inputs of a first electronic circuit (4) of the electronic module (10), for tapping of two or more clock signals (31 to 35), such that, at the output of a first circuit element (21), a first clock signal is tapped for the first electronic circuit (4) and at the output of the second circuit element different to the first circuit element (21), a second clock signal is tapped for the first electronic circuit (4), which is phase-shifted relative to the first clock signal.

Description

Elektronikbaugruppe electronics assembly
Die Erfindung betrifft eine Elektronikbaugruppe mit organischen Bauelementen, insbesondere einen RFID-Transponder (RFID = Radio Frequency Identification).The invention relates to an electronic assembly with organic components, in particular an RFID transponder (RFID = Radio Frequency Identification).
RFID-Transponder finden zunehmend Anwendung, um Waren, Artikel oder Sicherheits-Produkte mit elektronisch auslesbaren Informationen zu versehen. Sie finden so beispielsweise Anwendung als elektronischer Strichcode für Konsumgüter, als Kofferanhänger zur Identifikation von Gepäck, oder als in den Einband eines Reisepasses eingearbeitetes Sicherheitselement, das Authentifizierungsinformationen speichert.RFID transponders are increasingly being used to provide goods, articles or security products with electronically readable information. They are thus used, for example, as an electronic barcode for consumer goods, as a luggage tag for identifying luggage, or as a security element incorporated in the cover of a passport, which stores authentication information.
RFID-Transponder bestehen üblicherweise aus zwei Komponenten, einer Antenne und einem Silizium-Chip. Das von der Basisstation abgesendete RF-Trägersignal wird in den Antennenschwingkreis des RFID-Transponders eingekoppelt. Von dem Silizium-Chip wird auf das zur Basisstation rückgekoppelten Signal eine zusätzliche Information aufmoduliert. Die Modulation wird hierbei von einem in digitaler Schaltungstechnik auf dem Silizium-Chip realisierten I D-Code-Generator gesteuert. Der Schaltungstakt für die elektronischen Schaltungen auf den Silizium-Chip wird hierbei direkt aus der Frequenz des von der Antenne empfangenen Funksignals abgeleitet.RFID transponders usually consist of two components, an antenna and a silicon chip. The RF carrier signal transmitted by the base station is coupled into the antenna resonant circuit of the RFID transponder. Additional information is modulated by the silicon chip on the signal fed back to the base station. The modulation is controlled by an implemented in digital circuit technology on the silicon chip I D-code generator. In this case, the circuit clock for the electronic circuits on the silicon chip is derived directly from the frequency of the radio signal received by the antenna.
Die digitalen Schaltungen des Silizium-Chips werden damit synchron zur Funkträgerfrequenz betrieben.The digital circuits of the silicon chip are thus operated synchronously to the radio carrier frequency.
Um die Herstellungskosten für RFID-Transponder senken zu können, wurde vorgeschlagen, organische integrierte Schaltkreise auf der Basis von organischen Feldeffekt-Transistoren in RFID-Transpondern zu verwenden. So schlägt beispielsweise WO 99/ 304 32 vor, in einem RFID-Transponder eine integrierte, im Wesentlichen aus organischem Material aufgebaute Schaltung zu verwenden, die die Funktion eines I D-Code-Generators erbringt. Für Trägerfrequenzen von größer als 10 MHz, insbesondere in dem für RFID- Transponder besonders interessanten 13,56 MHz-Bereich und im UHF-Bereich jenseits 900 MHz ist es derzeit nicht möglich, organische Schaltungen von RFID- Transponder, wie bei Silizium-RFID-Transponder üblich, synchron zur Funkträgerfrequenz zu betreiben. Aufgrund der beschränkten Ladungsträgerbeweglichkeit und den daraus resultierenden Schaltzeiten sind organische Logik-Schaltungen derzeit zu langsam, um mit solch hohen Schaltfrequenzen synchron zur Trägerfrequenz zu arbeiten.In order to reduce the manufacturing costs for RFID transponders, it has been proposed to use organic integrated circuits based on organic field-effect transistors in RFID transponders. Thus, for example, WO 99/30432 proposes to use in an RFID transponder an integrated circuit constructed essentially of organic material, which performs the function of an I D code generator. For carrier frequencies of greater than 10 MHz, in particular in the 13.56 MHz range which is particularly interesting for RFID transponders and in the UHF range beyond 900 MHz, it is currently not possible to use organic circuits of RFID transponders, as is the case with silicon RFID tags. Transponder usual to operate synchronously to the radio carrier frequency. Due to the limited carrier mobility and the resulting switching times, organic logic circuits are currently too slow to operate at such high switching frequencies in synchronism with the carrier frequency.
Weiter sind eine Vielzahl von Taktgeneratoren bekannt, die ein Taktsignal für den Betrieb von Logik-Schaltungen, insbesondere von Prozessoren, liefern. Derartige Taktgeneratoren weisen üblicherweise einen Schwingkreis auf, aus dem das Taktsignal abgeleitet wird.Further, a variety of clock generators are known, which provide a clock signal for the operation of logic circuits, in particular of processors. Such clock generators usually have a resonant circuit from which the clock signal is derived.
Der Erfindung liegt nun die Aufgabe zugrunde, eine verbesserte Elektronikbaugruppe mit organischen Bauelementen anzugeben.The invention is based on the object of specifying an improved electronic assembly with organic components.
Die Aufgabe der Erfindung wird von einer Elektronikbaugruppe mit organischen Bauelementen, insbesondere von einem RFID-Transponder gelöst, die einen Taktgenerator und eine erste elektronische Schaltung aufweist, wobei der Taktgenerator n seriell hintereinander geschaltete organische Schaltelemente aufweist, die jeweils aus organischen Bauelementen, insbesondere aus organischen Feldeffekt-Transistoren, aufgebaut sind, wobei der Ausgang des n-ten organischen Schaltelements des Taktgenerators mit dem Eingang des ersten organischenThe object of the invention is achieved by an electronic assembly with organic components, in particular by an RFID transponder having a clock generator and a first electronic circuit, wherein the clock generator n serially connected in series organic switching elements, each of organic components, in particular organic Field effect transistors are constructed, wherein the output of the nth organic switching element of the clock generator with the input of the first organic
Schaltelements des Taktgenerators verbunden ist, und wobei die Ausgänge von zwei oder mehr der organischen Schaltelemente des Taktgenerators mit jeweiligen Eingängen der ersten elektronischen Schaltung zum Abgriff von zwei oder mehr Taktsignalen verbunden sind, so dass an dem Ausgang eines ersten der Schaltelemente ein erstes Taktsignal für die erste elektronische Schaltung abgegriffen wird und am Ausgang eines zweiten, sich vom ersten Schaltelement unterscheidenden Schaltelements ein zweites, gegenüber dem ersten Taktsignal phasenverschobenes Taktsignal für die erste elektronische Schaltung abgegriffen wird.Switching element of the clock generator is connected, and wherein the outputs of two or more of the organic switching elements of the clock generator to respective inputs of the first electronic circuit for tapping two or more clock signals are connected, so that at the output of a first of the switching elements, a first clock signal for the first electronic circuit is tapped and at the output of a second, different from the first switching element switching element, a second, compared to the first clock signal phase-shifted clock signal for the first electronic circuit is tapped.
Als Taktgenerator wird so eine Baugruppe aus organischen Bauelementen verwendet, die ein periodisch umlaufendes Signal erzeugt. An zwei oder mehr Punkten der Kette werden Ausgangssignale für die erste elektronische Schaltung abgegriffen, die aufgrund ihrer Eigenschaften (Phasenversatz) erlauben, den Bauelementeaufwand für die Implementierung der Funktion der ersten Schaltung zu reduzieren oder mit geringem Bauelementeaufwand komplexere Datensignale zu erzeugen, die ansonsten nur mittels komplexerer Logik-Baugruppen, wie Zähler oder Decoderschaltungen, generierbar wären.As a clock generator so an assembly of organic components is used, which generates a periodically circulating signal. At two or more points of the chain, output signals for the first electronic circuit are tapped, which, due to their properties (phase offset), allow to reduce the component cost for implementing the function of the first circuit or to generate complex data signals with little component expenditure, which would otherwise only be achieved by means of more complex logic modules, such as counters or decoder circuits could be generated.
Besondere Vorteile ergeben sich beim Einsatz der Erfindung im Bereich der RFID- Transponder. Innerhalb der organischen Schaltung des RFID-Transponders wird mittels des Taktgenerators ein eigener, von der Funk-Trägerfrequenz unabhängiger Schaltungstakt erzeugt. Die organische Schaltung des RFID-Transponders wird dann mit diesem eigens dafür erzeugten Takt asynchron zur Trägerfrequenz der Funkstrecke betrieben. Das Ausgangssignal der Schaltung wird dann zur Modulation des Funksignals verwendet. Dies ermöglicht die zur Trägerfrequenz vollständig asynchrone Taktung des organischen Schaltungsteils des RFID-Transponders.Particular advantages arise when using the invention in the field of RFID transponder. Within the organic circuit of the RFID transponder, a separate, independent of the radio carrier frequency circuit clock is generated by the clock generator. The organic circuit of the RFID transponder is then operated with this specially generated clock asynchronous to the carrier frequency of the radio link. The output of the circuit is then used to modulate the radio signal. This allows the carrier frequency completely asynchronous clocking of the organic circuit part of the RFID transponder.
