EP1812714A1 - Anordnung mit einem l]fter und einer pumpe - Google Patents

Anordnung mit einem l]fter und einer pumpe

Info

Publication number
EP1812714A1
EP1812714A1 EP05783017A EP05783017A EP1812714A1 EP 1812714 A1 EP1812714 A1 EP 1812714A1 EP 05783017 A EP05783017 A EP 05783017A EP 05783017 A EP05783017 A EP 05783017A EP 1812714 A1 EP1812714 A1 EP 1812714A1
Authority
EP
European Patent Office
Prior art keywords
arrangement according
rotor
stator
fan
fluid pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05783017A
Other languages
English (en)
French (fr)
Other versions
EP1812714B1 (de
Inventor
Günther Strasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Publication of EP1812714A1 publication Critical patent/EP1812714A1/de
Application granted granted Critical
Publication of EP1812714B1 publication Critical patent/EP1812714B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/064Details of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0646Details of the stator

Definitions

  • the invention relates to an arrangement with a fan, a pump, and a drive motor.
  • this object is achieved by the subject matter of claim 1.
  • This achieves a space-saving arrangement, because the same stator drives both a permanent magnetic outer rotor and a fan through this, as well as a permanent magnetic inner rotor, which in turn drives a pump.
  • stator has an additional function because it surrounds the inner rotor in the manner of a split pot.
  • a coreless winding means a large air gap, but in the largely homogeneous magnetic field between the outer rotor and inner rotor can produce a very constant torque with suitable energization, resulting in a smooth running of such an arrangement for Episode has.
  • the optimal form of the current depends on the type of magnetization of the outer and inner rotor.
  • FIG. 1 is an illustration for explaining the arrangement of FIG. 1,
  • FIGS. 1 and 2 shows an illustration of an iron-free winding used in FIGS. 1 and 2 in the manner of representation customary in electrical engineering
  • FIG. 4 shows a schematic representation of a preferred embodiment of the driver stage for the winding of FIG. 3, FIG.
  • FIG. 6 shows a longitudinal section through a first exemplary embodiment of an arrangement according to the invention, viewed along the line VI-VI of FIG. 7, FIG.
  • FIG. 8 shows a longitudinal section through a second embodiment of an arrangement according to the invention, as seen along the line VIII-VIII of FIG. 9,
  • FIG. 10 is a detail view showing how the outer rotor is married to the stator for the second embodiment.
  • Fig. 11 is a detail view showing for the second embodiment, as the inner rotor with the impeller and the lid of the Pump housing before its assembly look like.
  • Fig. 1 shows in the schematic representation of an arrangement 20 according to the invention.
  • the air gaps which should naturally be very small, are exaggerated for reasons of clarity. This illustration essentially serves to explain the mode of action. Pump and fan are only hinted at.
  • the assembly 20 has a motor 21 with a stator 22 which is preferably shown as an ironless winding 23 with a plastic part 24 which surrounds a permanent magnet inner rotor 26 in the manner of a split pot liquid-tight and is separated from it by an inner air gap 28.
  • the plastic part 24 forms part of the inner air gap 28, as well as the outer air gap 51 described below, since it is magnetically transparent. If the winding 23 is formed without iron, the entire gap between the inner rotor 26 and the outer rotor 48 magnetically represents a uniform air gap.
  • the inner rotor 26 drives a turbomachine 27, in this case an impeller 30.
  • FIG. 11 shows at the top a typical impeller, which is formed integrally with an inner rotor.
  • the rotor 26 and the impeller 30 are liquid-tightly enclosed on the left side of the plastic part 24 and on the right side of a pump cover 32, as shown in Fig. 11, below, by way of example.
  • a seal 34 of any kind is located between the plastic part 24 and the pump cover 32 is located in Fig. 1, a seal 34 of any kind. In practice, the parts 24 and 32 are glued or welded.
  • a pump cover 32 in Fig. 1, there is an inlet 34 and an outlet 36 for the fluid to be pumped, e.g. Oil in a motor vehicle, or cooling water, or a fluid in a medical device.
  • Rotor 26 and impeller 30 are mounted in the illustration of FIG. 1, left in the plastic part 24 and right in the pump cover 32. Another type of storage is described below.
  • the plastic part 24 is attached via radially extending webs 38, of which only one is shown, to an air guide housing 40, within which In operation, turn fan blade 42 to move air through this fan housing. Shown is an axial fan, but in the same way a diagonal fan or a radial fan would be possible.
  • the fan blades 42 are attached to a permanent magnetic outer rotor 44, which is shown in longitudinal section and which is mounted on roller bearings 46, 48 on the plastic part 24.
  • a magnetic yoke in the form of a soft iron part 46 is fixed, which rotates a magnetic ring 48, which is preferably formed here four-pole, as well as the inner rotor 26th
  • a Dämpf ⁇ arrangement 50 On the radially inner side of the magnet ring 48 is a Dämpf ⁇ arrangement 50, e.g. in the form of a short-circuit cage or a thin-walled ring of copper sheet.
  • a Dämpf ⁇ arrangement 50 e.g. in the form of a short-circuit cage or a thin-walled ring of copper sheet.
  • Such attenuation is useful because usually one of the two rotors controls the rotating field of the winding 23 via Hall sensors, and because the other rotor then normally follows this rotating field as in a synchronous machine, but e.g. When starting any relative movement between the inner rotor 26 and the outer rotor 44 is attenuated. This prevents the rotors 26 and 44 from falling out of step during dynamic processes.
  • the damping arrangement 50 is separated from the stator 22 by the outer air gap 51.
  • a printed circuit board 52 is provided, on which three Hall sensors 54 are provided in a winding with three phases, of which in Fig. 1 only one is shown, which is controlled in this embodiment of the magnetic ring 48.
  • a printed circuit board 56 can be placed on the outside of the housing 40, and the rotor position is then calculated by an algorithm, e.g. an algorithm according to the EP 0 536 113 B1 of the applicant.
  • a damping 50 proves to be expedient, and such may possibly also on the inner rotor 26, or on both rotor magnets 26, 48 are provided.
  • Fig. 2 shows a highly schematic and not to scale section through the arrangement of Fig. 1
  • Fig. 3 shows an example of the structure of a suitable three-phase winding 23.
  • the magnetic yoke 46 On the outside in Fig. 2, the magnetic yoke 46 is shown, in which there is the rotor magnet 48 shown four-pole, the four radially magnetized poles are indicated in the usual way with N and S.
  • the rotor magnet 48 is separated from the stator 22 by the outer air gap 51, and this in turn is separated from the four-pole inner rotor 26 by the inner air gap 28.
  • the stator 22 includes, as shown, twelve evenly distributed conductors 1 to 12, whose connections are shown in Fig. 3.
  • the illustrated winding 23 according to FIG. 3 is a four-pole, three-phase, "twelve-notched" winding without step shortening. (If no stator iron is used, there are no grooves in the usual sense.) Of course, the use of soft ferromagnetic material in the stator 22 is not excluded.)
  • Fig. 3 shows the three phases U, V and W in a representation as if twelve evenly distributed grooves 1 to 12 were present.
  • the phase U has two terminals u1 and u2, the phase V has two terminals vi and v2, and the phase W has two terminals w1 and w2.
  • the phase U is shown in black, the phase V dash-dotted and the phase W dashed.
  • the phase U goes from the terminal u1 to the groove 1, then to the groove 4, then to the groove 7 and to the groove 10, and from this to the terminal u2.
  • phase V goes vi to the groove 3, then to the grooves 6, 9 and 12, and from there to v2.
  • phase W goes from w1 to the groove 5, then to the grooves 8, 11 and 2, from there to w2.
  • the twelve conductors shown in Figure 2 are numbered 1 to 12 for ease of understanding.
  • the angle ⁇ is also indicated.
  • the magnet 48 of the outer rotor 52 and the inner magnetic rotor 26 are magnetically coupled together, as shown schematically in FIG. 2 by the four flux lines 60, 62, 64, 66.
  • the pump rotor 26 and the fan rotor 52 together form a magnetic flux which is four-pole relative to the air gaps 28 and 51.
  • the two rotors 26 and 52 are positioned relative to one another in the position as in the case of a magnetic coupling, which is illustrated in FIG. 2, wherein a substantially homogeneous magnetic flux is formed in the air gaps.
  • the winding 23 causes a corresponding torque to the inner rotor 26 and the outer rotor 52.
  • the total torque can be derived from the Lorenz equation as
  • T_motor kei * h + ke2 * I2 + ke3 * l3 ... (2)
  • Fig. 4 shows a circuit for the power supply of the winding 13 with its three phases U, V, W. These are each with their inductive component, for. B. Lu, their resistance component, z. B. Ru and their induced voltage z. B. Uu, how to do that in a computer simulation. (The coupling inductances, which are also taken into account in a simulation, are not shown.) - Shown is a delta connection whose connection points are designated 65, 67 and 69.
  • a full bridge circuit 68 To power the winding 13 is a full bridge circuit 68, often referred to as an inverter. This receives its power from a DC voltage source 70, z. B. a vehicle battery or the power supply of a computer.
