EP1827723B1 - Regulierung der ebenheit eines metallbands am ausgang eines walzenständers - Google Patents

Regulierung der ebenheit eines metallbands am ausgang eines walzenständers Download PDF

Info

Publication number
EP1827723B1
EP1827723B1 EP05848239A EP05848239A EP1827723B1 EP 1827723 B1 EP1827723 B1 EP 1827723B1 EP 05848239 A EP05848239 A EP 05848239A EP 05848239 A EP05848239 A EP 05848239A EP 1827723 B1 EP1827723 B1 EP 1827723B1
Authority
EP
European Patent Office
Prior art keywords
flatness
dynamic
actuators
strip
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05848239A
Other languages
English (en)
French (fr)
Other versions
EP1827723A1 (de
Inventor
Sébastien MARTIN
Franck Serval
Laurent Dorel
Yves Leclercq
Rodolphe Le Riche
Xavier Bay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clecim SAS
Original Assignee
Siemens VAI Metals Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VAI Metals Technologies SAS filed Critical Siemens VAI Metals Technologies SAS
Publication of EP1827723A1 publication Critical patent/EP1827723A1/de
Application granted granted Critical
Publication of EP1827723B1 publication Critical patent/EP1827723B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending

Definitions

  • the present invention relates to the regulation of the flatness of a metal strip at the exit of a roll stand equipped with a flatness control means comprising at least one dynamic flatness actuator, see for example FR-A 2,553,312 .
  • the manufacture of flat metal products, such as strips, for example, is generally carried out by rolling and generally by rolling on rolling mills consisting of a plurality of cages comprising rolls intended to crush the rolled strip, disposed behind each other and traversed successively by the band.
  • This rolling can be carried out either hot when the strip is obtained by rolling a slab heated beforehand or after continuous casting of thin strips, or cold when the strip is obtained by a complementary lamination of a strip previously obtained by hot rolling. In both cases, at the exit of the rolling mill the strip is wound.
  • the transverse profile of the strips obtained is generally not perfectly rectangular.
  • the elongations of the different longitudinal fibers of the strip are not identical. This can result in flatness defects which result in non-developable corrugations distributed over a portion of the width of the strip.
  • These undulations can be located either in the axis of the band, it is said that there is a long center defect, either on one or on both edges of the band, it is said that there are edges long, then in intermediate parts between the axis of the strip and the edges of the strip.
  • flatness defects can nevertheless be measured by suitable means which are, for example, flatness measuring rollers.
  • the strips are rolled on rolling mills composed of so-called quarto cages, that is to say cages comprising two working rolls each resting on a support roll of larger diameter, but the bands can also be rolled on so-called sexto cages, whose working cylinders rely on lateral cylinders movable in lateral translation which themselves rely on support cylinders of larger diameter.
  • the transverse profile of the strips at the outlet of each rolling stand can be at least partially controlled, and therefore the problems of flatness can be limited.
  • This control can be carried out by adjusting the machining crown of the rolls, that is to say the variation of the diameter of the rolls according to their length made during the machining of their surface, by carrying out a bending of the rolls, that is to say a resulting bending (exerted on the cylinder journals) of counter-bending forces and opposing the bending forces resulting from the rolling forces, ensuring a slight cross-section of the axis of the working cylinders relative to the axis of the support cylinders, which modifies the bearing conditions of the working rolls on the support rollers and, consequently, the transverse distribution of the pressures on the rolls and therefore deformation cylinders.
  • Variable curvature cylinders have also been devised which are bearing cylinders consisting of a movable outer casing rotatably mounted around a support and connected to this support by means of jacks that can exert pressure towards the support. gap between working cylinders. These cylinders, arranged along the variable curvature cylinder, can adjust at will the pressure distribution of the support cylinders on the working cylinder according to the width of the strip which is laminated.
  • All these adjustment means of the rolling mills can be prepositioned before the rolling of a strip, which theoretically makes it possible to obtain a strip having the desired thickness profile and which is either flat or has a controlled defect.
  • actuator whose settings can be modified during rolling are so-called dynamic actuator adjustment parameters, that is to say actuator whose settings can be modified during rolling. Indeed, of all the actuators that have been indicated, some can not be modified during rolling simply because the efforts that should be made would be too important, or that can not be because of their nature. .
  • Actuators that can not be adjusted during rolling are so-called static actuators. These are for example the cylindrical machining crown, the lateral translation of an intermediate cylinder of a sexto cage or the crossing of the working cylinders.
  • the other actuators called dynamic actuators because they can be modified during rolling, are the cambering of the working cylinders or possibly intermediate cylinders, if any, each adjustment cylinder of the crown of a cylinder with variable curvature , the opening or closing of this or that nozzle of a watering boom, and finally the tilting of the cylinders.
  • the measurements made by a flatness measuring device are usually used to represent the unevenness of the strip in the form of a polynomial approximation.
  • This polynomial approximation is used to determine instructions to be applied by the dynamic actuators available on the mill stand considered.
  • This method based on a polynomial approximation, has the disadvantage of not being very precise and, moreover, of being difficult to apply to control a complex dynamic flatness actuator, such as an adjustable curved roller which, in reality corresponds to a plurality of independent elementary actuators.
  • the object of the present invention is to overcome this drawback by proposing a means for driving dynamic flatness actuators during rolling of a thin metal strip which is more accurate than the known means of the prior art and especially which can easily apply to driving complex actuators, such as adjustable curved rollers.