Das in dieser Anordnung entstehenden periodischen Ausgangssignale sind optimal an die Schaltgeschwindigkeit organischer Schaltungen angepasst und können deshalb optimal als Taktsignale, beispielsweise für die organische Schaltung eines RFID-Transponders verwendet werden. Die Frequenz und Phasenlagen der Taktsignale ist dabei im Wesentlichen nur vom Aufbau der oben beschriebenen Taktgeneratorbaugruppe (Länge der Kette, Bauteilgeometrie, etc.) abhängig, nicht jedoch von der Trägerfrequenz der Funkstrecke des RFID-Transponders.The resulting in this arrangement periodic output signals are optimally adapted to the switching speed of organic circuits and can therefore be optimally used as clock signals, for example, for the organic circuit of an RFID transponder. The frequency and phase of the clock signals is essentially only dependent on the structure of the clock generator assembly described above (length of the chain, component geometry, etc.), but not on the carrier frequency of the radio link of the RFID transponder.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen bezeichnet.Advantageous developments of the invention are designated in the subclaims.
Die erste elektronische Schaltung ist vorzugsweise eine aus organischen Bauelementen aufgebaute Logik-Schaltung. Wie bereits oben ausgeführt, sind die Ausgangssignale des Taktgenerators optimal an die Schaltgeschwindigkeit organischer Schaltungen angepasst, so dass die zwei oder mehr aus dem Taktgenerator abgeleiteten Taktsignale zur Realisierung einer Vielzahl von Funktionen eingesetzt werden können, die ansonsten nur mit erheblich höherem Bauelementaufwand oder gar nicht realisierbar wären.The first electronic circuit is preferably a logic circuit constructed of organic components. As already stated above, the Output signals of the clock generator optimally adapted to the switching speed of organic circuits, so that the two or more derived from the clock generator clock signals can be used to implement a variety of functions that would otherwise be only a considerably higher component cost or not feasible.
Gemäß einem bevorzugten Ausführungsbeispiel der Erfindung weist die erste elektronische Schaltung hierbei ein oder mehrere aus organischen Bauelementen aufgebaute Logik-Gatter auf, die die zugeführten zwei oder mehr Taktsignale logisch verknüpfen und hierdurch ein oder mehrere Ausgangssignale für eine zweite elektronische Schaltung generieren, die ebenfalls bevorzugt eine aus organischen Bauelementen aufgebaute Logik-Schaltung ist. Auf diese Weise können durch einfache Schaltungen mit nur wenigen logischen Gattern komplexere Signale, beispielsweise asymmetrische Signale, gewonnen werden, die ansonsten nur durch aufwendige Schaltungen oder - aufgrund der beschränktenIn accordance with a preferred embodiment of the invention, the first electronic circuit here has one or more logic gates constructed from organic components, which logically link the supplied two or more clock signals and thereby generate one or more output signals for a second electronic circuit, which likewise preferably has one is constructed of organic components logic circuit. In this way, by simple circuits with only a few logic gates more complex signals, such as asymmetric signals can be obtained, otherwise only by consuming circuits or - due to the limited
Ladungsträgerbeweglichkeit und daraus resultierenden Schaltzeiten von organischen Bauelementen - gar nicht in organischer Schaltungstechnologie generiert werden könnten. So ist es beispielsweise möglich, auf diese Weise Datensignale oder Adressierungssignale für organische Logik-Schaltungen mit einem sehr hohen Schaltungstakt und sehr geringer Verzögerung zu generieren, die auf andere Weise zumindestens nicht mit einem derart hohen Schaltungstakt und/oder Verzögerung mit organischen Bauelementen generiert werden könnten. Die Erfindung kann demnach auch dazu eingesetzt werden, um die Informationsverarbeitung durch organische digitale Schaltungen zu verbessern und zu beschleunigen.Charge carrier mobility and resulting switching times of organic devices - could not be generated in organic circuit technology. Thus, for example, it is possible to generate in this way data signals or addressing signals for organic logic circuits with a very high switching clock and very little delay, which could otherwise be generated at least not with such a high switching cycle and / or delay with organic components , The invention can therefore also be used to improve and accelerate the information processing by organic digital circuits.
Bevorzugt werden zwei Taktsignale an Schaltelementen des Taktgenerators abgegriffen, die voneinander INT (n/2) Schaltelemente voneinander entfernt sind, wobei n bevorzugt geradzahlig zu wählen ist. Auf diese Weise lassen sich zwei Taktsignale generieren, die um 90° phasenverschoben zueinander sind.Preferably, two clock signals are tapped to switching elements of the clock generator, which are each other INT (n / 2) switching elements away from each other, wherein n is preferably even to choose. In this way, two clock signals can be generated that are 90 ° out of phase with each other.
Gemäß eines bevorzugten Ausführungsbeispiels der Erfindung werden in der ersten elektronischen Schaltung zweite Taktsignale durch ein NOR- oder ein UND-Gatter zur Generierung eines asymmetrischen impulsförmigen Ausgangssignals verknüpft. Die Impulsbreite der Impulse des Ausgangssignals sind hierbei durch die Anzahl der zwischen den Abgriffpunkten der Taktsignale angeordneten organischen Schaltelemente bestimmt, so dass die relative Lage der beiden Abgriffspunkte zueinander so gewählt wird, dass sich die gewünschte Impulsbreite der Impulse des Ausgangssignals ergibt. Die so generierten asymmetrischen Signale ermöglichen die leichtere Unterscheidung des Nutzsignals gegenüber dem unvermeidlichen Rauschen bei einer Funkübertragung, so dass sich durch die Verwendung eines derart erzeugten Taktsignals Vorteile im Betrieb eines RFID-Transponders ergeben.According to a preferred embodiment of the invention, in the first electronic circuit, second clock signals are linked by a NOR or an AND gate to generate an asymmetrical pulse-shaped output signal. The pulse width of the pulses of the output signal are in this case determined by the number of arranged between the tapping of the clock signals organic switching elements, so that the relative position of the two tapping points to each other is chosen so that there is the desired pulse width of the pulses of the output signal. The asymmetric signals generated in this way make it easier to distinguish the useful signal from the unavoidable noise in a radio transmission, so that the use of a clock signal produced in this way results in advantages in the operation of an RFID transponder.
Gemäß eines weiteren bevorzugten Ausführungsbeispiels der Erfindung sind die Ausgänge von drei oder mehr der organischen Schaltelemente des Taktgenerators mit jeweiligen Eingängen der ersten elektronischen Schaltung zum Abgriff von drei oder mehr zueinander phasenverschobenen Taktsignalen verbunden. Die erste elektronische Schaltung weist zwei oder mehr aus organischen Bauelementen aufgebaute Logik-Gatter auf, die die drei oder mehr Taktsignale zur Erzeugung von zwei oder mehr Ausgangssignalen verknüpfen, die sich nicht überlappende Impulse aufweisen. Diese Ausgangssignale können zum Beispiel zur Adressierung von Speicherstellen verwendet werden. Die Adressierungs-Signale können hierbei mit sehr geringen Bauelementeaufwand generiert werden. Die drei oder mehr zueinander phasenverschobenen Taktsignale werden so beispielsweise paarweise durch ein Logik-Gatter verknüpft und die Anzahl der zwischen den jeweiligen Abgriffspunkten der Taktsignale angeordneten elektronischen Schaltelemente werden so gewählt, dass die zwei oder mehr Ausgangssignale sich nicht überlappende Impulse aufweisen.According to another preferred embodiment of the invention, the outputs of three or more of the organic switching elements of the clock generator are connected to respective inputs of the first electronic circuit for tapping off three or more clock signals phase-shifted with respect to one another. The first electronic circuit comprises two or more organic gates constructed of logic gates which combine the three or more clock signals to produce two or more output signals having non-overlapping pulses. These output signals can be used, for example, for addressing memory locations. The addressing signals can be generated here with very low component cost. The three or more clock signals phase-shifted with respect to one another are thus linked, for example, in pairs by a logic gate, and the number of electronic switching elements arranged between the respective tapping points of the clock signals are selected such that the two or more output signals have non-overlapping pulses.
Zur Generierung von komplexeren Adressierungs- oder Datensignal ist die erste elektronische Schaltung als zwei- oder mehrstufige Logik-Schaltung aufgebaut, wobei sich auch hier mit sehr geringem Bauelementeaufwand sehr komplexe Signalformen realisieren lassen, die beispielsweise als I D-Information eines RFID- Transponders verwendet werden können.To generate more complex addressing or data signal, the first electronic circuit is constructed as a two-stage or multi-stage logic circuit, which can be implemented with very low component complexity very complex waveforms, which are used for example as I D information of an RFID transponder can.
