EP1845324A1 - Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air - Google Patents

Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air Download PDF

Info

Publication number
EP1845324A1
EP1845324A1 EP07005943A EP07005943A EP1845324A1 EP 1845324 A1 EP1845324 A1 EP 1845324A1 EP 07005943 A EP07005943 A EP 07005943A EP 07005943 A EP07005943 A EP 07005943A EP 1845324 A1 EP1845324 A1 EP 1845324A1
Authority
EP
European Patent Office
Prior art keywords
pressure
piv
distillation column
gas pressure
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07005943A
Other languages
German (de)
English (en)
Inventor
Horst Corduan
Ulrich Ewert
Gerhard Pompl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1845324A1 publication Critical patent/EP1845324A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Definitions

  • the invention relates to a method for producing a printed product by cryogenic air separation by means of internal compression according to the preamble of patent claim 1.
  • a “distillation column system” comprises at least one separation column as well as the condensers and evaporators associated with the separation columns of the system.
  • the distillation column system for nitrogen-oxygen separation of the invention may be formed as a single column system for nitrogen-oxygen separation, as a two-column system (for example as a classic Linde double column system), or as a three or more column system. It may have, in addition to the columns for nitrogen-oxygen separation, other devices for obtaining other air components, in particular noble gases, for example an argon recovery.
  • At least one of the products is withdrawn liquid from one of the columns of the distillation column system or from a condenser connected to one of these columns, brought to an elevated pressure in the liquid state, evaporated in indirect heat exchange, for example with feed air or nitrogen, or at supercritical pressure) pseudo-evaporated and finally recovered as gaseous pressure product and fed to a take-off system, which consists for example of a gas pressure accumulator.
  • the pressure increase in the liquid can be carried out by any known means. Regularly pumps are used. But it is also possible to exploit a hydrostatic potential and / or the pressure build-up evaporation on a tank.
  • Such internal compression methods are known, for example DE 830805 .
  • DE 1124529 .
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • DE 10238282 A1 DE 10302389 A1 .
  • EP 1585926 A1 or DE 102005029274 A1 ,
  • gas pressure accumulator is meant here any system which serves to buffer gaseous print product and, in particular, has a buffer capacity sufficient to compensate for periodic decreases in swings or sufficient to compensate for temporary deficiencies or excesses in production that may occur during load changes.
  • periodic acceptance fluctuations is the oxygen supply of a steelworks, where the operation of the converter at regular intervals for a short time high amounts of oxygen are needed.
  • Another example is an air separation plant whose production is continuously adjusted to current consumption, but the load (production rate) of the air separation plant can not be changed at the same speed as the consumption and therefore temporary deficits or surpluses occur during load adjustment.
  • the buffer capacity of the gas pressure accumulator should be sufficient to offset the deficits or surpluses in production caused by a typical change in consumption (within minutes or seconds) so that the production of an air separation plant can follow the change in consumption without the minimum or maximum allowances Pressure limits of the product are violated.
  • the load cycle time of a typical air separation plant for load change over the full load range of 70% to 100% is 30 minutes to 2 hours.
  • gas pressure accumulator is meant, in particular, a system having a buffering capacity which is at least equal to the amount of (pseudo) vaporized liquid product stream to the pressure product which the distillation column system produced in normal operation over a given period of time, for example at least equal the amount produced within one minute, in particular at least equal to the amount produced within five minutes or at least equal to the amount produced within 10 minutes.
  • the buffer capacity of a gas pressure accumulator is determined by its volume and the possible fluctuation range of its pressure, ie the difference between the maximum and the minimum operating pressure.
  • the minimum operating pressure is determined by the pressure requirements of the consumer, the maximum by the design of the gas pressure accumulator and applicable safety regulations.
  • a “gas pressure accumulator” can be formed, for example, by one or more dedicated gas pressure storage containers or by a pipelinesystem with a large pipe length, which serves for example to supply multiple consumers with compressed gas.
  • Such a “gas pressure accumulator” is operated in a certain pressure range, which is determined by a minimum allowable pressure and a maximum allowable pressure. Between these two values there is typically a difference of at least 2 bar, in particular at least 5 bar, preferably at least 10 bar.
  • the necessary capacity of the print buffer depends essentially on the course of the acceptance fluctuations, which are usually subject to a certain system.
  • the pressure product obtained in the distillation column system must have a pressure which is higher than the pressure in the gas pressure accumulator. So far, this requirement is satisfied by the fact that the evaporation of the internal compression product is carried out at a pressure which, even at the maximum pressure of the gas pressure accumulator introduction of the Ensures printed product in the gas pressure accumulator.
  • the pressure during evaporation and also the operating pressures in the distillation column system are kept constant. At currently lower pressure in the gas pressure accumulator, the gaseous pressure product is throttled, whereby energy is lost.
  • the invention has for its object to provide a method of the type mentioned, which works energetically particularly favorable.