  • the DC voltage source 70 is connected to its negative pole to ground 71. Its positive pole feeds via a diode 72, which protects against false connection, a positive line 74, also called de link.
  • a storage capacitor is disposed between the line 74 and ground 71, z. With 4,700 ⁇ F. It supplies the full bridge circuit with reactive power.
  • the full-bridge circuit 68 has three upper npn transistors 81, 82, 83 and three lower npn transistors 84, 85, 86, to each of which a freewheeling diode 81 'to 86' is connected in anti-parallel.
  • the collectors of the upper transistors 81, 82, 83 are connected to the positive line 74 connected.
  • the emitters of the lower transistors 84, 85, 86 are connected to a negative line 78, which is connected via a measuring resistor 80 to ground 71.
  • the measuring resistor 80 is part of a (not shown) current limit.
  • the emitter of the transistor 81 and the collector of the transistor 84 are connected to the
  • the emitter of the transistor 82 and the collector of the transistor 85 are connected to the
  • Connection point 67 connected.
  • the emitter of the transistor 83 and the collector of the transistor 86 are connected to the
  • Connection point 69 connected.
  • Fig. 2 shows an angle ⁇ , which has the value 0 in the illustrated position of the rotor poles relative to the stator 22 and increases clockwise upon rotation of the rotors.
  • FIG. 5 shows the values s1 to s6 for the different values of a.
  • the circuit leaves state 1 and goes to state STAT 2 when a transient state TRANS 1 is reached where ⁇ > 60 ° el.
  • the signals s1 to s6 for the various rotation angle ranges are indicated in FIG. It is thus preferred to use normal block commutation, i. the currents are supplied in the form of current blocks in which the amplitude can be changed by means of a PWM control.
  • the angle ⁇ can be measured sensorless, cf. the mentioned European Patent 0 536 113 B1 of the Applicant.
  • FIGS. 6 and 7 show a first embodiment for a practical realization of an arrangement according to the invention.
  • the same or similar parts as in Figs. 1 to 5 are denoted by the same reference numerals, but with a trailing apostrophe, z. 52 instead of 52, and are not usually described again.
  • FIG. 6 shows on the left a liquid cooler 90, the inlet of which is designated 92. (The drain is not shown in Fig. 6.)
  • This cooler 90 has in the middle a recess 92 into which a bearing portion 94 of the assembly 20 'projects.
  • the fan blades 42 ' are configured to either blow air through the radiator 90, that is, from right to left, or to suck air from left to right through the radiator.
  • the bearing portion 94 serves to support an outer rotor 44 '.
  • the structure of the storage corresponds to that of FIG. 8 and 10 and is therefore described there.
  • a shaft 96 is mounted, with which a hub 98 via a Rotor bell 100 is connected.
  • This has, where it protrudes into the cooler 90, a smaller diameter, which expands over a portion 102 to a rotor bell 104 of larger diameter, in which a four-pole permanent magnet 106 is arranged, for which the rotor bell 104 serves as a magnetic yoke.
  • This permanent magnet 106 has on its radially inner side a copper layer 105 to allow an asynchronous start.
  • the rotor bell 104 is encapsulated with a plastic jacket 107, with which the wings 42 'are integrally formed.
  • the wings 42 have on their outer side air guide elements 108 which extend in the axial direction and reduce the air flow which flows through the gap 110 between a wing tip and the fan housing 112 from the pressure side of the fan to the suction side. This reduces the fan noise.
  • a sealed cavity 114 On the outer circumference of the fan housing 112 is a sealed cavity 114, in which a circuit board 116 is arranged, which serves to control the motor.
  • an ironless stator winding 118 Radially inside the outer rotor 106 is an ironless stator winding 118, which is preferably designed as a three-phase winding for generating a rotating field, as described in FIG. This winding is supplied from the circuit board 116 with a three-phase current.
  • the circuit board 116 may be e.g. be connected to a source of three-phase power or DC power.
  • the stator winding 118 is located on the outside of a containment shell 120 provided with guide protrusions 122 for this purpose. These projections 122 serve to secure the winding 118 in the desired angular position on the split pot 120.
  • the containment shell 120 is implemented as a magnetically transparent part, preferably made of plastic.
  • a standing shaft 126 is fixed in an axial projection 124, the right end of which is guided in FIG. 6 in an axial projection 128 of a pump cover 130 which is provided with an inlet connection piece 132.
  • coolant flows through the connection 132 to a centrifugal pump 134.
  • the split pot 120 expands on its right in Fig. 6 side over a radially extending portion 135 to a hollow cylindrical portion 136 of larger diameter, in which an impeller 138 rotates during operation.
  • This section 146 is connected to the fan housing 112 by three webs or spokes 137. These webs 137 extend transversely to an annular air passage 139.
  • This impeller 138 has a protruding left extension 140 of magnetizable material, eg. B. plastic with embedded Hartferriten, and this extension 140 is here four-pole magnetized (like the magnetic ring 106) and is located radially within the ironless winding 118, from which it is liquid-tight separated by the containment shell 120.
  • the extension 140 is provided on its inside with two sintered bearings 142, 144, by means of which it is rotatably mounted on the shaft 126.
  • the axial extensions 124 and 128 form thrust bearings for the extension 140 and the impeller 138 integral therewith.
  • an outlet nozzle 146 extends approximately tangentially outwards. The direction of flow is indicated by an arrow 148.
  • stator winding 118 is energized by circuit board 116 to generate a rotating electromagnetic field. As described in detail in FIG. 2, this rotary field drives both the outer rotor magnet 106 and the inner rotor magnet 140. Any relative movement of the rotor magnets 106, 140 is damped by the copper layer 105.
  • Fig. 8 shows a second embodiment of the invention. Like or similar parts will be denoted by the same reference numerals as in the preceding figures and will not be described again.
  • the bearing section 94 has a bearing tube 148, which is formed integrally with the containment shell 120 and has a cylindrical inner recess 150, cf. Fig. 10.
  • Fig. 10 shows in its upper part the corresponding bearing arrangement.
  • This has two rolling bearings 154, 156 whose inner rings on the shaft 96 are axially displaceable. Between the outer rings of the bearings 154, 156 is a spacer member 158, which is also axially displaceable on the shaft 96 and has a slightly smaller diameter than the cylindrical inner recess 150th
  • a hub 98 is attached to which a rotor bell 100 'is attached.
  • This has here a continuous circular cylindrical portion 104 '(with a constant diameter), whose lower part in FIG. 10 serves as a magnetic yoke for the rotor magnet 106 of the outer motor.
  • the fan blades 42 "are fastened in the manner shown, which have the same shape as the wings 42' in Fig. 6.
  • the hub 98 has a recess 160 at its lower side in FIG. 10, and between this and the inner ring of the upper roller bearing 154 a compression spring 162 is arranged.
  • the recess 160 is limited in Fig. 10 to the outside by a downwardly projecting edge 164 which rests against the outer ring of the upper roller bearing 154 in the compressed spring 162.
  • a snap ring 166 is fixed, and the inner ring of the lower roller bearing 156 is pressed by the spring 162 against this snap ring 166.
  • the bearing assembly 94 is pressed in the direction of arrow 168 in the recess 150 of the bearing tube 148.
  • the spring 162 is compressed, so that the edge 164 presses against the outer ring of the upper roller bearing 154, and this outer ring presses via the spacer 158 against the outer ring of the lower bearing 156, so that the entire bearing assembly 94 so far pressed into the bearing tube 148 is applied until the outer ring of the lower roller bearing 156 against a shoulder 170 (Fig. 10) of the inner recess 150 is applied.
  • the bearing tube 148 has a cylindrical outer side 174, and on this two printed circuit boards 176, 178 are attached, which carry the electronic components for the control of the currents in the ironless winding 118.
  • Hall sensors are arranged, which detect the position of the inner rotor 140 and serve to control the commutation of the ironless winding 118.
  • these currents are thus controlled by the location of the inner rotor 140, it also determines the speed of the outer rotor 106, but at start-up, the outer rotor 106 may have some slip against the rotating field generated by the winding 118. For this reason, as already described, the copper layer 105 is provided.
  • FIG. 11 shows below the pump cover 130 with its inlet nozzle 132 and the (provided with radial holes) part 128, in which the lower end in Fig. 10 of the shaft 126 is supported. Further, FIG. 11 shows the centrifugal impeller 138 and the inner rotor 140 with the two sintered bearings 142, 144 rotating on the fixed shaft 126 as described in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Walking Sticks, Umbrellas, And Fans (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