Die Erzeugung dieser komplexeren Signale direkt aus der Verknüpfung mehrerer phasenverschobener Taktsignale hat gegenüber der sonst üblicherweise verwendeten klassischen Erzeugung solcher Signale mittels Zähler- und Decoderschaltungen den Vorteil, dass sie wesentlich weniger Bauelemente benötigt als diese relativ aufwendigen Baugruppen. Dies verringert den benötigten Platz und erhöht damit die Ausbeute der organischen Schaltungen.The generation of these more complex signals directly from the combination of several phase-shifted clock signals has compared to the usual used classical generation of such signals by means of counter and decoder circuits the advantage that it requires significantly fewer components than these relatively expensive modules. This reduces the space required and thus increases the yield of the organic circuits.
Die erfindungsgemäße Elektronikbaugruppe kann zur Erbringung einer Vielzahl von Funktionen eingesetzt werden und ist nicht auf die Anwendung in einem RFID- Transponder beschränkt. Besondere Vorteile ergeben sich hierbei, wenn die Elektronikbaugruppe in Form eines flexiblen Folienelements gefertigt ist, das als Sicherungselement zur Sicherung von Wertdokumenten, wie beispielsweise Banknoten oder Pässe oder der Sicherung von Waren dient.The electronic assembly according to the invention can be used to perform a variety of functions and is not limited to the application in an RFID transponder. Particular advantages arise here, if the electronic assembly is made in the form of a flexible film element that serves as a security element for securing documents of value, such as banknotes or passports or the security of goods.
Im Folgenden wir die Erfindung anhand von mehreren Ausführungsbeispielen unter Zuhilfenahme der beiliegenden Zeichnungen beispielhaft erläutert.In the following we will exemplify the invention with reference to several embodiments with the aid of the accompanying drawings.
Fig. 1 zeigt eine funktionelle Darstellung einer erfindungsgemäßen Elektronikbaugruppe.Fig. 1 shows a functional representation of an electronic assembly according to the invention.
Fig. 2 zeigt eine funktionelle Darstellung einer erfindungsgemäßen Elektronikbaugruppe für eine weiteres Ausführungsbeispiel der Erfindung.Fig. 2 shows a functional representation of an electronic assembly according to the invention for a further embodiment of the invention.
Fig. 3 zeigt ein Schaltbild einer Taktgenerator-Baugruppe für eine Elektronikbaugruppe nach Fig. 1 oder Fig. 2.3 shows a circuit diagram of a clock generator module for an electronic module according to FIG. 1 or FIG. 2.
Fig. 4 zeigt ein Schaltbild einer Taktgenerator-Baugruppe für eine Elektronikbaugruppe nach Fig. 1 oder Fig. 2.4 shows a circuit diagram of a clock generator module for an electronic module according to FIG. 1 or FIG. 2.
Fig. 1 zeigt eine Elektronikbaugruppe 10, bei der es sich um einen flexiblen, mehrschichtigen Folienkörper mit ein oder mehreren elektrischen Funktionsschichten handelt. Die elektrischen Funktionsschichten des Folienkörpers bestehen aus1 shows an electronic assembly 10, which is a flexible, multilayer film body with one or more electrical functional layers. The electrical functional layers of the film body consist of
(organischen) leitfähigen Schichten, organischen halbleitenden Schichten und/oder aus organischen Isolationsschichten, die, zumindestens teilweise in strukturierter Form, übereinander angeordnet sind. Neben diesen elektrischen Funktionsschichten umfasst der mehrschichtige Folienkörper optional noch ein oder mehrere Trägerschichten, Schutzschichten, Dekorlagen, Haftvermittlungsschichten oder Kleberschichten. Die elektrisch leitfähigen Funktionsschichten bestehen vorzugsweise aus einer leitfähigen, strukturierten Metallisierung, vorzugsweise aus Gold oder Silber. Es kann jedoch auch vorgesehen sein, dass diese(organic) conductive layers, organic semiconductive layers and / or organic insulation layers, which are arranged, at least partially in a structured form, one above the other. In addition to these electrical functional layers The multilayer film body optionally also comprises one or more carrier layers, protective layers, decorative layers, adhesion-promoting layers or adhesive layers. The electrically conductive functional layers preferably consist of a conductive, structured metallization, preferably of gold or silver. However, it can also be provided that these
Funktionsschichten aus einem anorganischen elektrisch leitfähigen Material ausgebildet sind, beispielsweise aus Indium-Zinn-Oxid oder aus einem leitfähigen Polymer, beispielsweise aus Polyanilin oder Polypyrol. Die organisch halbleitenden Funktionsschichten bestehen beispielsweise aus konjugierten Polymeren, wie Polythiophenen, Polythlenylenvinylenen oder Polyflurenderivaten, die als Lösung durch Spin-Coating, Raken oder Bedrucken aufgebracht werden. Als organische Halbleiterschicht eignen sich auch sogenannte „Small Moleküls", d. h. Oligomere wie Sexithiophen oder Pentacen, die durch eine Vakuumtechnik aufgedampft werden. Diese organischen Schichten werden bevorzugt durch ein Druckverfahren (Tiefdruck, Siebdruck, Tampondruck) bereits partiell- oder musterförmig strukturiert aufgebracht. Dazu sind die für die Schichten vorgesehenen organischen Materialien als lösbare Polymere ausgebildet, wobei der Begriff des Polymer hierbei, wie oben bereits beschrieben, auch Oligomere und „Small Moleküls" einschließt.Functional layers are formed of an inorganic electrically conductive material, for example, indium-tin oxide or a conductive polymer, for example of polyaniline or polypyrene. The organic semiconducting functional layers consist, for example, of conjugated polymers, such as polythiophenes, polythlenylenevinylenenes or polyflorene derivatives, which are applied as a solution by spin-coating, raking or printing. Also suitable as the organic semiconductor layer are so-called "small molecules", ie oligomers such as sexithiophene or pentacene, which are vapor-deposited by a vacuum technique.These organic layers are preferably applied in a patterned pattern by a printing process (gravure printing, screen printing, pad printing) For example, the organic materials provided for the layers are in the form of soluble polymers, the term "polymer" also including oligomers and "small molecules" as already described above.
Die elektrischen Funktionsschichten des Folienkörpers sind hierbei so gestaltet, dass sie die im Folgenden verdeutlichen Funktionen realisieren.The electrical functional layers of the film body are in this case designed so that they realize the clarify the following functions.
Gemäß einem ersten Ausführungsbeispiel der Erfindung wird die Elektronikbaugruppe 10 als RFID-Transponder eingesetzt.According to a first embodiment of the invention, the electronic assembly 10 is used as an RFID transponder.
Aus funktioneller Sicht weist die Elektronikbaugruppe 10 hierzu einen Antennenschwingkreis 11 , einen Gleichrichter 12, einen Modulator 13, eine elektronische Schaltung 4 und einen Taktgenerator 2 auf. Der Gleichrichter 12 stellt die Versorgungsspannung für den Modulator 13, die elektronische Schaltung 4 und den Taktgenerator 2 bereit. Der Taktgenerator 2 stellt den Schalttakt für die elektronische Schaltung 4 bereit und führt der elektronischen Schaltung 4 weiter noch mehrere Taktsignale 31 bis 35 zu, die gegeneinander phasenverschoben sind. Die elektronischen Schaltung generiert das Steuersignal für den Modulator 13 und erbringt beispielsweise die Funktion eines ID-Codegenerators oder einer Steuerbaugruppe, die über ein spezifisches Kommunikations-Protokoll Autorisierungs- oder Identifizierungsinformationen durch Ansteuerung des Modulators 13 über die Luftschnittstelle mit einer entsprechenden Basisstation austauscht.From a functional point of view, the electronic assembly 10 has an antenna resonant circuit 11, a rectifier 12, a modulator 13, an electronic circuit 4 and a clock generator 2 for this purpose. The rectifier 12 provides the supply voltage for the modulator 13, the electronic circuit 4 and the clock generator 2. The clock generator 2 provides the switching clock for the electronic circuit 4 and supplies the electronic circuit 4 further to a plurality of clock signals 31 to 35, which are out of phase with each other. The electronic circuit generates the control signal for the modulator 13 and provides, for example, the function of an ID code generator or a control module, which exchanges authorization or identification information by controlling the modulator 13 via the air interface with a corresponding base station via a specific communication protocol.
Wie in Fig. 1 angedeutet, besteht der Taktgenerator 2 aus einer ringförmigen Anordnung gleichartiger organischer Schaltelemente 21 , die jeweils aus organischen Bauelementen aufgebaut sind. Wie in Fig. 2 dargestellt, ist jeweils der Ausgang eines der organischen Schaltelemente 21 mit dem Eingang des nachfolgenden organischen Schaltelements 21 und der Eingang des organischen Schaltelements 21 mit dem Ausgang des vorgehenden organischen Schaltelements 21 verbunden.As indicated in Fig. 1, the clock generator 2 consists of an annular arrangement of similar organic switching elements 21, which are each constructed of organic components. As shown in FIG. 2, the output of one of the organic switching elements 21 is connected to the input of the subsequent organic switching element 21 and the input of the organic switching element 21 is connected to the output of the preceding organic switching element 21.