  • the subject of the invention is a method for regulating the flatness of a metal strip at the exit of a rolling mill cage comprising a flatness control means comprising at least one dynamic flatness actuator.
  • the flatness of the strip is characterized by the measurement of a quantity D at n points distributed over the width of the strip. From the n measurements of the quantity D, and using an action model of the planarity control means on the flatness and an optimization method, a global setpoint is determined for the regulation means, said global setpoint comprising at least one elementary setpoint for a dynamic actuator, such that a residual error criterion of calculated flatness is minimal. Then the global instruction is executed by the flatness control means.
  • the action model on the flatness used to determine the global set point is constituted for the dynamic actuator, as many sub-models as there are points of measurement of the magnitude D characteristic of the flatness, each sub-model for calculating the effect on the magnitude D at the corresponding point of the corresponding dynamic actuator when a setpoint is applied thereto.
  • the global setpoint is determined so that the application of the global setpoint is compatible with the operating constraints of the actuators.
  • the dynamic actuator or actuators are constituted for example by at least one of the following means: adjustment of the cambering of the working rolls or intermediate rolls, internal adjustment cylinder of the pressure of a variable convex support roll, watering nozzle, tilting rolls.
  • the flatness control means comprises a plurality of dynamic actuators
  • the global setpoint comprises an elementary setpoint for each of the dynamic actuators and to determine the overall setpoint, for example, the sum of the effects of each of the actuators is calculated. dynamics on the flatness to determine the residual defect of calculated flatness.
  • the action model of a dynamic actuator is a function of the width of the band.
  • the flatness control means may furthermore comprise at least one static flatness actuator preset before rolling of the strip, depending on the width of the strip to be rolled and the models of dynamic actuators may be determined taking into account the presetting instructions for static actuators.
  • the at least one static actuator is for example the lateral translation of the cylinders or the crossing of the cylinders.
  • the calculated residual flatness criterion may be a positive increasing function of at least one standard of the difference between the calculated residual flatness defect and a targeted flatness defect.
  • the residual error criterion of calculated flatness can, for example, be the quadratic difference of the calculated residual defect.
  • the residual error criterion of calculated flatness can also be the maximum amplitude of the calculated residual defect.
  • the default criterion can also be a combination of the two preceding criteria.
  • the calculated residual flatness defect criterion may further include a static cost factor and / or a dynamic cost factor.
  • the number n of measuring points of the magnitude D characteristic of the flatness is a function of the width of the strip.
  • the quantity D is measured, for example, by means of a flatness measuring device such as a flatness measuring roller comprising a plurality of measurement zones distributed transversely across the width of the rolling line.
  • a flatness measuring device such as a flatness measuring roller comprising a plurality of measurement zones distributed transversely across the width of the rolling line.
  • the evaluation of the flatness defect, the definition of the adjustment instructions of the dynamic actuators and the adjustment of the dynamic actuators is done at successive time intervals.
  • the successive time intervals may be a function of the running speed of the band, and for example be inversely proportional to this speed.
  • Rolling presets and action models of elementary actuators can be determined using a rolling mill simulation model.
  • an overall setpoint for the control means is determined using a preferred action model, at least one adjustment of a setpoint of a preferred dynamic actuator setting and we take into account this or these adjustments to determine the overall set point for the regulating means.
  • the preferred dynamic actuator may be the camber of the work rolls.
  • the method according to the invention can be implemented by computer, and it is applied, in particular to cold rolling.
  • the invention finally relates to the software for implementing the method.
  • a roll stand of a continuous train comprising at least one static flatness actuator and at least one dynamic flatness actuator is used. These flatness actuators will be specified later.
  • a flatness measuring means Downstream of this roll stand is a flatness measuring means which determines the flatness by measurements made at different points arranged transversely on the strip.
  • the flatness measuring means is for example a flatness roller having a length equal to the width of the rolling line.
  • this flatness roller is disposed a plurality of sensors arranged at specific distances, on which the strip is supported.
  • the number of active sensors is a function of the width of the band. Indeed, only the sensors that interfere with the band, that is to say the sensors that are arranged on a line of length less than or equal to the width of the band, are activated.
  • a rolled strip may be narrower than the width of the rolling line.
  • the flatness measuring device thus characterizes the flatness of the strip at the time of the measurement, that is to say at a given point by a series of magnitude each corresponding to the measurement of a sensor. All these measurements constitute a vector of dimension n, n being a function of the width of the band and equal to the number of activated sensors.
  • D the characteristic quantity of the flatness
  • dynamic actuator is meant here a means of adjusting the rolling mill whose adjustment can be defined by a single parameter and which can be modified independently of the other dynamic actuators available on the rolling mill.
  • a dynamic actuator is for example the bending of the working rolls or the cambering of the intermediate rolls, or the action on a single actuating cylinder of a variable curvature cylinder, or a watering nozzle a watering ramp.
  • irrigation boom consisting of several nozzles arranged next to each other, each of the nozzles can be controlled individually. It is the same of the different cylinders of a cylinder with variable curvature.