Anordnung mit einem Lüfter und einer Pumpe
Die Erfindung betrifft eine Anordnung mit einem Lüfter, einer Pumpe, und einem Antriebsmotor.
Derartige Anordnungen haben eine Bauweise, die viel Platz beansprucht. Das ist dort ungünstig, wo wenig Platz vorhanden ist, z.B. in medizinischen oder elektronischen Geräten.
Es ist deshalb eine Aufgabe der Erfindung, eine neue Anordnung mit einem Lüfter, einer Pumpe und einem Antriebsmotor bereit zu stellen.
Nach der Erfindung wird diese Aufgabe gelöst durch den Gegenstand des Anspruchs 1. Man erreicht so eine Platz sparende Anordnung, weil derselbe Stator sowohl einen permanentmagnetischen Außenrotor und durch diesen einen Lüfter antreibt, wie auch einen permanentmagnetischen Innenrotor, der seinerseits eine Pumpe antreibt.
Eine sehr vorteilhafte Ausgestaltung der Erfindung ist Gegenstand des Anspruchs 2. In diesem Fall hat der Stator eine zusätzliche Funktion, weil er den Innenrotor nach Art eines Spalttopfes umgibt.
Eine weitere vorteilhafte Weiterbildung der Erfindung ist Gegenstand des Anspruchs 3. Eine eisenlose Wicklung bedeutet zwar einen großen Luftspalt, aber in dem weitgehend homogenen Magnetfeld zwischen Außenrotor und Innenrotor kann man bei geeigneter Bestromung ein sehr konstantes Drehmoment erzeugen, was einen ruhigen Lauf einer solchen Anordnung zur Folge hat. Die optimale Form der Bestromung hängt dabei von der Art der Magnetisierung von Außen- und Innenrotor ab.
Weitere Einzelheiten und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den im folgenden beschriebenen und in der Zeichnung dargestellten, in keiner Weise als Einschränkung der Erfindung zu verstehenden Ausführungsbeispielen, sowie aus den übrigen Unteransprüchen. Es zeigt:
Fig. 1 einen Längsschnitt durch eine stark schematisierte Darstellung zur Erläuterung der Grundprinzipien der Erfindung,
Fig. 2 eine Darstellung zur Erläuterung der Anordnung nach Fig. 1 ,
Fig. 3 eine Darstellung einer bei Fig. 1 und 2 verwendeten eisenlosen Wicklung in der im Elektromaschinenbau üblichen Darstellungsweise,
Fig. 4 eine schematische Darstellung einer bevorzugten Ausführungsform der Treiberstufe für die Wicklung der Fig. 3,
Fig. 5 eine Darstellung, welche den Ablauf der Bestromung der Wicklung gemäß Fig. 3 in Verbindung mit der Schaltung nach Fig. 4 für einen Drehwinkel von α = 360° el. zeigt,
Fig. 6 einen Längsschnitt durch ein erstes Ausführungsbeispiel einer erfindungsgemäßen Anordnung, gesehen längs der Linie Vl-Vl der Fig. 7,
Fig. 7 einen Schnitt, gesehen längs der Linie VII-VII der Fig. 6,
Fig. 8 einen Längsschnitt durch ein zweites Ausführungsbeispiel einer erfindungsgemäßen Anordnung, gesehen längs der Linie VIII-VIII der Fig. 9,
Fig. 9 einen Schnitt, gesehen längs der Linie IX-IX der Fig. 8,
Fig. 10 eine Einzeldarstellung, welche für das zweite Ausführungsbeispiel zeigt, wie der Außenrotor mit dem Stator verheiratet wird, und
Fig. 11 eine Einzeldarstellung, welche für das zweite Ausführungsbeispiel zeigt, wie der Innenrotor mit dem Pumpenrad und der Deckel des Pumpengehäuses vor ihrer Montage aussehen.
Fig. 1 zeigt in der schematischen Darstellung eine Anordnung 20 nach der Erfindung. Die Luftspalte, die naturgemäß sehr klein sein sollten, sind aus Gründen der Anschaulichkeit übertrieben groß dargestellt. Diese Darstellung dient im wesentlichen der Erläuterung der Wirkungsweise. Pumpe und Lüfter sind nur angedeutet.
Die Anordnung 20 hat einen Motor 21 mit einem Stator 22, der bevorzugt als eisenlose Wicklung 23 mit einem Kunststoffteil 24 dargestellt ist, das einen permanentmagnetischen Innenrotor 26 nach Art eines Spalttopfs flüssigkeitsdicht umgibt und von diesem durch einen inneren Luftspalt 28 getrennt ist. Magnetisch gesehen bildet auch das Kunststoffteil 24 einen Teil des inneren Luftspalts 28, ebenso des nachfolgend beschriebenen äußeren Luftspalts 51 , da es magnetisch transparent ist. Sofern die Wicklung 23 eisenlos ausgebildet ist, stellt der gesamte Zwischenraum zwischen dem Innenrotor 26 und dem Außenrotor 48 magnetisch gesehen einen einheitlichen Luftspalt dar.
Der Innenrotor 26 treibt eine Strömungsmaschine 27 an, hier ein Pumpenrad 30. Fig. 11 zeigt oben ein typisches Pumpenrad, welches einstückig mit einem Innenrotor ausgebildet ist. Der Rotor 26 und das Pumpenrad 30 sind flüssigkeitsdicht umschlossen auf der linken Seite vom Kunststoffteil 24 und auf der rechten Seite von einem Pumpendeckel 32, wie er in Fig. 11 , unten, beispielhaft dargestellt ist. Zwischen dem Kunststoffteil 24 und dem Pumpendeckel 32 befindet sich in Fig. 1 eine Dichtung 34 beliebiger Art. In der Praxis werden die Teile 24 und 32 verklebt oder verschweißt.
Im Pumpendeckel 32 befinden sich bei Fig. 1 ein Zulauf 34 und ein Auslauf 36 für das zu pumpende Fluid, z.B. Öl in einem Kraftfahrzeug, oder Kühlwasser, oder ein Fluid in einem medizinischen Gerät. Rotor 26 und Pumpenrad 30 sind bei der Darstellung nach Fig. 1 links im Kunststoffteil 24 und rechts im Pumpendeckel 32 gelagert. Eine andere Art der Lagerung wird nachfolgend beschrieben.
Das Kunststoffteil 24 ist über radial verlaufende Stege 38, von denen nur einer dargestellt ist, an einem Luftführungsgehäuse 40 befestigt, innerhalb dessen sich im Betrieb Lüfterflügel 42 drehen, um Luft durch dieses Lüftergehäuse zu transportieren. Dargestellt ist ein Axiallüfter, doch wäre in gleicher Weise ein Diagonallüfter oder ein Radiallüfter möglich. Die Lüfterflügel 42 sind an einem permanentmagnetischen Außenrotor 44 befestigt, der im Längsschnitt dargestellt und der über Wälzlager 46, 48 am Kunststoffteil 24 gelagert ist. Im Außenrotor 44 ist ein magnetischer Rückschluss in Form eines Weicheisenteils 46 befestigt, welcher einen Magnetring 48 dreht, der hier bevorzugt vierpolig ausgebildet ist, ebenso wie der Innenrotor 26.
Auf der radial inneren Seite des Magnetrings 48 befindet sich eine Dämpf¬ anordnung 50, z.B. in Form eines Kurzschlusskäfigs oder eines dünnwandigen Rings aus Kupferblech. Eine solche Dämpfung ist deshalb zweckmäßig, weil gewöhnlich einer der beiden Rotoren über Hallsensoren das Drehfeld der Wicklung 23 steuert, und weil der andere Rotor dann zwar im Normalfall wie bei einer Synchronmaschine diesem Drehfeld folgt, aber z.B. beim Start eine etwaige Relativbewegung zwischen dem Innenrotor 26 und dem Außenrotor 44 gedämpft wird. Damit wird verhindert, dass bei dynamischen Vorgängen die Rotoren 26 und 44 außer Tritt fallen. - Die Dämpfanordnung 50 ist durch den äußeren Luftspalt 51 vom Stator 22 getrennt.
Zur Steuerung der Ströme in der Wicklung 23 ist eine Leiterplatte 52 vorgesehen, auf der bei einer Wicklung mit drei Phasen drei Hallsensoren 54 vorgesehen werden, von denen in Fig. 1 nur einer dargestellt ist, der bei dieser Ausführungsform vom Magnetring 48 gesteuert wird.
Alternativ kann man auch die Verwendung von Hallsensoren vermeiden und die Rotorstellung sensorlos erfassen. In diesem Fall kann eine Leiterplatte 56 außen am Gehäuse 40 angeordnet werden, und die Rotorstellung wird dann durch einen Algorithmus berechnet, z.B. einen Algorithmus nach der EP 0 536 113 B1 der Anmelderin. In diesem Fall erweist sich eine Dämpfung 50 als zweckmäßig, und eine solche kann ggf. auch am Innenrotor 26, oder an beiden Rotormagneten 26, 48 vorgesehen werden.
Fig. 2 zeigt einen stark schematisierten und nicht maßstabsgerechten Schnitt durch die Anordnung der Fig. 1 , und Fig. 3 zeigt beispielhaft den Aufbau einer geeigneten dreiphasigen Wicklung 23.
Ganz außen in Fig. 2 ist der magnetische Rückschluss 46 dargestellt, in welchem sich der vierpolig dargestellte Rotormagnet 48 befindet, dessen vier radial magnetisierte Pole in der üblichen Weise mit N und S angedeutet sind. Der Rotormagnet 48 ist durch den äußeren Luftspalt 51 vom Stator 22 getrennt, und dieser ist seinerseits durch den inneren Luftspalt 28 vom vierpoligen Innenrotor 26 getrennt.
Der Stator 22 enthält, wie dargestellt, zwölf gleichmäßig verteilte Leiter 1 bis 12, deren Verbindungen in Fig. 3 dargestellt sind. Die dargestellte Wicklung 23 gemäß Fig. 3 ist eine vierpolige, dreiphasige, "zwölfnutige" Wicklung ohne Schrittverkürzung. (Sofern kein Statoreisen verwendet wird, sind keine Nuten im üblichen Sinne vorhanden. Selbstverständlich ist die Verwendung von weichferromagnetischem Material im Stator 22 nicht ausgeschlossen.)