Bei den organischen Schaltelementen 21 handelt es sich vorzugsweise jeweils um einen aus organischen Bauelementen aufgebauten Inverter. Beispiele für die schaltungstechnische Realisierung einer derartigen ringförmigen Anordnung von gleichförmigen organischen Schaltelementen sind in Fig. 3 und Fig. 4 gezeigt.The organic switching elements 21 are preferably in each case an inverter constructed from organic components. Examples of the circuitry realization of such an annular arrangement of uniform organic switching elements are shown in FIGS. 3 and 4.
So verdeutlicht Fig. 4 eine ringförmige Anordnung aus fünf Inverter-Schaltungen, die jeweils aus einem Widerstand 91 und einem organischen Feldeffekt-Transistor 92 aufgebaut sind. Die Schaltung verfügt hierbei über einen Anschluss 94 für die Versorgungsspannung und einen Taktanschluss 93.Thus, Fig. 4 illustrates an annular arrangement of five inverter circuits, each consisting of a resistor 91 and an organic field effect transistor 92 are constructed. In this case, the circuit has a connection 94 for the supply voltage and a clock connection 93.
Fig. 3 zeigt eine ringförmige Anordnung von hintereinander geschalteten organischen Schaltelementen, die jeweils von vier organischen Feldeffekt-Transistoren 81 und 82 gebildet werden. Die Schaltung nach Fig. 3 verfügt über einen Anschluss 83 für eine positive Betriebsspannung, einen Anschluss 85 für eine negativ Betriebsspannung, einen Masseanschluss 84 und einen Taktausgang mit den Anschlüssen 87 und 86. Bei der Schaltung nach Fig. 3 werden hierbei Feldeffekt-Transistoren 81 und 82 eingesetzt, die über unterschiedlich leitfähige Stromkanäle verfügen. DerFIG. 3 shows an annular arrangement of series-connected organic switching elements, each formed by four organic field-effect transistors 81 and 82. The circuit according to FIG. 3 has a terminal 83 for a positive operating voltage, a terminal 85 for a negative operating voltage, a ground terminal 84 and a clock output with the terminals 87 and 86. In the circuit according to FIG. 3, field-effect transistors 81 are used and 82 are used, which have different conductive current channels. Of the
Umschaltevorgang geschieht durch Anlegen einer negativen Gate-Spannung an den Feldeffekt-Transistor mit dem schlechter leitfähigen Stromkanal und gleichzeitiges Anlegen einer positiven Gate-Spannung an den organischen Feldeffekt-Transistor mit dem besser leitfähigen Stromkanal.Switchover process is done by applying a negative gate voltage to the field effect transistor with the less conductive current channel and simultaneous Applying a positive gate voltage to the organic field effect transistor with the better conductive current channel.
Die Taktfrequenz eines an dem Taktgenerator 2 nach Fig. 1 abgegriffenen Taktsignals wird so allein durch die Anzahl der organischen Schaltelemente 21 sowie von der Schaltgeschwindigkeit der organischen Bauelemente 21 bestimmt, die sich im Wesentlichen aus der schaltungstechnischen Ausführung (siehe Fig. 3, Fig. 4) und dem Aufbau der hierfür verwendeten organischen Feldeffekt-Transistoren bestimmt.The clock frequency of a clock signal tapped at the clock generator 2 according to FIG. 1 is thus determined solely by the number of organic switching elements 21 as well as by the switching speed of the organic components 21, which essentially consist of the circuit-type design (see FIG. 3, FIG ) and the structure of the organic field-effect transistors used for this purpose.
Die Taktsignale 31 bis 35, die jeweiligen Baugruppen 41 bis 45 der elektronischen Schaltung 4 zugeführt werden, sind hierbei an den Ausgängen unterschiedlicher organischer Schaltelemente 21 abgegriffen. So sind die Taktsignale 31 bis 35 an den Abgriffspunkten 22 bis 26 abgegriffen. Die Taktsignale 31 bis 35 weisen so dieselbe Taktfrequenz auf, besitzen jedoch eine unterschiedliche Phasenlage, die von der Anzahl der zwischen den jeweiligen Abgriffspunkten angeordneten organischen Schaltelementen 21 bestimmt wird.The clock signals 31 to 35, which are supplied to the respective assemblies 41 to 45 of the electronic circuit 4, are tapped here at the outputs of different organic switching elements 21. Thus, the clock signals 31 to 35 are tapped at the tapping points 22 to 26. The clock signals 31 to 35 thus have the same clock frequency but have a different phase position which is determined by the number of organic switching elements 21 arranged between the respective tap points.
Fig. 2 zeigt einen Taktgenerator 5 und eine elektronische Schaltung 6. Der Taktgenerator 5 ist aus n organischen Schaltelementen 51 aufgebaut, die wie in Fig. 2 angedeutet, ringförmig miteinander verkettet sind. Die organischen Schaltelemente können wie bereits anhand der Figuren Fig. 1 , 3 und 4 erläutert, aufgebaut sein. An einem ersten Abgriffspunkt 52 wird ein erstes Taktsignal 71 abgegriffen und der elektronischen Schaltung 6 zugeführt. An einem zweiten Abgriffspunkt 53 wird ein zweites Taktsignal 72 abgegriffen und der elektronischen Schaltung 6 zugeführt. Wie in Fig. 2 dargestellt, handelt es sich bei den Taktsignalen 71 und 72 um periodische Taktsignale, die zueinander phasenverschoben sind. Fig. 2 zeigt hierzu jeweils eine Darstellung des zeitlichen Verlaufs des Signalpegels V des jeweiligen Taktsignals, der gegenüber der Zeit t aufgetragen ist. Bei den Taktsignalen 71 und 72 handelt es sich so um periodische, rechteckförmige, binäre Signale, die zueinander um 90° phasenverschoben sind. Bei der elektronischen Schaltung 6 handelt es sich um ein Logik-Gatter, beispielsweise um eine UND- oder NOR-Gatter. Durch die Verknüpfung der beiden Taktsignale 71 und 72 wird von der elektronischen Schaltung ein impulsförmiges Ausgangssignal 73 generiert, dessen Impulsbreite zum einen von der Art der logischen Verknüpfung (UND, NOR einerseits; ODER, NAND anderseits) sowie von der Beabstandung der Abgriffspunkte 52 und 53 bestimmt wird. Die Phasenlage dieses Impulssignals wird hierbei von der Lage der Abgriffspunkte 52 und 53 und von der Art der Verknüpfung bestimmt.Fig. 2 shows a clock generator 5 and an electronic circuit 6. The clock generator 5 is composed of n organic switching elements 51 which, as indicated in Fig. 2, are linked together in a ring shape. The organic switching elements can, as already explained with reference to FIGS. 1, 3 and 4, be constructed. At a first tapping point 52, a first clock signal 71 is tapped off and supplied to the electronic circuit 6. At a second tapping point 53, a second clock signal 72 is tapped off and supplied to the electronic circuit 6. As shown in Fig. 2, the clock signals 71 and 72 are periodic clock signals which are out of phase with each other. 2 shows a representation of the time profile of the signal level V of the respective clock signal, which is plotted against time t. The clock signals 71 and 72 are thus periodic, rectangular, binary signals, which are phase-shifted by 90 ° to each other. The electronic circuit 6 is a logic gate, for example an AND or NOR gate. By the combination of the two clock signals 71 and 72, a pulse-shaped output signal 73 is generated by the electronic circuit, whose pulse width on the one hand of the type of logical operation (AND, NOR one hand, OR, NAND on the other hand) and the spacing of Abgriffspunkte 52 and 53rd is determined. The phase position of this pulse signal is determined by the position of the tapping points 52 and 53 and by the type of connection.
Bei der Anwendung dieses Funktionsprinzips lassen sich sehr komplexe Daten- und Adressierungssignale generieren. Wenn mehrere zueinander phasenverschobene Taktsignale an unterschiedlichen Abgriffspunkten des Taktgenerators 5 abgegriffen werden und jeweils paarweise wie in Fig. 2 gezeigt miteinander verknüpft werden, so können hierdurch mehrere Ausgangssignale, beispielsweise acht Ausgangssignale, generiert werden, die aus sich nicht überlappenden Impulsen bestehen und beispielsweise zur Ansteuerung eines Speicherelements verwendet werden können. Durch anschließende Verknüpfung dieser Ausgangssignale in einer nachfolgenden Logik-Schaltung lassen sich aus diesem Ausgangssignal noch komplexere Ausgangssignale generieren, wie sie beispielsweise zur Adressierung in komplexeren Speicherschaltungen Verwendung finden. Eine weitere Möglichkeit besteht darin, durch eine individualisierte logische Verknüpfung von in einer ersten Logik-Stufe generierten Signalen mit nicht überlappenden Impulsen ein individualisiertes Datensignal zu erzeugen, das beispielsweise die Identifizierungsinformation eines RFID-Transponders beinhaltet. Dieses Signal kann dann direkt zur Ansteuerung eines Modulators verwendet werden. By applying this principle of operation, very complex data and addressing signals can be generated. If a plurality of mutually phase-shifted clock signals are tapped at different tapping points of the clock generator 5 and each pairwise as shown in Fig. 2 are linked together, as a result, several output signals, such as eight output signals are generated, which consist of non-overlapping pulses and, for example, for driving a memory element can be used. Subsequent linking of these output signals in a subsequent logic circuit makes it possible to generate even more complex output signals from this output signal, as used for example for addressing in more complex memory circuits. Another possibility is to generate an individualized data signal containing, for example, the identification information of an RFID transponder by an individualized logical combination of signals generated in a first logic stage with non-overlapping pulses. This signal can then be used directly for controlling a modulator.