  • the models that are used to determine the actions to be exerted on each of these dynamic actuators in order to regulate the flatness are linear models by which the effect of a specific actuator on the Flatness is represented by a one-column matrix whose number of elements is equal to the number of active flatness measurement zones.
  • the matrix of the dynamic actuator j is a column matrix P j having n elements.
  • P j P 1 ⁇ j P 2 ⁇ j ⁇ P nj
  • the operating model of the actuator is a model that depends on the width of the sheets or strips that will be rolled.
  • the effect of the actuator in each of the measurement points of the flatness is a linear effect, therefore proportional to the adjustment variation of this actuator.
  • the setting parameter is the bending effort.
  • the effect of this bending on the different points arranged on the width of the strip will be magnitudes proportional to the bending force, the coefficient of proportionality being the corresponding coefficient of the bending effect matrix. It is the same for each of the cylinders of a cylinder with variable curvature.
  • each of the dynamic actuators is represented by a column matrix of action coefficient and thus the effect of all the actuators on the flatness is represented by a rectangular matrix comprising n rows n being the number of areas on which the flatness defects of the strip are measured, and m columns, where m is the number of independent dynamic actuators.
  • the problem to be solved in order to find the optimum setting of the rolling mill which minimizes the lack of flatness which has just been measured then consists in determining the mill setpoint reference vectors such as a difference between the flatness defect vector which has just been obtained. be measured and the vector representing the effect of the dynamic actuators on the flatness is the lowest possible.
  • This gap can be defined in several ways. According to a first mode, this difference can be designated by the square of the norm of the difference between the fault vector and the compensation vector. This is a quadratic optimization mode.
  • the deviation can also be defined as the maximum amplitude of the difference between the flatness effect vector and the compensation vector.
  • This calculation which therefore consists in minimizing a quantity that is a function of the amplitude of a deviation of a calculated residual defect, is done in a range that is defined by the adjustment constraints of each of the actuators. Indeed, the actions that can be exerted on each of the actuators are limited by the capacity of the actuators and other constraints relating to the safety of the rolling mill. In order for the control to work in a realistic way, it is necessary to determine adjustment instructions for each of the actuators which are instructions compatible with the actual possibilities of the roll stand.
  • the coefficients b i may depend on the actual settings x i of the actuators.
  • solving the optimization problem can use, for example, Wolfe's method of solving a linear problem built from the Khun and Tucker conditions, using a method similar to that of the simplex.
  • the setting instructions of the dynamic actuators that are determined are adjustment adjustment instructions of the dynamic actuators and not the absolute adjustment instructions.
  • the lack of flatness that is measured is a residual flatness defect resulting from the characteristics of the band and a prior adjustment of the cage, that is to say the setting that pre-exists the effect of dynamic regulation.
  • the quantities that one determines for the actuators are then deviations of adjustment which must be imposed on the dynamic actuators so as to compensate for the remaining residual flatness that has just been measured. These quantities constitute a vector ⁇ x .
  • F cost ⁇ ⁇ ⁇ D v - D - at ⁇ 2 + ⁇ ⁇ u + v + BOY WUT d ⁇ x C dyn + BOY WUT s x VS stat
  • G d and G s are gains that can be adjusted at will.
  • the matrix P of the linear problem does not include a column corresponding to the watering nozzles.
  • This method is of interest, not only because it is more accurate than the control methods according to the prior art and is well suited to complex or multiple actuators, but also because it minimizes the amplitude of the flatness defect, which corresponds to a non-differentiable criterion and therefore impossible to regulate by conventional control means.
  • control method which has just been described is implemented by an automation comprising at least one computer.
  • an automation is considered to regulate the flatness of a metal strip 1 at the exit of a roll stand generally marked by 2, comprising, in a manner known per se and without being limiting, two working rolls 3, 3 'between which the band 1 is crushed, which rely on two support cylinders 4, 4'.
  • the working rolls are driven, in known manner, by motors not shown.
  • the roll stand comprises static and dynamic actuators from among those mentioned above, as well as means 5 for adjusting these various actuators.
  • the actuator setting means 5 may receive signals defining set points and may transmit signals representing the actual settings of each of the actuators.
  • the strip 1 Downstream of the roll stand 2, the strip 1 passes over a flatness measuring means 6 which may be a flatness measuring roller known per se.
  • the automatism of flatness comprises a regulation model 8 implanted in the form of software on a process control computer.
  • the regulation model 8 develops actuator adjustment instructions from measurements made on the roll stand and on the strip, using parameters determined using a simulation model 7 of the interaction of the roll stand and a strip during rolling.
  • the simulation model 7 is implemented in the form of software on a computer which can be both the aforementioned process control computer and a computer operating offline.
  • Such a simulation model of rolling on a cage is known in itself to the skilled person. From data relating to the rolling mill and data relating to the strip to be rolled, for example the width of the strip, the transverse profile in thickness before rolling, the nature and the characteristics of the material, etc., it makes it possible to calculate by for example, the transverse thickness profile at the cage outlet, the elongation of the longitudinal fibers of the strip, the temperature variations of the strip, the rolling force, the rolling torque, etc.
  • the model also makes it possible to determine the optimal theoretical settings of the various actuators of the rolling mill.
  • the simulation model makes it possible to calculate the action coefficients of the actuators on a flatness defect.