Fig. 3 zeigt die drei Phasen U, V und W in einer Darstellung, als ob zwölf gleichmäßig verteilte Nuten 1 bis 12 vorhanden wären. Die Phase U hat zwei Anschlüsse u1 und u2, die Phase V zwei Anschlüsse vi und v2, und die Phase W zwei Anschlüsse w1 und w2. Die Phase U ist durchgehend schwarz dargestellt, die Phase V strichpunktiert und die Phase W gestrichelt. Die Phase U geht vom Anschluss u1 zur Nut 1 , dann zur Nut 4, dann zur Nut 7 und zur Nut 10, und von dieser zum Anschluss u2.
Die Phase V geht vi zur Nut 3, dann zu den Nuten 6, 9 und 12, und von dort zu v2.
Die Phase W geht von w1 zur Nut 5, dann zu den Nuten 8, 11 und 2, von dort zu w2.
Aus Fig. 3 ergeben sich die näheren Einzelheiten.
Die zwölf Leiter, welche in Fig. 2 dargestellt sind, sind mit denselben Nutzahlen 1 bis 12 beziffert, um das Verständnis zu erleichtern. Der Winkel α ist ebenfalls angegeben. Der Magnet 48 des Außenrotors 52 und der magnetische Innenrotor 26 sind magnetisch miteinander gekoppelt, wie das in Fig. 2 schematisch durch die vier Flusslinien 60, 62, 64, 66 dargestellt ist. Der Pumpenrotor 26 und der Lüfterrotor 52 bilden gemeinsam einen magnetischen Fluss, der auf die Luftspalte 28 und 51 bezogen vierpolig ist. Dadurch werden die beiden Rotoren 26 und 52 wie bei einer Magnetkupplung in der Lage relativ zueinander positioniert, die in Fig. 2 dargestellt ist, wobei sich in den Luftspalten ein weitgehend homogener Magnetfluss ausbildet.
Die Wicklung 23 bewirkt bei entsprechender Bestromung ein Drehmoment auf den inneren Rotor 26 und den äußeren Rotor 52. Das gesamte Drehmoment kann aus der Lorenz-Gleichung abgeleitet werden als
T = l * B * L * r ...(1)
Hierbei sind:
T = Drehmoment
I = Strom durch einen Leiter
B = Magnetflussdichte im Raum ("Luftspalt") zwischen den Rotoren 26 und 52 r = Radius des Leiters, bezogen auf die Drehachse der Rotoren 26 und 52.
Für die gesamte Anordnung mit den Strömen M, l2, l3, wie sie in Fig. 3 dargestellt sind, ergibt sich das Motormoment T_Motor zu
T_Motor = kei * h + ke2 * I2 + ke3 * l3 ...(2)
Dabei ist ke = Motorkonstante.
Im normalen Betrieb ist die Verdrehung zwischen äußerem Rotor 52 und innerem Rotor 26 nur gering, und die Verteilung des Drehmoments auf die beiden Rotoren kann durch Simulation recht genau berechnet werden.
Bei einer Anordnung mit einer Pumpe und einem Lüfter ist es gewöhnlich so, dass die Pumpe ein größeres Drehmoment braucht, als der Lüfter, was sich so auswirkt, als würde der Rotor 26 gebremst, so dass er, bezogen auf Fig. 2, etwas hinter dem äußeren Rotor 52 herläuft, d. h. die Magnetgrenzen sind entsprechend gegeneinander verschoben, wie das für den Fachmann des Elektromaschinenbaus ohne weiteres ersichtlich ist. Die mögliche Relativverdrehung der beiden Rotoren wird durch den Dämpfring 50 am Innenradius des äußeren Magnetrings 48 gedämpft. Entsteht zwischen Innenrotor 26 und Außenrotor 52 eine Relativbewegung, so wird im Dämpfring 50 ein Strombelag induziert, der einer Relativbewegung entgegenwirkt.
Bei der Steuerung der Ströme in der Wicklung 23 wird in den Anlauframpen eine mögliche Verdrehung dieser Art berücksichtigt, damit gewährleistet ist, dass der äußere Rotor 52 dem inneren Rotor 26 folgen kann.
Fig. 4 zeigt eine Schaltung für die Stromversorgung der Wicklung 13 mit ihren drei Phasen U, V, W. Diese sind jeweils mit ihrer induktiven Komponente, z. B. Lu, ihrer Widerstandskomponente, z. B. Ru und ihrer induzierten Spannung z. B. Uu dargestellt, wie man das bei einer Computersimulation tut. (Die Koppelinduktivitäten, welche bei einer Simulation ebenfalls berücksichtigt werden, sind nicht dargestellt.) - Dargestellt ist ein Dreieckschaltung, deren Anschlusspunkte mit 65, 67 und 69 bezeichnet sind.
Zur Stromversorgung der Wicklung 13 dient eine Vollbrückenschaltung 68, oft auch als Wechselrichter bezeichnet. Diese erhält ihren Strom aus einer Gleichspannungsquelle 70, z. B. einer Fahrzeugbatterie oder dem Netzteil eines Computers. Die Gleichspannungsquelle 70 ist mit ihrem Minuspol mit Masse 71 verbunden. Ihr positiver Pol speist über eine Diode 72, die gegen Falschanschluss schützt, eine positive Leitung 74, auch de link genannt. Ein Speicherkondensator ist zwischen der Leitung 74 und Masse 71 angeordnet, z. B. mit 4.700 μF. Er versorgt die Vollbrückenschaltung mit Blindleistung.
Die Vollbrückenschaltung 68 hat drei obere npn-Transistoren 81 , 82, 83 und drei untere npn-Transistoren 84, 85, 86, zu denen jeweils eine Freilaufdiode 81 ' bis 86' antiparallel geschaltet ist.
Die Kollektoren der oberen Transistoren 81 , 82, 83 sind mit der positiven Leitung 74 verbunden. Die Emitter der unteren Transistoren 84, 85, 86 sind mit einer negativen Leitung 78 verbunden, die über einen Messwiderstand 80 mit Masse 71 verbunden ist. Der Messwiderstand 80 ist Teil einer (nicht dargestellten) Strombegrenzung.
Der Emitter des Transistors 81 und der Kollektor des Transistors 84 sind mit dem
Anschlusspunkt 65 verbunden.
Der Emitter des Transistors 82 und der Kollektor des Transistors 85 sind mit dem
Anschlusspunkt 67 verbunden.
Der Emitter des Transistors 83 und der Kollektor des Transistors 86 sind mit dem
Anschlusspunkt 69 verbunden.
Die Transistoren 81 bis 86 werden durch Signale s1 bis s6 gesteuert, wie in Fig. 4 dargestellt. Ist z. B. s1 = 1 , so ist der Transistor 81 leitend und ist s1 = 0, so ist er gesperrt.
Fig. 2 zeigt einen Winkel α, der bei der dargestellten Lage der Rotorpole relativ zum Stator 22 den Wert 0 hat und bei Drehung der Rotoren im Uhrzeigersinn zunimmt.
Flg. 5 zeigt die Werte s1 bis s6 für die verschiedenen Werte von a.
Im Zustand STAT 1 , entsprechend dem Start, sind s3 und s5 = 1 , d. h. die Transistoren 83 und 85 sind leitend und die übrigen Transistoren sind gesperrt, so dass ein Strom vom Anschlusspunkt 69 zum Anschlusspunkt 67 fließt.
Die Schaltung verlässt den Zustand 1 und geht zum Zustand STAT 2, wenn ein Übergangszustand TRANS 1 erreicht ist, bei dem α > 60° el. ist.
Im Zustand STAT 2, der also im Normalfall einen Winkel α zwischen 60 und 120° el. entspricht, sind s1 und s5 = 1 , und es findet eine entsprechende Bestromung statt.
Im Zustand TRANS 2, wenn α > 120° el geworden ist, erfolgt der Übergang zum Zustand STAT 3. Dort sind s1 und s6 = 1. Bei α > 180° el. (TRANS 3) erfolgt der Übergang zu STAT 4. Dort sind s2 und s6 = 1.
Die folgenden Übergänge sind wie folgt: TRANS 4 bei α > 240° el. TRANS 5 bei α > 300° el. TRANS 6 bei α < 60° el.
Die Signale s1 bis s6 für die verschiedenen Drehwinkelbereiche sind in Fig. 5 angegeben. - Verwendet wird also bevorzugt eine normale Blockkommutierung, d.h. die Ströme werden in Form von Stromblöcken zugeführt, bei denen die Amplitude mittels einer PWM-Steuerung verändert werden kann.
Der Winkel α kann sensorlos gemessen werden, vgl. die erwähnte europäische Patentschrift 0 536 113 B1 der Anmelderin.
Die Fig. 6 und 7 zeigen ein erstes Ausführungsbeispiel für eine praktische Realisierung einer erfindungsgemäßen Anordnung. Gleiche oder gleich wirkende Teile wie in den Fig. 1 bis 5 werden mit denselben Bezugszeichen bezeichnet, aber mit einem nachgestellten Apostroph, z. B. 52' statt 52, und werden gewöhnlich nicht noch einmal beschrieben.
Fig. 6 zeigt links einen Flüssigkeitskühler 90, dessen Zulauf mit 92 bezeichnet ist. (Der Abfluss ist in Fig. 6 nicht dargestellt.) Dieser Kühler 90 hat in der Mitte eine Ausnehmung 92, in welche ein Lagerabschnitt 94 der Anordnung 20' ragt. Die Lüfterflügel 42' sind so ausgebildet, dass sie entweder Luft durch den Kühler 90 blasen, also von rechts nach links, oder Luft von links nach rechts durch den Kühler saugen.
Der Lagerabschnitt 94 dient zur Lagerung eines Außenrotors 44'. Der Aufbau der Lagerung entspricht dem gemäß Fig. 8 und 10 und wird deshalb dort beschrieben.