Claims

Ansprüche: Claims:
1. Elektronikbaugruppe (10) mit organischen Bauelementen, dadurch gekennzeichnet, dass die Elektronikbaugruppe (10) einen Taktgenerator (2, 5) mit n seriell hintereinander geschalteten organischen Schaltelementen (21, 51) aufweist, die jeweils aus organischen Bauelementen, insbesondere aus organischen Feldeffekt-Transistoren, aufgebaut sind, dass der Ausgang des n-ten organischen Schaltelements (21, 51) des Taktgenerators mit dem Eingang des ersten organischen Schaltelements (21, 51) verbunden ist, dass die Ausgänge (22 bis 25, 52, 53) von zwei oder mehr der organischen1. Electronic assembly (10) with organic components, characterized in that the electronic assembly (10) has a clock generator (2, 5) with n series-connected organic switching elements (21, 51), each of organic components, in particular organic field effect Transistors, constructed such that the output of the nth organic switching element (21, 51) of the clock generator is connected to the input of the first organic switching element (21, 51), that the outputs (22 to 25, 52, 53) of two or more of the organic
Schaltelemente (21, 51) des Taktgenerators mit jeweiligen Eingängen einer ersten elektronischen Schaltung (4, 6) der Elektronikbaugruppe zum Abgriff von zwei oder mehr Taktsignalen verbunden sind, so dass an dem Ausgang (52) eines ersten der Schaltelemente (51) ein erstes Taktsignal für die erste elektronischen Schaltung (6) abgegriffen wird und am Ausgang eines zweiten, sich vom ersten Schaltelement unterscheidenden Schaltelements (51) ein zweites, gegenüber dem ersten Taktsignal phasenverschobenes Taktsignal für die erste elektronische Schaltung (6) abgegriffen wird.Switching elements (21, 51) of the clock generator to respective inputs of a first electronic circuit (4, 6) of the electronic assembly for tapping two or more clock signals are connected, so that at the output (52) of a first of the switching elements (51), a first clock signal for the first electronic circuit (6) is tapped off and at the output of a second, different from the first switching element switching element (51) a second, compared to the first clock signal phase-shifted clock signal for the first electronic circuit (6) is tapped.
2. Elektronikbaugruppe (10) nach Anspruch 1, dadurch gekennzeichnet, dass die erste elektronische Schaltung (4, 6) eine aus organischen Bauelementen aufgebaute Logik-Schaltung ist.2. Electronic assembly (10) according to claim 1, characterized in that the first electronic circuit (4, 6) is a built-up of organic components logic circuit.
3. Elektronikbaugruppe nach Anspruch 2, dadurch gekennzeichnet, dass die erste elektronische Schaltung ein oder mehrere aus organischen Bauelementen aufgebaute Logik-Gatter aufweist, die die zugeführten zwei oder mehr Taktsignals logisch verknüpfen und hierdurch ein oder mehrere Ausgangssignale für eine zweite elektronische Schaltung generieren.3. Electronic assembly according to claim 2, characterized in that the first electronic circuit comprises one or more built-up of organic components logic gate, the two supplied or logically link more clock signal and thereby generate one or more output signals for a second electronic circuit.
4. Elektronikbaugruppe nach Anspruch 3, dadurch gekennzeichnet, dass die zweite elektronische Schaltung eine aus organischen Bauelementen aufgebaute Logik-Schaltung ist.4. Electronic assembly according to claim 3, characterized in that the second electronic circuit is a built-up of organic components logic circuit.
5. Elektronikbaugruppe nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass das erste und das zweite Schaltelement INT (n/2) Schaltelemente voneinander entfernt sind.5. Electronic assembly according to one of the preceding claims, characterized in that the first and the second switching element INT (n / 2) switching elements are removed from each other.
6. Elektronikbaugruppe nach Anspruch 5, dadurch gekennzeichnet, dass n größer gleich 11 und ungeradzahlig ist.6. Electronic assembly according to claim 5, characterized in that n is greater than or equal to 11 and odd.
7. Elektronikbaugruppe nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass in der ersten elektronischen Schaltung (6) zwei der Taktsignale durch ein7. Electronic assembly according to one of the preceding claims, characterized in that in the first electronic circuit (6) two of the clock signals by a
NOR- oder ein UND-Gatter zur Generierung eines asymmetrischen impulsförmigen Ausgangssignals verknüpft sind, wobei die Impulsbreite der Impulse des Ausgangssignals durch die Anzahl der zwischen den Abgriffpunkten (52, 53) der Taktsignale angeordneten organischen Schaltelemente (51) bestimmt ist.NOR or an AND gate for generating an asymmetric pulse-shaped output signal are linked, wherein the pulse width of the pulses of the output signal by the number of arranged between the Abgriffpunkten (52, 53) of the clock signals organic switching elements (51) is determined.
8. Elektronikbaugruppe nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Ausgänge von drei oder mehr der organischen Schaltelemente des Taktgenerators mit jeweiligen Eingängen der ersten elektronischen Schaltung zum Abgriff von drei oder mehr zueinander phasenverschobenen Taktsignalen verbunden sind, und dass die erste elektronische Schaltung zwei oder mehr aus organischen Bauelementen aufgebaute Logik-Gatter aufweist, die die drei oder mehr Taktsignale zur Erzeugung von zwei oder mehr Ausgangssignalen verknüpfen, die sich nicht überlappende Impulse aufweisen.8. The electronic assembly according to claim 1, wherein the outputs of three or more of the organic switching elements of the clock generator are connected to respective inputs of the first electronic circuit for tapping three or more clock signals out of phase with each other, and the first electronic circuit is two or more composed of organic components logic gates, the three or link more clock signals to produce two or more output signals having non-overlapping pulses.
9. Elektronikbaugruppe nach Anspruch 8, dadurch gekennzeichnet, dass die drei oder mehr zueinander phasenverschobenen Taktsignale jeweils paarweise durch ein Logik-Gatter verknüpft sind, wobei die Anzahl der zwischen den jeweiligen Abgriffspunkten der Taktsignale angeordneten organischen Schaltelemente so gewählt ist, dass die zwei oder mehr Ausgangssignale sich nicht überlappende Impulse aufweisen.9. Electronic assembly according to claim 8, characterized in that the three or more mutually phase-shifted clock signals are each paired by a logic gate, wherein the number of arranged between the respective tapping points of the clock signals organic switching elements is selected so that the two or more Output signals have non-overlapping pulses.
10. Elektronikbauteil nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die erste elektronische Schaltung eine zwei- oder mehrstufige Logik- Schaltung ist.10. Electronic component according to one of the preceding claims, characterized in that the first electronic circuit is a two- or multi-stage logic circuit.
11. Elektronikbaugruppe nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die ein oder mehreren Ausgangssignale der ersten elektronischen Schaltung der zweiten elektronischen Schaltung als Datensignale zugeführt werden.11. Electronic assembly according to one of the preceding claims, characterized in that the one or more output signals of the first electronic circuit of the second electronic circuit are supplied as data signals.
12. Elektronikbaugruppe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die zweite elektronische Schaltung eine Speichereinheit aufweist und die ein oder mehreren Ausgangssignale der ersten elektronischen Schaltung der zweiten elektronischen Schaltung als Adressierungssignal zugeführt werden.12. Electronic assembly according to one of claims 1 to 10, characterized in that the second electronic circuit has a memory unit and the one or more output signals of the first electronic circuit of the second electronic circuit are supplied as an addressing signal.
13. Elektronikbaugruppe (10) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Elektronikbaugruppe (10) ein RFID-Transponder ist, der weiter einen Antennenschwingkreis (11), einen Gleichrichter (12) und eine digitale Steuerschaltung aufweist, wobei der Taktgenerator (2) mit einem Takt- Eingang der digitalen Steuerschaltung verbunden ist.13. Electronic assembly (10) according to any one of the preceding claims, characterized in that the electronic assembly (10) is an RFID transponder, which further comprises an antenna resonant circuit (11), a rectifier (12) and a digital Control circuit, wherein the clock generator (2) is connected to a clock input of the digital control circuit.
14. Elektronikbaugruppe nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Elektronikbaugruppe ein flexibles Folienelement ist, das als Sicherungselement insbesondere für Wertdokumente und Waren dient. 14. Electronic assembly according to one of the preceding claims, characterized in that the electronic assembly is a flexible film element, which serves as a security element in particular for value documents and goods.
EP06707102A 2005-03-01 2006-02-21 Electronic module Pending EP1854213A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005009819A DE102005009819A1 (en) 2005-03-01 2005-03-01 electronics assembly
PCT/EP2006/001522 WO2006092215A2 (en) 2005-03-01 2006-02-21 Electronic module