  • These coefficients are the coefficients P ij of the matrix P of the regulation model as defined above.
  • the regulation model 8 is a model which, by using the matrix P corresponding to the rolling plate and to the mill's preset presets, calculates adjustment instructions of the dynamic actuators from the flatness measurements.
  • the regulation model 8 consists of a module 16 for solving the linear or quadratic programming problem needed to determine the optimal adjustments ⁇ x of the dynamic actuators, as well as the module 18 for developing the adjustment instructions x of the dynamic actuators. depending on the one hand optimal adjustments of instructions and on the other hand the speed of rolling.
  • the module 18 develops, as a function of the rolling speed, a sending of the setpoint to the actuators in the form of a succession of successive partial adjustments such that, at the end of this process, the adjustment set point of the actuators is equal to the setpoint defined by the module 16 of the regulation.
  • Two successive phases are considered, on the one hand, a preparatory phase prior to the rolling of a particular strip, during which orders of presetting of the rolling stand and the coefficients of the regulation model are determined, and on the other hand a regulation phase proper corresponding to the actual rolling of a strip.
  • the characteristics 9 of a strip to be rolled are introduced into the simulation model 7, whose parameters 9 Representative of the roll stand have been adjusted in a manner known per se to correspond to the stand on which it is desired to carry out the rolling.
  • an overall presetting instruction 10 of the roll stand is calculated. corresponding to the theoretical preset for laminating at best a strip having the characteristics introduced in the model.
  • This global setpoint 10 consists of a vector x 0 corresponding to the setpoints for the dynamic actuators, having as much dimension as there are elementary dynamic actuators, and a vector y 0 corresponding to the setpoints for the static actuators, having as many dimensions as there are elementary static actuators.
  • the model also calculates a linearised model of action of the dynamic actuators on the flatness, in the vicinity of the set points x 0 .
  • This linearized model is the matrix P making it possible to calculate the action a of a variation of setpoints ⁇ x on the flatness.
  • the corresponding characteristics 9 are introduced into the model 7.
  • the model calculates the setpoints x 0 and y 0 (represented by 10 in the figure) which are sent to the adjusting means 5 of the rolling stand, and the matrix P corresponding to the linearized model (represented by 11 in the figure) which is sent to the regulation model 8.
  • priors and matrices of the linear model are calculated a priori for a set of tape formats ensuring a good grid of the possible formats and qualities of webs. we want to be able to manufacture.
  • the presets and the linear models thus obtained are stored in files and, when a tape is In particular, we will look in the files for the corresponding parameters that are transferred to the control means of the roll stand (adjustment of the actuators and control model), as in the previous case.
  • the simulation model 7 is not active.
  • the regulation model 8 has received the quantities 11, corresponding to the matrix P , and various parameters 12 corresponding to the regulation model that the operator can choose or that a management means of the rolling mill can impose.
  • the parameters 12, the flatness error measurements 13, and the settings of the actuators 15 ' are sent to an optimization module 16, included in the regulation model 8.
  • the optimization module 16 is the module that formats and solves the constrained optimization problem and thus calculates a target for the setpoints 17 for the dynamic actuators.
  • the target for the instructions 17 is then sent to the module 18 which, as a function of a target response time, continuously calculated from the rolling speed 14, response times of the sensors and actuators to obtain the best response dynamic, determines instantaneous setpoints 15 sent at each instant to the setting means 5 of the cage so that, at the latest at time t + ⁇ t, the actuator settings are equal to the target setpoint x (t + At).
  • the cost function excluding static cost and dynamic cost, has been defined by a quadratic difference criterion or a maximum amplitude criterion of the residual flatness defect. But other criteria can be chosen according to the needs.
  • the flatness regulation just described takes into account flatness error measurements, flatness actuator setting instructions and the rolling speed. But he can, moreover, take into account additional parameters such as the rolling force or the tensile force of the strip, which may vary during rolling and have an impact on the flatness, and use the additional parameter (s) to preferentially adjust certain dynamic actuators of which the effects have a particular interaction with the additional parameter (s) taken into account.
  • additional parameter taken into account is the rolling force
  • the preferred actuator may be the cambering of the working rolls.
  • each instantaneous measurement of additional parameters is sent to the model which compares it with a reference value and which deduces at least a setpoint adjustment of a preferred flatness actuator.
  • This or these adjustments are made via preferential action models obtained in the same way as the action model of the regulation means defined above. Once these adjustments are determined, they are introduced into the regulation model to determine the optimal adjustments of the dynamic actuator settings by the optimization method described above.
  • this method can be applied to rolling trains consisting of a succession of cages whether they are of the "coil-to-coil” type or of the “continuous-flow” type. But it can be applied also to isolated cages.
  • the flatness measuring means can be of any type and in particular be flatness measuring rollers such as described for example in the patent. FR 2,468,878 .
  • the flatness measuring means may be known means of laser triangulation.
  • the dynamic actuators are not limited to those which have been mentioned, for example the variable domed support cylinder described for example in the patent FR 2,553,312 . Any dynamic actuator can be taken into account.
  • the flatness control devices apply to single-stage rolling mills or to the last cage of a multi-tandem. But, they can apply to the other cages of a tandem, and in particular to the first cage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Claims (23)