In der Lagerung 94 ist eine Welle 96 gelagert, mit welcher über eine Nabe 98 eine Rotorglocke 100 verbunden ist. Diese hat dort, wo sie in den Kühler 90 ragt, einen kleineren Durchmesser, der sich über einen Abschnitt 102 zu einer Rotorglocke 104 größeren Durchmessers erweitert, in welcher ein vierpoliger Dauermagnet 106 angeordnet ist, für den die Rotorglocke 104 als magnetischer Rückschluss dient. Dieser Dauermagnet 106 hat auf seiner radial inneren Seite eine Kupferschicht 105, um einen asynchronen Anlauf zu ermöglichen. Auf ihrer Außenseite ist die Rotorglocke 104 mit einem Kunststoffmantel 107 umspritzt, mit dem die Flügel 42' einstückig ausgebildet sind. Die Flügel 42' haben an ihrer Außenseite Luftleitelemente 108, die sich in axialer Richtung erstrecken und die Luftströmung reduzieren, welche durch den Spalt 110 zwischen einer Flügelspitze und dem Lüftergehäuse 112 von der Druckseite des Lüfters zu dessen Saugseite fließt. Dies reduziert die Lüftergeräusche.
Am Außenumfang des Lüftergehäuses 112 befindet sich ein abgeschlossener Hohlraum 114, in welchem eine Leiterplatte 116 angeordnet ist, die zur Steuerung des Motors dient.
Radial innerhalb des äußeren Rotors 106 befindet sich eine eisenlose Statorwicklung 118, die bevorzugt als dreiphasige Wicklung zur Erzeugung eines Drehfeldes ausgebildet ist, wie bei Fig. 1 beschrieben. Diese Wicklung wird von der Leiterplatte 116 aus mit einem dreiphasigen Strom versorgt. Die Leiterplatte 116 kann z.B. an eine Quelle für einen dreiphasigen Strom oder an ein Gleichstromnetz angeschlossen werden.
Die Statorwicklung 118 befindet sich auf der Außenseite eines Spalttopfs 120, der zu diesem Zweck mit Führungs-Vorsprüngen 122 versehen ist. Diese Vorsprünge 122 dienen dazu, die Wicklung 118 in der gewünschten Winkelstellung auf dem Spalttopf 120 zu befestigen. Der Spalttopf 120 ist als magnetisch transparentes Teil implementiert, bevorzugt aus Kunststoff.
Innerhalb des Spalttopfs 120 ist in einem axialen Vorsprung 124 eine stehende Welle 126 befestigt, deren in Fig. 6 rechtes Ende in einem axialen Vorsprung 128 eines Pumpendeckels 130 geführt ist, der mit einem Zulaufstutzen 132 versehen ist. Durch den Stutzen 132 fließt im Betrieb Kühlflüssigkeit zu einer Kreiselpumpe 134. Der Spalttopf 120 erweitert sich auf seiner in Fig. 6 rechten Seite über einen radial verlaufenden Abschnitt 135 zu einem hohlzylindrischen Abschnitt 136 größeren Durchmessers, in welchem sich im Betrieb ein Pumpenrad 138 dreht. Dieser Abschnitt 146 ist durch drei Stege oder Speichen 137 mit dem Lüftergehäuse 112 verbunden. Diese Stege 137 erstrecken sich quer zu einem ringförmigen Luftdurchlass 139.
Dieses Pumpenrad 138 hat einen nach links ragenden Fortsatz 140 aus magnetisierbarem Werkstoff, z. B. aus Kunststoff mit eingelagerten Hartferriten, und dieser Fortsatz 140 ist hier vierpolig magnetisiert (wie der Magnetring 106) und befindet sich radial innerhalb der eisenlosen Wicklung 118, von der er durch den Spalttopf 120 flüssigkeitsdicht getrennt ist. Der Fortsatz 140 ist auf seiner Innenseite mit zwei Sinterlagern 142, 144 versehen, mittels deren er auf der Welle 126 drehbar gelagert ist. Die axialen Fortsätze 124 und 128 bilden Axiallager für den Fortsatz 140 und das mit ihm einstückige Pumpenrad 138.
Vom hohlzylindrischen Abschnitt 136 verläuft ein Auslassstutzen 146 etwa tangential nach außen. Die Durchflussrichtung ist durch einen Pfeil 148 angedeutet.
Arbeitsweise
Im Betrieb wird die Statorwicklung 118 von der Leiterplatte 116 aus so mit Strom versorgt, dass sie ein elektromagnetisches Drehfeld erzeugt. Wie bei Fig. 2 ausführlich beschrieben, treibt dieses Drehfeld sowohl den äußeren Rotormagneten 106 wie auch den inneren Rotormagneten 140 an. Eine etwaige Relativbewegung der Rotormagnete 106, 140 wird durch die Kupferschicht 105 gedämpft.
Auf diese Weise wird also durch die Wicklung 118 sowohl der äußere Rotormagnet 106 mit den Lüfterflügeln 42' wie auch der innere Rotor 140 mit dem Pumpenrad 138 synchron angetrieben. Dabei ergibt sich eine sehr kompakte Bauweise bei sicherem Betrieb, und die Anordnung 20' kann direkt mit einem Flüssigkeitskühler 90 kombiniert werden, wie in Fig. 6 dargestellt. Fig. 8 zeigt ein zweites Ausführungsbeispiel der Erfindung. Gleiche oder gleich wirkende Teile werden mit denselben Bezugszeichen bezeichnet wie in den vorhergehenden Figuren, und gewöhnlich nicht nochmals beschrieben.
Wie man erkennt, ist der Aufbau der beiden Motoren und der Pumpe gegenüber dem ersten Ausführungsbeispiel (Fig. 6 und 7) unverändert. Dagegen unterscheidet sich der Aufbau des Außenrotors 44", und das Lüftergehäuse 112' ist dementsprechend länger als das Lüftergehäuse 112 bei den Fig. 6 und 7.
Ebenso wie bei Fig. 6 und 7 hat der Lagerabschnitt 94 ein Lagerrohr 148, das einstückig mit dem Spalttopf 120 ausgebildet ist und eine zylindrische Innenausnehmung 150 hat, vgl. Fig. 10.
Fig. 10 zeigt in ihrem oberen Teil die entsprechende Lageranordnung. Diese hat zwei Wälzlager 154, 156, deren Innenringe auf der Welle 96 axial verschiebbar sind. Zwischen den Außenringen der Lager 154, 156 befindet sich ein Distanzglied 158, das ebenfalls auf der Welle 96 axial verschiebbar ist und einen etwas kleineren Durchmesser hat als die zylindrische Innenausnehmung 150.
An dem in Fig. 10 oberen Ende der Welle 96 ist auch hier eine Nabe 98 befestigt, an der eine Rotorglocke 100' befestigt ist. Diese hat hier einen durchgehend kreiszylindrischen Abschnitt 104' (mit konstantem Durchmesser), dessen in Fig. 10 unterer Teil als magnetischer Rückschluss für den Rotormagneten 106 des äußeren Motors dient. Auf der Außenseite des oberen Teils des zylindrischen Abschnitts 104' sind in der dargestellten Weise die Lüfterflügel 42" befestigt, welche dieselbe Form haben wie die Flügel 42' bei Fig. 6.
Die Nabe 98 hat an ihrer in Fig. 10 unteren Seite eine Vertiefung 160, und zwischen dieser und dem Innenring des oberen Wälzlagers 154 ist eine Druckfeder 162 angeordnet.
Die Vertiefung 160 wird in Fig. 10 nach außen begrenzt durch einen nach unten ragenden Rand 164, der bei komprimierter Feder 162 gegen den Außenring des oberen Wälzlagers 154 anliegt. Am unteren Ende der Welle 96 ist ein Sprengring 166 befestigt, und der Innenring des unteren Wälzlagers 156 wird durch die Feder 162 gegen diesen Sprengring 166 gepresst.
Bei der Montage wird die Lageranordnung 94 in Richtung eines Pfeiles 168 in die Ausnehmung 150 des Lagerrohres 148 eingepresst. Dabei wird die Feder 162 komprimiert, so dass der Rand 164 gegen den Außenring des oberen Wälzlagers 154 drückt, und dieser Außenring drückt über das Distanzglied 158 gegen den Außenring des unteren Wälzlagers 156, so dass die ganze Lageranordnung 94 in das Lagerrohr 148 so weit eingepresst wird, bis der Außenring des unteren Wälzlagers 156 gegen eine Schulter 170 (Fig. 10) der Innenausnehmung 150 anliegt.
Anschließend entspannt sich die Feder 162 und verschiebt dadurch die Welle 96 so weit nach oben, bis der Sprengring 166 gegen den Innenring des unteren Wälzlagers 156 anliegt, wie das die Fig. 6, 8 und 10 zeigen. Die Montage der Lageranordnung 94 ist dann abgeschlossen, und es ist nicht notwendig, im Inneren des Lagerrohres 148 zusätzliche Arbeiten hierfür vorzunehmen.
Das Lagerrohr 148 hat eine zylindrische Außenseite 174, und auf dieser sind zwei Leiterplatten 176, 178 befestigt, welche die elektronischen Bauelemente für die Steuerung der Ströme in der eisenlosen Wicklung 118 tragen. Auf der Leiterplatte 176, die näher bei der Wicklung 118 liegt, können dabei (nicht dargestellte) Hallsensoren angeordnet werden, welche die Lage des inneren Rotors 140 erfassen und zur Steuerung der Kommutierung der eisenlosen Wicklung 118 dienen. Da diese Ströme folglich von der Lage des inneren Rotors 140 gesteuert werden, bestimmt dieser auch die Drehzahl des äußeren Rotors 106, wobei aber der äußere Rotor 106 beim Start einen gewissen Schlupf gegenüber dem Drehfeld haben kann, das von der Wicklung 118 erzeugt wird. Aus diesem Grund ist, wie bereits beschrieben, die Kupferschicht 105 vorgesehen.
Fig. 11 zeigt unten den Pumpendeckel 130 mit seinem Zulaufstutzen 132 und dem (mit radialen Löchern versehenen) Teil 128, in welchem das in Fig. 10 untere Ende der Welle 126 gehaltert ist. Ferner zeigt Fig. 11 das Kreiselpumpenrad 138 und den inneren Rotor 140 mit den beiden Sinterlagern 142, 144, die auf der feststehenden Welle 126 rotieren, wie bei Fig. 6 beschrieben.
Naturgemäß sind im Rahmen der vorliegenden Erfindung vielfache Abwandlungen und Modifikationen möglich.