  • This object is achieved in that the increased pressure (ie, the pressure of the inner compression product) is varied and the variation of the increased pressure (PIV) in dependence on the pressure (PA) of the gas pressure accumulator is performed.
  • the evaporation may take place at a reduced pressure when the pressure in the gas pressure accumulator is below its maximum value. This means that less energy must be used to vaporize the product stream.
  • a gaseous heat carrier stream is regularly compressed to a high pressure (PW) and used under this high pressure for (pseudo) vaporization of the liquid product stream by indirect heat exchange.
  • PW high pressure
  • MW quantity of the heat carrier flow
  • PA pressure
  • the latter variation may depend on the pressure of the internal compaction product (PIV); the said dependence on the pressure (PA) of the gas pressure accumulator is then an indirect one.
  • the heat carrier stream can be formed, for example, by a partial stream of the feed air or by a stream of nitrogen from the distillation column system. Frequently, a partial flow of the feed air is recompressed, used as a heat transfer stream and then in the distillation column system for nitrogen-oxygen separation initiated.
  • amount is meant here the molar amount per unit time, which is measured, for example, in Nm 3 / h.
  • this also energy can be saved that the refrigeration at reduced pressure (PA) is reduced in the gas pressure accumulator by the amount of refrigerant generated in the refrigeration system of the method is varied depending on the pressure (PA) of the gas pressure accumulator.
  • the refrigeration system may include one or more expansion machines for work-related expansion of one or more process streams, one or more external energy powered refrigeration systems, and or cold supply through one or more cryogenic liquid streams.
  • the invention controls the amount of one or more process streams passed through an expansion turbine. At reduced pressure in the gas pressure accumulator this is reduced. The corresponding reduced demand for pressure energy leads to a further energy saving.
  • one or more operating parameters of the distillation column system are varied as a function of the pressure (PA) of the gas pressure accumulator.
  • Such a load change system may include a feedforward controller, for example an ALC (Automatic Load Change), or a multivariable controller, for example a Model Predictive Control (MPC).
  • ALC Automatic Load Change
  • MPC Model Predictive Control
  • the controlled adaptation of these operating parameters ensures the consistency between the selected internal compression pressure and the operating point of the distillation and furthermore prevents an unacceptable load on the heat exchangers.
  • a significant advantage of using a load change system is the ability to limit the gradient of the internal compression pressure, that is, the internal compression pressure does not follow the demand pressure arbitrarily fast, but in a controlled way. In the case of a rapid change in the take-off pressure in a transition phase, this can also lead to increased throttling or to a blow-off of the product flow in the method according to the invention. In contrast to conventional processes, however, such processes take place only for a short time.
  • the load change system is constantly active in this embodiment of the invention and adjusts the setpoint for the internal compression pressure to the current take-off pressure.
  • the pressure setpoint of the load change system is the sum of the actual decompression pressure and a preselected difference to avoid unnecessary blowdown as the decompression pressure increases.
  • this type of load control can be combined with a load change system for the product quantities.
  • the pressure profile in the gas pressure accumulator is determined based on available information about the future needs of the connected end users. This can be used in the context of the present invention for determining the pressure setpoint for the load change system in order to avoid blowing off product as much as possible.
  • the increased pressure is just above the instantaneous pressure (PA) of the gas pressure accumulator (19);
  • the difference (PIV - PA) between these two pressures is always less than half, in particular less than one third, in particular less than one fifth of the fluctuation range of the pressure of the gas pressure accumulator (19).
  • the fluctuation width of the pressure of the gas pressure accumulator is meant the difference between the permissible maximum pressure and the permissible minimum pressure of the gas pressure accumulator.
  • the invention also relates to a device for producing a printed product by cryogenic air separation according to claim 7.
  • the control or regulating device of claim 7 may be designed as a closed loop control or open loop control.
  • Air 1 is brought to a first pressure P1 in a main air compressor.
  • the compressed air 3 is cleaned in a cleaning device 4.
  • the purified air 5 is branched into a first partial flow 6 and a second partial flow 7.
  • the first partial air stream 6 is cooled in a main heat exchanger 9 to about dew point and flows via the lines 10 and 11 in the distillation column system for nitrogen-oxygen separation, which in the example has a high pressure column and a low pressure column, which has a common capacitor Evaporator, the so-called main capacitor, in heat exchange relationship.
  • the air 11 is introduced into the high-pressure column in a virtually completely gaseous state.
  • the air is decomposed into at least one oxygen-enriched product stream 13 and at least one nitrogen-enriched fraction (not shown).
  • the product stream 13 has, for example, an oxygen content of 98 to 99.5 mol%. It is taken off liquid, for example from the bottom of the low-pressure column or the evaporation space of the main condenser.
  • the liquid product stream 13 is brought to an elevated pressure PIV, which is higher than the operating pressure of the distillation column, from which it was withdrawn, and for example 15 to 30 bar.
  • the oxygen 15 is conducted under the increased pressure in the liquid or supercritical state to the cold end of the main heat exchanger 9 and evaporated in the main heat exchanger or pseudo-evaporated and warmed to about ambient temperature.