  1. Verfahren zur Regulierung der Ebenheit eines Metallbands (1) am Ausgang eines Walzenständers (2), in dem ein Mittel zur Regulierung der Ebenheit (5) mit mindestens einem dynamischen Stellglied für die Ebenheit enthalten ist, gemäß dem während des Walzens die Ebenheit des Bands (1) festgestellt wird, indem ein Maß D durch n Messungen des Maßes D an n über die Breite des Bands (1) verteilten Punkten bestimmt wird und unter Anwendung eines Aktionsmodells zur Regulierung der Ebenheit (3) auf die Ebenheit und einer Optimierungsmethode ein globaler Einstellwert (15) für das Regulierungsmittel (5) festgelegt wird, wobei der genannte globale Einstellwert (15) mindestens einen Basiseinstellwert für ein dynamisches Stellglied enthält, derart, dass ein Kriterium aus dem berechneten Restfehler der Ebenheit minimal wird und der globale Einstellwert (15) auf das Mittel zur Regulierung der Ebenheit (5) angewandt wird,
    gekennzeichnet dadurch, dass das Aktionsmodell für die Ebenheit (8), das zur Feststellung des globalen Einstellwerts (15) verwendet wird, für jedes dynamische Stellglied aus so vielen Untermodellen besteht, wie es Messpunkte für das Maß D als Ausdruck der Ebenheit gibt, wobei jedes Untermodell es gestattet, die Auswirkung des entsprechenden dynamischen Stellglieds auf das Maß D am entsprechenden Punkt zu berechnen, wenn am Stellglied ein Einstellwert verwendet wird.
  2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass der globale Einstellwert derart festgelegt wird, dass die Anwendung des globalen Einstellwerts kompatibel mit den Funktionsbeschränkungen der Stellglieder ist.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, gekennzeichnet dadurch, dass mindestens eins der dynamischen Stellglieder durch eins der folgenden Mittel gebildet wird: Regulierung der Durchbiegung der Arbeitswalzen oder Zwischenwalzen, interner Regelzylinder für den Druck in einem Stützzylinder, Sprengdüse, Kippen der Walzen.
  4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet dadurch, dass das Mittel zur Regulierung der Ebenheit mehrere dynamische Stellglieder enthält, dass der globale Einstellwert einen Basiseinstellwert für jedes der dynamischen Stellglieder enthält, und dass zur Festlegung des globalen Einstellwerts die Summe der Auswirkungen jedes dynamischen Stellglieds auf die Ebenheit berechnet wird, um den berechneten Restfehler der Ebenheit zu bestimmen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, gekennzeichnet dadurch, dass das Aktionsmodell eines dynamischen Stellglieds von der Breite des Bands abhängt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet dadurch, dass das Mittel zur Regulierung der Ebenheit darüber hinaus mindestens ein in Abhängigkeit der Bandbreite vor dem Walzen des Bands voreingestelltes statisches Stellglied enthält und dadurch, dass die Modelle der dynamischen Stellglieder die Werte für die Voreinstellung der statischen Stellglieder berücksichtigen.
  7. Verfahren nach Anspruch 6, gekennzeichnet dadurch, dass mindestens ein statisches Stellglied der seitlichen Verschiebung der Walzen oder dem Koppeln der Walzen entspricht.
  8. Verfahren nach einem der Ansprüche 1 bis 7, gekennzeichnet dadurch, dass das Kriterium des berechneten Restfehlers der Ebenheit durch mindestens eine zunehmende, positive Standardfunktion über die Abweichung zwischen dem berechneten Restfehler der Ebenheit und einem angestrebten Fehler ist.
  9. Verfahren nach Anspruch 8, gekennzeichnet dadurch, dass der berechnete Restfehler der Ebenheit dem Quadrat der Abweichung des berechneten Restfehlers von einem angestrebten Fehler entspricht.
  10. Verfahren nach Anspruch 8, gekennzeichnet dadurch, dass das Kriterium des berechneten Restfehlers der Ebenheit dem größten Wert der Abweichung des berechneten Restfehlers vom angestrebten Fehler entspricht.