Claims

Patentansprüche
1. Anordnung mit einem Lüfter (42; 42', 42") und einer Fluidpumpe (27; 134), und mit einem elektrischen Antriebsmotor (21 ; 106), welcher einen Stator (22) mit einer Statorwicklung (23; 118) aufweist, die zur Erzeugung eines Drehfelds ausgebildet ist, welchem Stator (22) ein permanentmagnetischer Außenrotor (48; 106) zum Antrieb des Lüfters (42; 42', 42") und ein permanentmagnetischer Innenrotor (26; 140) zum Antrieb der Fluidpumpe (27; 134) zugeordnet sind.
2. Anordnung nach Anspruch 1 , bei welcher der Innenrotor (26; 140) vom Stator (22) durch ein magnetisch transparentes Teil (24; 120) getrennt ist, welches den Innenrotor (26; 140) flüssigkeitsdicht vom Außenrotor (48; 106) trennt.
3. Anordnung nach Anspruch 1 oder 2, bei welcher die Statorwicklung als eisenlose Wicklung (23; 118) ausgebildet ist.
4. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher die Polzahl des Außenrotors (48; 106) mit der Polzahl des Innenrotors (26; 140) übereinstimmt.
5. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher mindestens einem der permanentmagnetischen Rotoren ein Dämpfglied (50; 105) zugeordnet ist, welches einen asynchronen Lauf dieses Rotors ermöglicht.
6. Anordnung nach Anspruch 5, bei welcher das Dämpfglied nach Art eines Kurzschlusskäfigs (50; 105) ausgebildet ist.
7. Anordnung nach Anspruch 6, bei welcher das Dämpfglied (50; 105) nach Art einer Wirbelstromdämpfung ausgebildet ist.
8. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher der Lüfter Lüfterflügel (421; 42") aufweist, welche sich im Betrieb in einem Luftführungsgehäuse (40; 112; 1121) drehen.
9. Anordnung nach Anspruch 8, bei welcher zwischen dem Luftführungsgehäuse (40; 112; 112') und der Fluidpumpe (27; 134) ein Luftführungsdurchlass (139) ausgebildet ist.
10. Anordnung nach Anspruch 9, bei welcher das Luftführungsgehäuse (40; 112; 112') durch mindestens ein mechanisches Verbindungselement (38; 137) mit der Fluidpumpe (27; 134) verbunden ist.
11. Anordnung nach Anspruch 9 und 10, bei welcher sich das mechanische Verbindungselement (38; 137) quer zum Luftführungsdurchlass (139) erstreckt.
12. Anordnung nach einem der Ansprüche 9 bis 11 , bei welcher das mechanische Verbindungselement (38; 137), das Luftführungsgehäuse (112; 112'), und ein Element (136) der Fluidpumpe (134) als einstückiges Kunststoffteil ausgebildet sind (Fig. 10).
13. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher die Fluidpumpe als Kreiselpumpe (134) ausgebildet ist.
14. Anordnung nach Anspruch 13, bei welcher die Kreiselpumpe (134) ein Pumpenrad (138) aufweist, welches einstückig mit dem permanentmagnetischen Innenrotor (26; 140) ausgebildet ist.
15. Anordnung nach Anspruch 14, bei welcher der Innenrotor (26; 140) vom Stator (22) durch einen magnetisch transparenten Spalttopf (24; 120) getrennt ist, welcher als Element eines stationären Teils (136) der Kreiselpumpe (134) ausgebildet ist.
EP05783017A 2004-11-19 2005-09-06 Anordnung mit einem luefter und einer pumpe Not-in-force EP1812714B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202004018458 2004-11-19
PCT/EP2005/009543 WO2006056249A1 (de) 2004-11-19 2005-09-06 Anordnung mit einem lüfter und einer pumpe