  • the product stream as gaseous pressure product 16, 18 exits the plant and is introduced into a gas pressure accumulator 19, which in the embodiment as a pipeline system is trained.
  • a gas pressure accumulator 19 which in the embodiment as a pipeline system is trained.
  • the gaseous pressure oxygen is finally delivered to a fundamentally arbitrary number n of consumers V1 to Vn.
  • the pipeline system also serves as a product buffer.
  • the pressure of the gas pressure accumulator in the embodiment between a maximum allowable pressure of 30 bar and a minimum allowable pressure of 15 bar may vary.
  • the heat required for (pseudo) evaporation supplies a heat transfer stream 21, which is also called internal compression air and a part of the second partial air stream 7, which is post-compressed in a secondary compressor 20 to a high pressure PW which is higher than the first pressure P1 and for example, 30 to 40 bar.
  • This pressure in the partial flow 21/22 is set via the valve 8 or the guide vanes of the compressor 20.
  • the internal compression air 22 flows through the main heat exchanger 9 to the cold end and is thereby condensed in indirect heat exchange with the (pseudo) evaporating oxygen 15 or - pseudo-condensed at supercritical pressure.
  • the internal compression air is released via a valve 30 and enters the nitrogen-oxygen separation distillation column system at 23 in partially liquefied state.
  • Another part 25 of the second partial air stream 7/21 is led out as a turbine stream at an intermediate temperature from the main heat exchanger. Its amount relative to the internal compression air is adjusted via the turbine blades.
  • the ratio of the flow rates of the first partial flow 6 and second partial flow 7/21 is set via a pressure relief valve 30 in partial flow 22.
  • the turbine air 25 is expanded in an expansion turbine 26 to approximately the operating pressure of the high-pressure column.
  • the expanded turbine air 27 is introduced together with the first partial flow 10 via line 11 into the high pressure column of the distillation column system for nitrogen-oxygen separation 12.
  • the turbine 26 is in the embodiment an essential element of the refrigeration system of the system.
  • the outlet pressure of the pump 14 is adapted to the instantaneous take-off pressure.
  • the pump 14 is set at an outlet pressure which is about 0.5 to 2 bar above the instantaneous take-off pressure. A certain difference is useful as a margin in order not to have to blow off the gaseous pressure product 16 immediately via the line 28 and valve 29 even with an increase in the take-off pressure.
  • the corresponding fine adjustment is made by the valve 18, in which, however, only a slight pressure reduction is made.
  • both the mass flows and the various pressures in the air separation plant are controlled by a central process control system (not shown) which is run by an automatic load change system.
  • the valves 8 and 30 are controlled, which determine the amount and pressure of the internal compression air 22, the valve 24 for determining the amount of turbine air 25, the pump 14 for determining the current amount of oxygen product, and the valve 18 for fine adjustment of the Product pressure to the take-off pressure.
  • the process control system can also close the valve 18 temporarily and blow off the gaseous pressure product via the line 28 and the valve 29 into the atmosphere.
  • FIG. 2 shows qualitatively in the upper part an exemplary time profile of the take-off pressure PA and the internal compression pressure PIV over a period of five hours plotted along the x-axis.
  • the lower part of the diagram of Figure 2 represents the time course of the amount that is discharged from the gas pressure accumulator to the consumer (solid line).
  • the decompression pressure PA may be within the fluctuation range of the gas pressure accumulator pressure between a minimum operating pressure (min) and a maximum operating pressure (max) move.
  • min minimum operating pressure
  • max maximum operating pressure
  • the course of the take-off pressure PA is followed by the inner compression pressure PIV (the “increased pressure") shown in dashed lines in principle with some distance and delay.
  • the difference PIV - PA is less than one third of the fluctuation range of the pressure of the gas pressure accumulator.
  • the internal compression pressure PIV can not be changed arbitrarily fast, so that even in the method according to the invention for short-term blowing off of product can occur (see dashed line below in Figure 2). However, the blow-off quantity can be kept low by the invention.
  • the minimum operating pressure (min) is 20 bar and the maximum operating pressure is 35 bar; the difference PIV - PA is below 2 bar, preferably in the range between 0.5 and 1 bar.
  • the invention is to be applied to any other internal compression process, in particular to those with different refrigeration with one or more turbines blowing air into the high pressure column and / or into the low pressure column or relaxing a nitrogen enriched fraction from one of the columns of the distillation column system 12.
  • the control according to the invention can be further refined by evaluating information about the future consumption quantities of the consumers V1 to Vn and from this a prediction for future values of the take-off pressure is obtained, for example according to the EP 1542102 A1 described method.
  • the load change system can then early on move the state of the air separation plant in a direction that the required in the future, interior compression pressure PIV equivalent. In this way, an even better adaptation of the course of the internal compression pressure to the take-off pressure can be achieved, which contributes significantly to avoid the temporary blowing off of product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP07005943A 2006-04-13 2007-03-22 Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air Withdrawn EP1845324A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06007760A EP1845323A1 (fr) 2006-04-13 2006-04-13 Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air