  11. Verfahren nach Anspruch 8, gekennzeichnet dadurch, dass das Kriterium des berechneten Restfehlers der Ebenheit einer linearen Kombination aus der Abweichung im Quadrat und dem maximalen Wert der Abweichung zwischen berechnetem Restfehler und angestrebtem Fehler entspricht.
  12. Verfahren nach einem der Ansprüche 8 bis 11, gekennzeichnet dadurch, dass das Kriterium des berechneten Restfehlers der Ebenheit darüber hinaus einen statischen und/oder dynamischen Kostenfaktor enthält.
  13. Verfahren nach einem der Ansprüche 1 bis 12, gekennzeichnet dadurch, dass die Anzahl n der Messpunkte des Maßes D, das die Ebenheit angibt, von der Breite des Bands abhängt.
  14. Verfahren nach Anspruch 13, gekennzeichnet dadurch, dass das Maß D mithilfe einer Vorrichtung zur Messung der Ebenheit gemessen wird, zum Beispiel mit einer Messwalze für die Ebenheit, an der mehrere Messzonen angeordnet sind, die quer über die Breite der Überwalzung verteilt sind.
  15. Verfahren nach einem der Ansprüche 1 bis 14, gekennzeichnet dadurch, dass die Auswertung des Ebenheitsfehlers, die Festlegung der Einstellwerte zur Regulierung der dynamischen Stellglieder und die Regulierung der dynamischen Stellglieder in aufeinander folgenden Zeitintervallen geschehen.
  16. Verfahren nach Anspruch 15, gekennzeichnet dadurch, dass die aufeinander folgenden Zeitintervalle von der Bandlaufgeschwindigkeit abhängen.
  17. Verfahren nach einem der Ansprüche 1 bis 16, gekennzeichnet dadurch, dass die Voreinstellungen für das Walzen und die Aktionsmodelle der Grundstellglieder unter Verwendung eines Simulationsmodells für das Walzen in einem Ständer festgelegt werden.
  18. Verfahren nach Anspruch 17, gekennzeichnet dadurch, dass vor dem Walzen eines Bandes mithilfe eines Walzsimulationsmodells Werte für die Voreinstellung der statischen und dynamischen Stellglieder entsprechend des Bandwalzens berechnet werden, neben den Voreinstellungswerten durch Linearisierung Aktionsmodelle der dynamischen Grundstellglieder berechnet werden, der Walzenständer voreingestellt wird und die Parameter der Aktionsmodelle der dynamischen Grundstellglieder an eine Regulierungsvorrichtung gesendet werden.
  19. Verfahren nach einem der Ansprüche 1 bis 18, gekennzeichnet dadurch, dass darüber hinaus mindestens ein zusätzlicher Walzparameter gemessen wird, wie insbesondere die Walzenanpressung oder die Zugkraft und dadurch, dass vor der Festlegung eines globalen Einstellwerts mithilfe des Aktionsmodells für das Regulierungsmittel und einer Optimierungsmethode mithilfe eines bevorzugten Aktionsmodells mindestens eine Anpassung eines Einstellwerts zur Regulierung eines bevorzugten dynamischen Stellglieds festgelegt wird und diese Anpassung oder diese Anpassungen bei der Festlegung des globalen Einstellwerts für das Regulierungsmittel berücksichtigt wird.
  20. Verfahren nach Anspruch 19, gekennzeichnet dadurch, dass das bevorzugte dynamische Stellglied die Durchbiegung der Arbeitswalzen ist.
  21. Verfahren nach einem der Ansprüche 1 bis 20, gekennzeichnet dadurch, dass es durch einen Computer umgesetzt wird.
  22. Verfahren nach einem der Ansprüche 1 bis 21, gekennzeichnet dadurch, dass es auf das Kaltwalzen angewandt wird.
  23. Computerprogramm, das auf einem Informatikgerät geschrieben werden kann, um alle Verfahrensschritte nach einem der Ansprüche 21 oder 22 umzusetzen.
EP05848239A 2004-12-22 2005-12-09 Regulierung der ebenheit eines metallbands am ausgang eines walzenständers Active EP1827723B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413753A FR2879486B1 (fr) 2004-12-22 2004-12-22 Regulation de la planeite d'une bande metallique a la sortie d'une cage de laminoir
PCT/FR2005/003097 WO2006070087A1 (fr) 2004-12-22 2005-12-09 Regulation de la planeite d'une bande metallique a la sortie d'une cage de laminoir