Publications (2)

Publication Number Publication Date
EP1812714A1 true EP1812714A1 (de) 2007-08-01
EP1812714B1 EP1812714B1 (de) 2008-03-26

Family

ID=35106631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05783017A Not-in-force EP1812714B1 (de) 2004-11-19 2005-09-06 Anordnung mit einem luefter und einer pumpe

Country Status (5)

Country Link
US (1) US20090074594A1 (de)
EP (1) EP1812714B1 (de)
AT (1) ATE390562T1 (de)
DE (1) DE502005003509D1 (de)
WO (1) WO2006056249A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007342411B2 (en) * 2006-12-28 2012-04-26 Resmed Motor Technologies Inc. Coil winding methods and structures for a slotless stator in a motor
US8297948B2 (en) * 2007-03-31 2012-10-30 Ebm-Papst St. Georgen Gmbh & Co. Kg Arrangement for delivering fluids
ITMC20100002A1 (it) * 2010-01-11 2011-07-12 Umbra Meccanotecnica Dispositivo di raffreddamento per motori endotermici che integra le funzioni di ventilatore e pompa di ricircolo del fluido refrigerante.
CN107454922B (zh) 2015-04-10 2020-11-03 开利公司 集成风扇换热器
US9956050B2 (en) 2016-08-16 2018-05-01 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US9968412B2 (en) 2016-08-16 2018-05-15 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10016246B2 (en) 2016-08-16 2018-07-10 Ethicon Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
CN207499962U (zh) * 2017-09-29 2018-06-15 苏州驿力机车科技股份有限公司 冷却组件和车辆智能冷却系统
DE102022003688A1 (de) * 2022-10-05 2024-01-11 Mercedes-Benz Group AG Pumpe, insbesondere für ein Kraftfahrzeug