Publications (1)

Publication Number Publication Date
EP1845324A1 true EP1845324A1 (fr) 2007-10-17

Family

ID=36954660

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06007760A Withdrawn EP1845323A1 (fr) 2006-04-13 2006-04-13 Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
EP07005943A Withdrawn EP1845324A1 (fr) 2006-04-13 2007-03-22 Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06007760A Withdrawn EP1845323A1 (fr) 2006-04-13 2006-04-13 Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air

Country Status (5)

Country Link
US (1) US20080047298A1 (fr)
EP (2) EP1845323A1 (fr)
KR (1) KR20070101794A (fr)
CN (1) CN101063592A (fr)
TW (1) TW200834025A (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983287B1 (fr) * 2011-11-25 2018-03-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation de separation d'air par distillation cryogenique
EA033274B1 (ru) * 2014-04-15 2019-09-30 Линде Акциенгезелльшафт Способ и устройство для низкотемпературного разложения воздуха
US10260802B2 (en) * 2016-06-30 2019-04-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for operating an air separation plant
US10302356B2 (en) * 2016-06-30 2019-05-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air
US10281207B2 (en) * 2016-06-30 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air with variable liquid production and power usage
US10260801B2 (en) * 2016-06-30 2019-04-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes George Claude Method for operating an air separation plant
US10281206B2 (en) * 2016-06-30 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the production of air gases by the cryogenic separation of air with variable liquid production and power usage
US10267561B2 (en) * 2016-06-30 2019-04-23 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the production of air gases by the cryogenic separation of air
CN109642771B (zh) * 2016-06-30 2021-07-23 乔治洛德方法研究和开发液化空气有限公司 操作空气分离装置的方法和设备
CA3029667A1 (fr) * 2016-06-30 2018-01-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methode et appareil pour la production de gaz a l'air par la separation cryogenique d'air
EP3699535A1 (fr) * 2019-02-19 2020-08-26 Linde GmbH Procédé et installation de séparation d'air permettant de fournir de manière variable un produit dérivé de l'air gazeux sous pression
EP3699534A1 (fr) * 2019-02-19 2020-08-26 Linde GmbH Procédé et installation de séparation d'air permettant de fournir de manière variable un produit dérivé de l'air gazeux sous pression