Publications (1)

Publication Number Publication Date
EP1854213A2 true EP1854213A2 (en) 2007-11-14

Family

ID=36848108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06707102A Pending EP1854213A2 (en) 2005-03-01 2006-02-21 Electronic module

Country Status (4)

Country Link
US (1) US7843342B2 (en)
EP (1) EP1854213A2 (en)
DE (1) DE102005009819A1 (en)
WO (1) WO2006092215A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059231A1 (en) 2007-12-07 2009-06-10 Polyic Gmbh & Co. Kg Electronic assembly with organic switching elements
US10447337B2 (en) * 2014-07-31 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Duplexer system and associated digital correction for improved isolation
TWI735912B (en) * 2014-08-22 2021-08-11 美商蘭姆研究公司 Plasma system, plasma tool, radio frequency generator, controller, and methods for sub-pulsing during a state

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB723598A (en) 1951-09-07 1955-02-09 Philips Nv Improvements in or relating to methods of producing electrically conductive mouldings from plastics
US3512052A (en) 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
DE2102735B2 (en) 1971-01-21 1979-05-10 Transformatoren Union Ag, 7000 Stuttgart Mill, eg for grinding plastics fillers - with electric circuit for controlling the throughput of the mill
US3769096A (en) 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (en) 1973-10-12 1979-02-24
DE2407110C3 (en) 1974-02-14 1981-04-23 Siemens AG, 1000 Berlin und 8000 München Sensor for the detection of a substance contained in a gas or a liquid
JPS54101176A (en) 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4246298A (en) 1979-03-14 1981-01-20 American Can Company Rapid curing of epoxy resin coating compositions by combination of photoinitiation and controlled heat application
JPS5641938U (en) 1979-09-10 1981-04-17
US4340057A (en) 1980-12-24 1982-07-20 S. C. Johnson & Son, Inc. Radiation induced graft polymerization
JPS59145576A (en) 1982-11-09 1984-08-21 ザイトレツクス・コ−ポレ−シヨン Programmable mos transistor
DE3321071A1 (en) 1983-06-10 1984-12-13 Basf Ag PRESSURE SWITCH
DE3338597A1 (en) 1983-10-24 1985-05-02 GAO Gesellschaft für Automation und Organisation mbH, 8000 München DATA CARRIER WITH INTEGRATED CIRCUIT AND METHOD FOR PRODUCING THE SAME
US4554229A (en) 1984-04-06 1985-11-19 At&T Technologies, Inc. Multilayer hybrid integrated circuit
JPS6265472A (en) 1985-09-18 1987-03-24 Toshiba Corp Mis type semiconductor element
US4926052A (en) 1986-03-03 1990-05-15 Kabushiki Kaisha Toshiba Radiation detecting device
EP0268370B1 (en) 1986-10-13 1995-06-28 Canon Kabushiki Kaisha Switching device
GB2215307B (en) 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
DE68912426T2 (en) 1988-06-21 1994-05-11 Gec Avery Ltd Manufacture of portable electronic cards.
US5364735A (en) 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
DE69018348T2 (en) 1989-07-25 1995-08-03 Matsushita Electric Ind Co Ltd Organic semiconductor memory device with a MISFET structure and its control method.
FI84862C (en) 1989-08-11 1992-01-27 Vaisala Oy Capacitive humidifier construction and method of making it
US5206525A (en) 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FI91573C (en) 1990-01-04 1994-07-11 Neste Oy Method for manufacturing electronic and electro-optical components and circuits
JP2969184B2 (en) 1990-04-09 1999-11-02 カシオ計算機株式会社 Thin film transistor memory
FR2664430B1 (en) 1990-07-04 1992-09-18 Centre Nat Rech Scient THIN FILM FIELD EFFECT TRANSISTOR WITH MIS STRUCTURE, IN WHICH THE INSULATION AND THE SEMICONDUCTOR ARE MADE OF ORGANIC MATERIALS.
DE4103675C2 (en) 1991-02-07 1993-10-21 Telefunken Microelectron Circuit for voltage surge of AC input signals
FR2673041A1 (en) 1991-02-19 1992-08-21 Gemplus Card Int METHOD FOR MANUFACTURING INTEGRATED CIRCUIT MICROMODULES AND CORRESPONDING MICROMODULE.
EP0501456A3 (en) 1991-02-26 1992-09-09 Sony Corporation Video game computer provided with an optical disc drive
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
EP0511807A1 (en) 1991-04-27 1992-11-04 Gec Avery Limited Apparatus and sensor unit for monitoring changes in a physical quantity with time
JP3224829B2 (en) 1991-08-15 2001-11-05 株式会社東芝 Organic field effect device
JPH0580530A (en) 1991-09-24 1993-04-02 Hitachi Ltd Production of thin film pattern
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
JPH0770470B2 (en) 1991-10-30 1995-07-31 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン Irradiation device
JP2709223B2 (en) 1992-01-30 1998-02-04 三菱電機株式会社 Non-contact portable storage device
EP0603939B1 (en) 1992-12-21 1999-06-16 Koninklijke Philips Electronics N.V. N-type conductive polymer and method of preparing such a polymer
DE4243832A1 (en) 1992-12-23 1994-06-30 Daimler Benz Ag Push button arrangement
JP3457348B2 (en) 1993-01-15 2003-10-14 株式会社東芝 Method for manufacturing semiconductor device
FR2701117B1 (en) 1993-02-04 1995-03-10 Asulab Sa Electrochemical measurement system with multizone sensor, and its application to glucose measurement.
EP0615256B1 (en) 1993-03-09 1998-09-23 Koninklijke Philips Electronics N.V. Method of manufacturing a pattern of an electrically conductive polymer on a substrate surface and method of metallizing such a pattern
US5567550A (en) 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
DE4312766C2 (en) 1993-04-20 1997-02-27 Telefunken Microelectron Circuit for voltage boost
JPH0722669A (en) 1993-07-01 1995-01-24 Mitsubishi Electric Corp Plastic functional element
CA2170402C (en) 1993-08-24 2000-07-18 Michael P. Allen Novel disposable electronic assay device
JP3460863B2 (en) 1993-09-17 2003-10-27 三菱電機株式会社 Method for manufacturing semiconductor device
FR2710413B1 (en) 1993-09-21 1995-11-03 Asulab Sa Measuring device for removable sensors.
US5556706A (en) 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
IL111151A (en) 1994-10-03 1998-09-24 News Datacom Ltd Secure access systems
KR100350817B1 (en) 1994-05-16 2003-01-24 코닌클리케 필립스 일렉트로닉스 엔.브이. Semiconductor device formed of organic semiconductor material
IL110318A (en) 1994-05-23 1998-12-27 Al Coat Ltd Polyaniline-containing solutions for preparing transparent electrodes for liquid crystal devices
US5684884A (en) 1994-05-31 1997-11-04 Hitachi Metals, Ltd. Piezoelectric loudspeaker and a method for manufacturing the same
JP3246189B2 (en) 1994-06-28 2002-01-15 株式会社日立製作所 Semiconductor display device
US5528222A (en) 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5574291A (en) 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
DE19506907A1 (en) 1995-02-28 1996-09-05 Telefunken Microelectron Voltage or current level input signal changing circuit for e.g. EEPROM
JP3068430B2 (en) 1995-04-25 2000-07-24 富山日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
JPH0933645A (en) 1995-07-21 1997-02-07 Oki Electric Ind Co Ltd Power supply circuit of transponder
US5652645A (en) 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
US6326640B1 (en) 1996-01-29 2001-12-04 Motorola, Inc. Organic thin film transistor with enhanced carrier mobility
GB2310493B (en) 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (en) 1996-03-06 2000-08-28 富士機工電子株式会社 Manufacturing method of air rear grid array package
DE19629656A1 (en) 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostic test carrier with multilayer test field and method for the determination of analyte with its aid
US5693956A (en) 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
US5946551A (en) 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
US6344662B1 (en) 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
US5841325A (en) * 1997-05-12 1998-11-24 Hewlett-Packard Company Fully-integrated high-speed interleaved voltage-controlled ring oscillator
KR100248392B1 (en) 1997-05-15 2000-09-01 정선종 The operation and control of the organic electroluminescent devices with organic field effect transistors
WO1999010939A2 (en) 1997-08-22 1999-03-04 Koninklijke Philips Electronics N.V. A method of manufacturing a field-effect transistor substantially consisting of organic materials
EP1296280A1 (en) 1997-09-11 2003-03-26 Precision Dynamics Corporation Rf-id tag with integrated circuit consisting of organic materials
DE02079791T1 (en) 1997-09-11 2004-04-15 Precision Dynamics Corp., San Fernando RF-ID label with an integrated circuit of organic materials
US6251513B1 (en) 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JPH11142810A (en) 1997-11-12 1999-05-28 Nintendo Co Ltd Portable information processor
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
WO1999030432A1 (en) * 1997-12-05 1999-06-17 Koninklijke Philips Electronics N.V. Identification transponder
US5998805A (en) 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
JP4272353B2 (en) 1998-01-28 2009-06-03 シン フィルム エレクトロニクス エイエスエイ Method for generating a three-dimensional conductive structure and / or semiconductive structure, a method for erasing the structure, and an electric field generator / modulator used with the method
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
JPH11249494A (en) 1998-03-03 1999-09-17 Canon Inc Drum flange, cylindrical member, process cartridge and electrophotographic image forming device
DE19816860A1 (en) 1998-03-06 1999-11-18 Deutsche Telekom Ag Chip card, especially credit card
US6033202A (en) 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
WO1999053371A1 (en) 1998-04-10 1999-10-21 E-Ink Corporation Electronic displays using organic-based field effect transistors
GB9808061D0 (en) 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
GB9808806D0 (en) 1998-04-24 1998-06-24 Cambridge Display Tech Ltd Selective deposition of polymer films
TW410478B (en) 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US5967048A (en) 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
KR100282393B1 (en) 1998-06-17 2001-02-15 구자홍 method for fabricating Organic Electroluminescent display Device
DE19836174C2 (en) 1998-08-10 2000-10-12 Illig Maschinenbau Adolf Heater for heating thermoplastic sheets and method for adjusting the temperature of this heater
US6215130B1 (en) 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