Publications (2)

Publication Number Publication Date
EP1827723A1 EP1827723A1 (de) 2007-09-05
EP1827723B1 true EP1827723B1 (de) 2011-03-02

Family

ID=34952657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05848239A Active EP1827723B1 (de) 2004-12-22 2005-12-09 Regulierung der ebenheit eines metallbands am ausgang eines walzenständers

Country Status (6)

Country Link
US (1) US7748247B2 (de)
EP (1) EP1827723B1 (de)
CN (1) CN101084075B (de)
DE (1) DE602005026696D1 (de)
FR (1) FR2879486B1 (de)
WO (1) WO2006070087A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE529074C2 (sv) * 2005-06-08 2007-04-24 Abb Ab Förfarande och anordning för optimering av planhetsstyrning vid valsning av ett band
SE529454C2 (sv) * 2005-12-30 2007-08-14 Abb Ab Förfarande och anordning för trimning och styrning
DE102009019642A1 (de) * 2009-04-30 2010-11-04 Volkswagen Ag Einrichtung zur Betätigung einer hydraulischen Kupplung eines Kraftfahrzeugs und Montageverfahren dazu
US10378873B2 (en) 2013-03-15 2019-08-13 The Bradbury Company, Inc. Methods and apparatus to monitor material conditioning machines
US9021844B2 (en) 2013-03-15 2015-05-05 The Bradbury Company, Inc. Methods and apparatus to monitor material conditioning machines
CN104668294A (zh) * 2013-11-28 2015-06-03 上海梅山钢铁股份有限公司 一种动态等厚度比楔形控制法
JP6644592B2 (ja) * 2016-03-17 2020-02-12 日鉄日新製鋼株式会社 冷間圧延における形状制御方法
EP3461567A1 (de) * 2017-10-02 2019-04-03 Primetals Technologies Germany GmbH Planheitsregelung mit optimierer
EP3479916A1 (de) * 2017-11-06 2019-05-08 Primetals Technologies Germany GmbH Gezielte einstellung der kontur durch entsprechende vorgaben
US10707964B2 (en) * 2018-10-03 2020-07-07 Prime World International Holdings Ltd. Optical transceiver and housing thereof
DK3702850T3 (da) * 2019-02-26 2021-03-15 Sick Stegmann Gmbh Tilgængeliggørelse af en automatiseringsenheds driftsparametre
CN116637942B (zh) * 2023-07-24 2023-11-03 东北大学 一种基于轧制参数耦合的轧辊倾斜闭环控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE446952B (sv) * 1980-04-25 1986-10-20 Asea Ab Regleranordning vid band- eller platvalsverk
JPS60234709A (ja) * 1984-05-08 1985-11-21 Ishikawajima Harima Heavy Ind Co Ltd 形状制御装置
JPH0714528B2 (ja) * 1986-08-25 1995-02-22 株式会社日立製作所 圧延材の形状制御装置
JP2584922Y2 (ja) * 1992-03-17 1998-11-11 石川島播磨重工業株式会社 形状検出装置
SE500100C2 (sv) * 1992-06-22 1994-04-18 Asea Brown Boveri Förfarande och anordning vid planhetsreglering av band i valsverk
DE19503363A1 (de) * 1994-02-15 1995-09-07 Siemens Ag Einrichtung und Verfahren zum Regeln der Planheit und/oder Spannungsverteilung von gewalzten Metallbändern
DE19654068A1 (de) * 1996-12-23 1998-06-25 Schloemann Siemag Ag Verfahren und Vorrichtung zum Walzen eines Walzbandes
DE19838675C2 (de) * 1998-08-20 2000-11-23 Sms Demag Ag Bandumlenkrolle, insbesondere Zugmeß- oder Looperrolle
JP2000061520A (ja) * 1998-08-25 2000-02-29 Toshiba Corp 熱間圧延機の平坦度制御装置
DE19959553A1 (de) * 1999-06-17 2001-06-13 Siemens Ag Einrichtung zur Beeinflussung des Profils oder der Planheit eines Walzbandes
ATE255964T1 (de) * 1999-12-23 2003-12-15 Abb Ab Verfahren und vorrichtung zur planheitsregelung
DE10041181A1 (de) * 2000-08-18 2002-05-16 Betr Forsch Inst Angew Forsch Mehrgrößen-Planheitsregelungssystem
US6314776B1 (en) * 2000-10-03 2001-11-13 Alcoa Inc. Sixth order actuator and mill set-up system for rolling mill profile and flatness control
JP2005527378A (ja) * 2002-03-15 2005-09-15 シーメンス アクチエンゲゼルシヤフト プロフィルおよび平坦度の操作要素に対する目標値のためのコンピュータ支援決定方法
DE10211623A1 (de) * 2002-03-15 2003-10-16 Siemens Ag Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder