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471843A (en) * 1993-06-18 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
DE10103957A1 (de) * 2001-01-30 2002-08-01 Linde Ag Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
US6666049B1 (en) * 2003-03-20 2003-12-23 Praxair Technology, Inc. Method for operating a cryogenic plant
EP1542102A1 (fr) * 2003-12-10 2005-06-15 Linde Aktiengesellschaft Procédé et dispositif de commande sous-optimal au moyen d'une stratégie de recherche et procédé et dispositif de séparation d'air, notamment de séparation d'air cryogénique
EP1586838A1 (fr) * 2004-04-06 2005-10-19 Linde Aktiengesellschaft Procédé et dispositif pour la production variable d'un produit comprimé par séparation cryogénique d'air
JP2006002958A (ja) * 2004-06-15 2006-01-05 Jfe Steel Kk 酸素ガス需給システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1479561A (fr) * 1966-03-25 1967-05-05 Air Liquide Procédé de preoduction d'un gaz en débit variable
FR2680114B1 (fr) * 1991-08-07 1994-08-05 Lair Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
US6697713B2 (en) * 2002-01-30 2004-02-24 Praxair Technology, Inc. Control for pipeline gas distribution system
US6694776B1 (en) * 2003-05-14 2004-02-24 Praxair Technology, Inc. Cryogenic air separation system for producing oxygen
US20070220918A1 (en) * 2006-03-24 2007-09-27 Scharf Paul F Pressure setting method for gas pipeline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471843A (en) * 1993-06-18 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
DE10103957A1 (de) * 2001-01-30 2002-08-01 Linde Ag Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
US6666049B1 (en) * 2003-03-20 2003-12-23 Praxair Technology, Inc. Method for operating a cryogenic plant
EP1542102A1 (fr) * 2003-12-10 2005-06-15 Linde Aktiengesellschaft Procédé et dispositif de commande sous-optimal au moyen d'une stratégie de recherche et procédé et dispositif de séparation d'air, notamment de séparation d'air cryogénique
EP1586838A1 (fr) * 2004-04-06 2005-10-19 Linde Aktiengesellschaft Procédé et dispositif pour la production variable d'un produit comprimé par séparation cryogénique d'air
JP2006002958A (ja) * 2004-06-15 2006-01-05 Jfe Steel Kk 酸素ガス需給システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable

Also Published As

Publication number Publication date
EP1845323A1 (fr) 2007-10-17
TW200834025A (en) 2008-08-16
CN101063592A (zh) 2007-10-31
KR20070101794A (ko) 2007-10-17
US20080047298A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
EP1845324A1 (fr) Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
EP0399197B1 (fr) Procédé et dispositif pour la séparation d'air à basse température
DE69201526T2 (de) Verfahren und System zur Reglung einer kryogenen Lufttrennungseinheit bei schnellen Produktionsänderungen.
DE69727648T2 (de) Verfahren und Anlage zur Lieferung eines Luftgases in variablen Mengen
WO2007033838A1 (fr) Procede et dispositif pour analyser la temperature de l'air
EP1892490A1 (fr) Procédé et dispositif de production variable d'un produit comprimé par séparation cryogénique d'un gaz
DE102005029274A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
WO1997004279A1 (fr) Procede et dispositif de production variable d'un produit gazeux comprime
EP2963370B1 (fr) Procede et dispositif cryogeniques de separation d'air
DE10115258A1 (de) Maschinensystem und dessen Anwendung
EP2963369B1 (fr) Procede et dispositif cryogeniques de separation d'air
EP2979051B1 (fr) Procédé et dispositif permettant de produire avec une consommation d'énergie variable de l'oxygène sous pression sous forme gazeuse
EP3019803B1 (fr) Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie
DE4415747C2 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1239246B2 (fr) Procédé et dispositif de séparation d'un mélange de gaz avec système à sûreté
EP3699535A1 (fr) Procédé et installation de séparation d'air permettant de fournir de manière variable un produit dérivé de l'air gazeux sous pression
EP3864357A1 (fr) Procédé pour produire un ou plusieurs produits formés à partir d'air et installation de séparation d'air
DE4441920C1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung
DE10249383A1 (de) Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
DE2605647A1 (de) Verfahren und vorrichtung zur erzeugung von gasfoermigem sauerstoff durch zweistufige tieftemperaturrektifikation von luft
EP0942246A2 (fr) Procédé et appareil pour la séparation de l'air
EP3699534A1 (fr) Procédé et installation de séparation d'air permettant de fournir de manière variable un produit dérivé de l'air gazeux sous pression
DE10130754A1 (de) Regelung einer Luftzerlegungsanlage mit Argongewinnung
EP1052465A1 (fr) Procédé et appareil pour la séparation cryogénique de l'air
DD299450A5 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

17P Request for examination filed

Effective date: 20080408

17Q First examination report despatched

Effective date: 20080520

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101001