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2019476A (en) * 1933-01-25 1935-11-05 William C Starkey Temperature controlling means for internal combustion engines
US2973894A (en) * 1957-06-17 1961-03-07 Turbo Res Corp Centrifugal compressor for starting jet engines
US3164304A (en) * 1961-05-08 1965-01-05 Standard Thomson Corp Liquid dispensing apparatus for small quantities
DE1751388C2 (de) * 1968-05-21 1975-06-19 Danfoss A/S, Nordborg (Daenemark) Motor mit Pumpe und Gebläse für Ölbrenner
US3568735A (en) * 1968-06-26 1971-03-09 Cooke Eng Co Laboratory microtitration dispensing apparatus
US3742265A (en) * 1972-05-25 1973-06-26 Massachusetts Inst Technology Superconducting apparatus with double armature structure
DE2332868C2 (de) * 1973-06-28 1975-05-22 Fa. Arnold Mueller, 7312 Kirchheim Regelbarer Drehstrommotor mit Zwischenrotor und Innenläufer
JPS56132494A (en) * 1980-03-24 1981-10-16 Aisin Seiki Co Ltd Integrated drive unit for fan and pump
US4728591A (en) * 1986-03-07 1988-03-01 Trustees Of Boston University Self-assembled nanometer lithographic masks and templates and method for parallel fabrication of nanometer scale multi-device structures
US5306510A (en) * 1988-01-14 1994-04-26 Cyberlab, Inc. Automated pipetting system
US5720928A (en) * 1988-09-15 1998-02-24 New York University Image processing and analysis of individual nucleic acid molecules
JPH02173278A (ja) * 1988-12-26 1990-07-04 Hitachi Ltd 微細加工方法及びその装置
US5514550A (en) * 1989-02-03 1996-05-07 Johnson & Johnson Clinical Diagnostics, Inc. Nucleic acid test article and its use to detect a predetermined nucleic acid
US5280222A (en) * 1989-06-01 1994-01-18 Papst Motoren Gmbh & Co. Kg Apparatus and method for controlling brushless electric motors and position encoders and indicating position thereof
US5744101A (en) * 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US6379895B1 (en) * 1989-06-07 2002-04-30 Affymetrix, Inc. Photolithographic and other means for manufacturing arrays
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
DE69003104T2 (de) * 1989-06-12 1994-03-17 Cis Bio International Saclay Verfahren zum nachweis von spezifischen sequenzen von nukleinsäuren und ihre verwendungen.
US5106729A (en) * 1989-07-24 1992-04-21 Arizona Board Of Regents Acting On Behalf Of Arizona State University Method for visualizing the base sequence of nucleic acid polymers
WO1991016675A1 (en) * 1990-04-06 1991-10-31 Applied Biosystems, Inc. Automated molecular biology laboratory
US5205721A (en) * 1991-02-13 1993-04-27 Nu-Tech Industries, Inc. Split stator for motor/blood pump
US5138174A (en) * 1991-07-16 1992-08-11 E. I. Du Pont De Nemours And Company Nanometer-scale structures and lithography
IL103674A0 (en) * 1991-11-19 1993-04-04 Houston Advanced Res Center Method and apparatus for molecule detection
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5445971A (en) * 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
US5519212A (en) * 1992-08-07 1996-05-21 Digital Instruments, Incorporated Tapping atomic force microscope with phase or frequency detection
US5314829A (en) * 1992-12-18 1994-05-24 California Institute Of Technology Method for imaging informational biological molecules on a semiconductor substrate
JP3270165B2 (ja) * 1993-01-22 2002-04-02 セイコーインスツルメンツ株式会社 表面分析及び加工装置
WO1994019588A1 (en) * 1993-02-22 1994-09-01 Kabushiki Kaisha Komatsu Seisakusho Water pump driving structure for an internal combustion engine
FR2703693B1 (fr) * 1993-04-06 1995-07-13 Pasteur Institut Procédé rapide de détermination d'une séquence d'ADN et application au séquençage et au diagnostic.
WO1995006138A1 (en) * 1993-08-25 1995-03-02 The Regents Of The University Of California Microscopic method for detecting micromotions
JP2526408B2 (ja) * 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
JP3523688B2 (ja) * 1994-07-06 2004-04-26 オリンパス株式会社 試料測定用プローブ装置
US6337479B1 (en) * 1994-07-28 2002-01-08 Victor B. Kley Object inspection and/or modification system and method
US5604097A (en) * 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
US6045671A (en) * 1994-10-18 2000-04-04 Symyx Technologies, Inc. Systems and methods for the combinatorial synthesis of novel materials
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
US5866434A (en) * 1994-12-08 1999-02-02 Meso Scale Technology Graphitic nanotubes in luminescence assays
US6520005B2 (en) * 1994-12-22 2003-02-18 Kla-Tencor Corporation System for sensing a sample
US5601982A (en) * 1995-02-07 1997-02-11 Sargent; Jeannine P. Method and apparatus for determining the sequence of polynucleotides
US6239273B1 (en) * 1995-02-27 2001-05-29 Affymetrix, Inc. Printing molecular library arrays
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US6518168B1 (en) * 1995-08-18 2003-02-11 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces
US6200737B1 (en) * 1995-08-24 2001-03-13 Trustees Of Tufts College Photodeposition method for fabricating a three-dimensional, patterned polymer microstructure
US5874668A (en) * 1995-10-24 1999-02-23 Arch Development Corporation Atomic force microscope for biological specimens
US6080586A (en) * 1996-04-05 2000-06-27 California Institute Of Technology Sub-micron chemical imaging with near-field laser desorption
US5770151A (en) * 1996-06-05 1998-06-23 Molecular Dynamics, Inc. High-speed liquid deposition device for biological molecule array formation
US6024925A (en) * 1997-01-23 2000-02-15 Sequenom, Inc. Systems and methods for preparing low volume analyte array elements
US6180114B1 (en) * 1996-11-21 2001-01-30 University Of Washington Therapeutic delivery using compounds self-assembled into high axial ratio microstructures
EP2295988A2 (de) * 1996-12-31 2011-03-16 High Throughput Genomics, Inc. Multiplex-Analysevorrichtung zur Analyse von Molekülen und zugehöriges Herstellungsverfahren
US5753088A (en) * 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
DE29803264U1 (de) * 1997-03-04 1998-04-16 Papst Motoren Gmbh & Co Kg Elektronisch kommutierter Gleichstrommotor
US5763768A (en) * 1997-03-17 1998-06-09 Iowa State University Research Foundation, Inc. Analytical method using modified scanning probes
WO1998048456A1 (en) * 1997-04-24 1998-10-29 Massachusetts Institute Of Technology Nanowire arrays
DE69841614D1 (de) * 1997-06-20 2010-05-27 Univ New York Elektrosprühen von lösungen zur massenherstellung von chips und molekülbibliotheken
US6982431B2 (en) * 1998-08-31 2006-01-03 Molecular Devices Corporation Sample analysis systems
US6228659B1 (en) * 1997-10-31 2001-05-08 PE Corporation (“NY”) Method and apparatus for making arrays
US5882930A (en) * 1997-11-10 1999-03-16 Hyseq, Inc. Reagent transfer device
US6722395B2 (en) * 1998-01-13 2004-04-20 James W. Overbeck Depositing fluid specimens on substrates, resulting ordered arrays, techniques for analysis of deposited arrays
US6033911A (en) * 1998-02-27 2000-03-07 Hamilton Company Automated assaying device
US6087274A (en) * 1998-03-03 2000-07-11 The United States Of America As Represented By The Secretary Of The Navy Nanoscale X-Y-Z translation of nanochannel glass replica-based masks for making complex structures during patterning
US6255469B1 (en) * 1998-05-06 2001-07-03 New York University Periodic two and three dimensional nucleic acid structures
US6472671B1 (en) * 2000-02-09 2002-10-29 Jean I. Montagu Quantified fluorescence microscopy
US6218122B1 (en) * 1998-06-19 2001-04-17 Rosetta Inpharmatics, Inc. Methods of monitoring disease states and therapies using gene expression profiles
US6551557B1 (en) * 1998-07-07 2003-04-22 Cartesian Technologies, Inc. Tip design and random access array for microfluidic transfer
US6406921B1 (en) * 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
US6214552B1 (en) * 1998-09-17 2001-04-10 Igen International, Inc. Assays for measuring nucleic acid damaging activities
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6085581A (en) * 1998-11-18 2000-07-11 Sandia Corporation Method for accurately positioning a device at a desired area of interest
US6635311B1 (en) * 1999-01-07 2003-10-21 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or products thereby
US6827979B2 (en) * 1999-01-07 2004-12-07 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or produced thereby
US6573369B2 (en) * 1999-05-21 2003-06-03 Bioforce Nanosciences, Inc. Method and apparatus for solid state molecular analysis
US20020042081A1 (en) * 2000-10-10 2002-04-11 Eric Henderson Evaluating binding affinities by force stratification and force panning
US6420105B1 (en) * 1999-08-13 2002-07-16 University Of Kentucky Research Foundation Method for analyzing molecular expression or function in an intact single cell
DE69900557T2 (de) * 1999-08-16 2002-05-23 Advantest Corp Vorrichtung zur Kontrolle und/oder Bearbeitung eines Musters
US6395554B1 (en) * 1999-09-03 2002-05-28 Packard Instrument Company Microarray loading/unloading system
JP3723021B2 (ja) * 1999-09-30 2005-12-07 富士写真フイルム株式会社 マイクロアレイチップ製造装置
US6171797B1 (en) * 1999-10-20 2001-01-09 Agilent Technologies Inc. Methods of making polymeric arrays
US6897015B2 (en) * 2000-03-07 2005-05-24 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of pathogens and biological materials
US6559457B1 (en) * 2000-03-23 2003-05-06 Advanced Micro Devices, Inc. System and method for facilitating detection of defects on a wafer
ATE402760T1 (de) * 2000-08-15 2008-08-15 Bioforce Nanosciences Inc Vorrichtung zur bildung von nanomolekularen netzwerken
JP2002097956A (ja) * 2000-09-25 2002-04-05 Aisin Seiki Co Ltd エンジン冷却装置
US6466690C1 (en) * 2000-12-19 2008-11-18 Bacus Res Lab Inc Method and apparatus for processing an image of a tissue sample microarray
US6534307B1 (en) * 2001-02-08 2003-03-18 Clinomics Biosciences, Inc. Frozen tissue microarrayer
US6383801B1 (en) * 2001-03-19 2002-05-07 Beecher Instruments Double z-drive tissue array instrument
US6755384B2 (en) * 2001-04-18 2004-06-29 Hitachi Chemical Co., Ltd. Flexible platform for liquid handling robots
US6686299B2 (en) * 2001-06-21 2004-02-03 Carlo D. Montemagno Nanosyringe array and method
US6642129B2 (en) * 2001-07-26 2003-11-04 The Board Of Trustees Of The University Of Illinois Parallel, individually addressable probes for nanolithography
WO2003014400A1 (en) * 2001-08-08 2003-02-20 Applied Precision, Llc Time-delay integration imaging of biological specimens
EP1461605A4 (de) * 2001-10-02 2009-10-21 Univ Northwestern Protein- und peptid-nanoarrays
JP2003115650A (ja) * 2001-10-03 2003-04-18 Yazaki Corp 回路体の製造方法および製造装置
US7064466B2 (en) * 2001-11-27 2006-06-20 Denso Corporation Brushless rotary electric machine having tandem rotary cores
JP4907084B2 (ja) * 2002-05-21 2012-03-28 ノースウエスタン ユニバーシティ 静電気駆動リソグラフィー
WO2004015772A1 (en) * 2002-08-08 2004-02-19 Nanoink, Inc. Protosubstrates
US7034854B2 (en) * 2002-11-12 2006-04-25 Nanoink, Inc. Methods and apparatus for ink delivery to nanolithographic probe systems
US7849320B2 (en) * 2003-11-25 2010-12-07 Hewlett-Packard Development Company, L.P. Method and system for establishing a consistent password policy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006056249A1 *

Also Published As

Publication number Publication date
DE502005003509D1 (de) 2008-05-08
US20090074594A1 (en) 2009-03-19
ATE390562T1 (de) 2008-04-15
WO2006056249A1 (de) 2006-06-01
EP1812714B1 (de) 2008-03-26

Similar Documents

Publication Publication Date Title
EP1812714B1 (de) Anordnung mit einem luefter und einer pumpe
EP2453555B1 (de) Pumpenaggregat
DE602004012340T2 (de) Turbolader mit elektrischem Hilfsantrieb
DE2730142C2 (de) Kollektorloser Gleichstrommotor der zweisträngigen Bauart
EP1598558B1 (de) Ölgedichtete Drehschiebervakuumpumpe
DE3342986C2 (de)
EP1104950B1 (de) Elektronisch kommutierter Gleichstrommotor
EP2072832A2 (de) Miniaturlüfter
EP2072825A2 (de) Kühlmittelpumpe
DE112019003912T5 (de) Motor
DE202005017738U1 (de) Anordnung mit einem Lüfter und einer Pumpe
EP0986855B1 (de) Elektronisch kommutierter motor
DE102005035451B3 (de) Elektronisch kommutierter Motor, insbesondere Lüftermotor, und Verfahren zur Ansteuerung des Motors
WO2006027043A1 (de) Anordnung zur förderung von fluiden
DE2339260C2 (de) Kollektorloser Gleichstrommotor
EP1107441A2 (de) Elektronisch kommunierter Gleichstrommotor
EP0998781B1 (de) Klauenpolmotor
DE3607014B4 (de) Schaltungsanordnung zur pulsbreitenmodulierten Ansteuerung eines Gleichstrommotors
DE10144653B4 (de) Permanent erregte elektromechanische Maschine für den Betrieb in Flüssigkeiten und Gasen
EP2866343B1 (de) Vakuumpumpe
EP1081386A2 (de) Axialflussmotor
DE202005013923U1 (de) Anordnung zur Förderung von Fluiden
DE3332659C2 (de)
DE2555055C2 (de) Kollektorloser Gleichstrommotor
DE4438130A1 (de) Spaltrohrmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005003509

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080726

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

BERE Be: lapsed

Owner name: EBM-PAPST ST. GEORGEN G.M.B.H. & CO. KG

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090723

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090915

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090901

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080927

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080627

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100906

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003509

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110530

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120906