PT1108207E (en) 1998-08-26 2008-08-06 Sensors For Med & Science Inc Optical-based sensing devices
JP4493741B2 (en) 1998-09-04 2010-06-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
DE19851703A1 (en) 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Electronic structure, e.g. FET, is produced by plotting, spraying, spin coating or spreading of insulating, semiconducting and-or conductive layers onto a substrate
US6384804B1 (en) 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
EP1144197B1 (en) 1999-01-15 2003-06-11 3M Innovative Properties Company Thermal Transfer Method.
GB2347013A (en) 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
AU744962B2 (en) 1999-02-22 2002-03-07 Nippon Steel & Sumitomo Metal Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
AU5646800A (en) 1999-03-02 2000-09-21 Helix Biopharma Corporation Card-based biosensor device
US6180956B1 (en) 1999-03-03 2001-01-30 International Business Machine Corp. Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
US6207472B1 (en) 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
EP1083775B1 (en) 1999-03-29 2010-10-13 Seiko Epson Corporation Composition comprising an organic electroluminescent material
US6514801B1 (en) 1999-03-30 2003-02-04 Seiko Epson Corporation Method for manufacturing thin-film transistor
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
FR2793089B3 (en) 1999-04-28 2001-06-08 Rene Liger TRANSPONDER WITH INTEGRATED ANTENNA
DE19919448A1 (en) 1999-04-29 2000-11-02 Miele & Cie Cooling device and method for indicating germs
DE19921024C2 (en) 1999-05-06 2001-03-08 Wolfgang Eichelmann Video game system
US6383664B2 (en) 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
EP1052594A1 (en) 1999-05-14 2000-11-15 Sokymat S.A. Transponder and molding die, and their method of manufacture
DE69913745T2 (en) 1999-05-17 2004-10-07 Goodyear Tire & Rubber RF TRANSPONDER AND METHOD FOR CONTROLLING RF SIGNAL MODULATION IN A PASSIVE TRANSPONDER
TW556357B (en) 1999-06-28 2003-10-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
JP2001085272A (en) 1999-07-14 2001-03-30 Matsushita Electric Ind Co Ltd Variable capacitor
DE19933757A1 (en) 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Manufacturing chip card with integral battery involves applying first conducting track structure, electrolyte and second conducting track structure to form opposite polarity electrodes
DE19935527A1 (en) 1999-07-28 2001-02-08 Giesecke & Devrient Gmbh Active film for chip cards with display
DE19937262A1 (en) 1999-08-06 2001-03-01 Siemens Ag Arrangement with transistor function
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
EP1085320A1 (en) 1999-09-13 2001-03-21 Interuniversitair Micro-Elektronica Centrum Vzw A device for detecting an analyte in a sample based on organic materials
US6517995B1 (en) 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
CN1376100A (en) 1999-09-28 2002-10-23 住友重机械工业株式会社 Laser drilling method and laser drilling device
US6340822B1 (en) 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
WO2001027998A1 (en) 1999-10-11 2001-04-19 Koninklijke Philips Electronics N.V. Integrated circuit
US6335539B1 (en) 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
EP1103916A1 (en) 1999-11-24 2001-05-30 Infineon Technologies AG IC-card
US6136702A (en) 1999-11-29 2000-10-24 Lucent Technologies Inc. Thin film transistors
US6621098B1 (en) 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6197663B1 (en) 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
KR100940110B1 (en) 1999-12-21 2010-02-02 플라스틱 로직 리미티드 Inkjet-fabricated intergrated circuits amd method for forming electronic device
JP5073141B2 (en) 1999-12-21 2012-11-14 プラスティック ロジック リミテッド Internal connection formation method
US7002451B2 (en) 2000-01-11 2006-02-21 Freeman Jeffrey R Package location system
JP2002162652A (en) 2000-01-31 2002-06-07 Fujitsu Ltd Sheet-like display device, resin spherical body and microcapsule
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
TW497120B (en) 2000-03-06 2002-08-01 Toshiba Corp Transistor, semiconductor device and manufacturing method of semiconductor device
JP3614747B2 (en) 2000-03-07 2005-01-26 Necエレクトロニクス株式会社 BOOST CIRCUIT, IC CARD WITH THE SAME AND ELECTRONIC DEVICE WITH THE SAME
DE10012204A1 (en) 2000-03-13 2001-09-20 Siemens Ag Electronic postage stamp for identifying postal articles
EP1134694A1 (en) 2000-03-16 2001-09-19 Infineon Technologies AG Document with integrated electronic circuit
DK1311702T3 (en) 2000-03-28 2006-03-27 Diabetes Diagnostics Inc Continuous process for producing a disposable electrochemical sensing element
US6329226B1 (en) 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10032260B4 (en) 2000-07-03 2004-04-29 Texas Instruments Deutschland Gmbh Circuit arrangement for doubling the voltage of a battery
DE10033112C2 (en) 2000-07-07 2002-11-14 Siemens Ag Process for the production and structuring of organic field-effect transistors (OFET), OFET produced thereafter and its use
JP2004506985A (en) 2000-08-18 2004-03-04 シーメンス アクチエンゲゼルシヤフト Encapsulated organic electronic component, method of manufacture and use thereof
DE10120687A1 (en) 2001-04-27 2002-10-31 Siemens Ag Encapsulated organic-electronic circuit has electronic components especially made of organic material and arranged between at least two layers forming barrier
JP2002068324A (en) 2000-08-30 2002-03-08 Nippon Sanso Corp Heat-insulating container
DE10043204A1 (en) 2000-09-01 2002-04-04 Siemens Ag Organic field-effect transistor, method for structuring an OFET and integrated circuit
DE10044842A1 (en) 2000-09-11 2002-04-04 Siemens Ag Organic rectifier, circuit, RFID tag and use of an organic rectifier
DE10045192A1 (en) 2000-09-13 2002-04-04 Siemens Ag Organic data storage, RFID tag with organic data storage, use of an organic data storage
DE10047171A1 (en) 2000-09-22 2002-04-18 Siemens Ag Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound
KR20020036916A (en) 2000-11-11 2002-05-17 주승기 Method of crystallizing a silicon thin film and semiconductor device fabricated thereby
DE10058559A1 (en) 2000-11-24 2002-05-29 Interactiva Biotechnologie Gmb System for distribution of refrigerated goods has communication network connecting supplier to local storage areas and hence to customers
KR100390522B1 (en) 2000-12-01 2003-07-07 피티플러스(주) Method for fabricating thin film transistor including a crystalline silicone active layer
DE10061297C2 (en) 2000-12-08 2003-05-28 Siemens Ag Procedure for structuring an OFET
GB2371910A (en) 2001-01-31 2002-08-07 Seiko Epson Corp Display devices
DE10105914C1 (en) 2001-02-09 2002-10-10 Siemens Ag Organic field effect transistor with photo-structured gate dielectric and a method for its production
ATE540437T1 (en) 2001-03-02 2012-01-15 Fujifilm Corp PRODUCTION METHOD OF AN ORGANIC THIN FILM DEVICE
DE10117663B4 (en) 2001-04-09 2004-09-02 Samsung SDI Co., Ltd., Suwon Process for the production of matrix arrangements based on various types of organic conductive materials
DE10120686A1 (en) 2001-04-27 2002-11-07 Siemens Ag Process for producing thin homogeneous layers with the help of screen printing technology, device for carrying out the process and its use
WO2002091495A2 (en) 2001-05-07 2002-11-14 Coatue Corporation Molecular memory device
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
CN1292496C (en) 2001-05-23 2006-12-27 造型逻辑有限公司 Laser parrering of devices
US6870180B2 (en) 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
DE20111825U1 (en) 2001-07-20 2002-01-17 Lammering, Thomas, Dipl.-Ing., 33335 Gütersloh Print media
DE10141440A1 (en) 2001-08-23 2003-03-13 Daimler Chrysler Ag tripod
JP2003089259A (en) 2001-09-18 2003-03-25 Hitachi Ltd Pattern forming method and pattern forming apparatus
US7351660B2 (en) 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6679036B2 (en) 2001-10-15 2004-01-20 Shunchi Crankshaft Co., Ltd. Drive gear shaft structure of a self-moving type mower
DE10151440C1 (en) * 2001-10-18 2003-02-06 Siemens Ag Organic electronic component for implementing an encapsulated partially organic electronic component has components like a flexible foil as an antenna, a diode or capacitor and an organic transistor.
DE10163267A1 (en) 2001-12-21 2003-07-03 Giesecke & Devrient Gmbh Banknotes incorporating an electronic, data containing, circuit and transceiver and a device for processing said notes ensure that banknote handling is greatly simplified
DE10209400A1 (en) 2002-03-04 2003-10-02 Infineon Technologies Ag Transponder circuit for a transponder has a rectifier circuit with a component that has a coating of organic material
DE10212640B4 (en) * 2002-03-21 2004-02-05 Siemens Ag Logical components made of organic field effect transistors
DE10219905B4 (en) 2002-05-03 2011-06-22 OSRAM Opto Semiconductors GmbH, 93055 Optoelectronic component with organic functional layers and two carriers and method for producing such an optoelectronic component
US6812509B2 (en) 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
AT502890B1 (en) 2002-10-15 2011-04-15 Atomic Austria Gmbh ELECTRONIC MONITORING SYSTEM FOR CHECKING BZW. RECORDING OF A SPORTS COMBINATION COMPOSED OF MULTIPLE SPORTS
US6870183B2 (en) 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating
US20060118778A1 (en) 2002-11-05 2006-06-08 Wolfgang Clemens Organic electronic component with high-resolution structuring and method for the production thereof
ATE540436T1 (en) 2002-11-19 2012-01-15 Polyic Gmbh & Co Kg ORGANIC ELECTRONIC COMPONENT WITH THE SAME ORGANIC MATERIAL FOR AT LEAST TWO FUNCTIONAL LAYERS
WO2004047144A2 (en) 2002-11-19 2004-06-03 Polyic Gmbh & Co.Kg Organic electronic component comprising a structured, semi-conductive functional layer and a method for producing said component
US7088145B2 (en) 2002-12-23 2006-08-08 3M Innovative Properties Company AC powered logic circuitry
KR100745570B1 (en) * 2003-01-14 2007-08-03 폴리아이씨 게엠베하 운트 코. 카게 Organic field effect transistor and integrated circuit
US7078937B2 (en) * 2003-12-17 2006-07-18 3M Innovative Properties Company Logic circuitry powered by partially rectified ac waveform