Also Published As

Publication number Publication date
WO2006070087A1 (fr) 2006-07-06
US7748247B2 (en) 2010-07-06
EP1827723A1 (de) 2007-09-05
CN101084075B (zh) 2011-03-09
DE602005026696D1 (de) 2011-04-14
US20090249849A1 (en) 2009-10-08
FR2879486A1 (fr) 2006-06-23
CN101084075A (zh) 2007-12-05
FR2879486B1 (fr) 2007-04-13

Similar Documents

Publication Publication Date Title
EP1827723B1 (de) Regulierung der ebenheit eines metallbands am ausgang eines walzenständers
EP0140776B1 (de) Dicken- und Profilregelungsverfahren für ein flachgewalztes Erzeugnis während des Walzens
CA2690096C (fr) Procede de laminage d'une bande metallique avec regulation de sa position laterale d'une bande et laminoir adapte
EP0719607B1 (de) Verfahren zur Regelung des kontinuierlichen Giessens zwischen Walzen
EP1333941B1 (de) Vorrichtung und verfahren zum kalibrieren einer mehrrollenrichtmaschine
EP1673181B1 (de) Verfahren zur erhöhung der steuergenauigkeit des weges eines produkts in einer richtmaschine mit ineinandergreifenden walzen und zur durchführung desselben verwendete richtanlage
FR2893520A1 (fr) Procede de planage d'un produit plat sous forme de bande ou de tole dans une machine a planer a rouleaux imbriques et installation de planage permettant la mise en oeuvre du procede.
EP0988903B1 (de) Verfahren zum Walzen eines Metallproduktes
EP2670540B1 (de) Vorrichtung und verfahren zum kaltwalzen eines metallstreifens
FR2569583A1 (fr) Cage de laminoir pour un materiau en forme de feuillard
EP1466675A1 (de) Verfahren und Vorrichtung zur Dickenregelung eines gewalzten Produktes
JP2013094820A (ja) クラスタ圧延機を用いる被圧延物の形状制御方法およびクラスタ圧延機の形状制御装置
JP5490701B2 (ja) 圧延機及びその動作方法
CA2432648C (fr) Procede de regulation en temps reel d'une planeuse
EP2464470B1 (de) Verfahren und vorrichtung für die automatische einstellung der position von arbeitswalzen bei einer walzanlage
EP3661669A1 (de) Metallstreifennivellierer mit mehreren rollen
US8261590B2 (en) Roll position setting method of Sendzimir mill
Auzinger et al. Application of advanced technology packages for improved strip profile and flatness in hot-strip-mills
EP0466570B1 (de) Umkehrbares Walzverfahren
FR2488161A1 (fr) Laminoir en tandem
EP0730918A1 (de) Verfahren und Vorrichtung zum Richten von flachen metallischen Produkten sowie Blechen, Metallbanden
FR2537021A1 (fr) Cage de laminoir
JP2767508B2 (ja) 冷間圧延におけるエッジドロップ制御方法
FR2486424A1 (fr) Procede et appareil de laminage a forte reduction par passe
EP3600708B1 (de) Walzgerüst, das mit einer kontrollvorrichtung für die walzstabilität ausgerüstet ist, und entsprechende methode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAY, XAVIER

Inventor name: DOREL, LAURENT

Inventor name: LECLERCQ, YVES

Inventor name: MARTIN, SEBASTIEN

Inventor name: SERVAL, FRANCK

Inventor name: LE RICHE, RODOLPHE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005026696

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005026696

Country of ref document: DE

Effective date: 20110414

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005026696

Country of ref document: DE

Effective date: 20111205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005026696

Country of ref document: DE

Representative=s name: FISCHER, MICHAEL, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005026696

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS, FR

Free format text: FORMER OWNER: SIEMENS VAI METALS TECHNOLOGIES SAS, SAINT CHAMOND, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005026696

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: PRIMETALS TECNOLOGIES FRANCE SAS, FR

Effective date: 20160107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005026696

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005026696

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005026696

Country of ref document: DE

Owner name: CLECIM SAS, FR

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES FRANCE SAS, SAVIGNEUX, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211221

Year of fee payment: 17

Ref country code: SE

Payment date: 20211221

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221222

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221228

Year of fee payment: 18

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 19