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006092215A2 *

Also Published As

Publication number Publication date
WO2006092215A3 (en) 2007-05-10
WO2006092215A2 (en) 2006-09-08
US20080265965A1 (en) 2008-10-30
DE102005009819A1 (en) 2006-09-07
US7843342B2 (en) 2010-11-30

Similar Documents

Publication Publication Date Title
EP1825423B1 (en) Electronic component comprising a modulator
DE102015226277B4 (en) Touch-sensitive screen, touch-sensitive device and method for driving the same
DE102007046679B4 (en) RFID transponder
EP1499034B1 (en) Circuit and method for phase modulation of transponders based on backscattering
DE69731313T2 (en) DEVICE AND METHOD FOR KEYBOARD CODING
EP1969533A1 (en) Document comprising a data memory, device and method for reading an rfid tag, and computer program product
DE2723669A1 (en) PROGRAMMABLE FILTER
EP1854213A2 (en) Electronic module
DE2439494A1 (en) TRANSPONDER WITH LARGE SIGN CAPACITY
DE102005017655B4 (en) Multilayer composite body with electronic function
EP1854214B1 (en) Electronic module with organic logic circuit elements
EP2368210B1 (en) Method for actuating an rfid antenna, and an associated rfid antenna system
DE102012203954A1 (en) Proximity sensor and thus formed control panel
DE3221356C2 (en) Device for inductive identification of authorization information
DE60035469T2 (en) Method for ensuring the inviolability of a chip card micro module against a power consumption analysis and corresponding micromodule
EP2068447B1 (en) Electronics component with organic switching elements
DE2115508A1 (en) Selector switch arrangement
WO2005021276A1 (en) Method and device for further printing with electrical conductivity
EP1639526B1 (en) Electronic component used for id tags
EP3556107B1 (en) Belt having a data-transferring device
DE102004031671B4 (en) Modulator circuitry, transceiver, reader and method of forming a modulated signal
DE4215955C1 (en) Two part information transmission system - has data sent to portable data carrying apparatus from read write unit divided into two differently transmitted parts
EP1474770B1 (en) Label identification system and coding method suited therefor
DE60100829T2 (en) Power switch logic circuit to generate equal rise and fall times
DE68904896T2 (en) ARRANGEMENT FOR WIRELESS TRANSMISSION OF RECEIVED SIGNALS VIA A SERIAL DATA BUS WITH TWO-WIRE.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20070822

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)