EP1807536B1 - IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D'UNE LEUCEMIE MYELOIDE - Google Patents

IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D'UNE LEUCEMIE MYELOIDE Download PDF

Info

Publication number
EP1807536B1
EP1807536B1 EP05815224A EP05815224A EP1807536B1 EP 1807536 B1 EP1807536 B1 EP 1807536B1 EP 05815224 A EP05815224 A EP 05815224A EP 05815224 A EP05815224 A EP 05815224A EP 1807536 B1 EP1807536 B1 EP 1807536B1
Authority
EP
European Patent Office
Prior art keywords
seq
sequence
mir
cells
mirnas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05815224A
Other languages
German (de)
English (en)
Other versions
EP1807536A1 (fr
Inventor
Olivier Voinnet
Charles-Henri Lecellier
Anne Saumet
Michel Lanotte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1807536A1 publication Critical patent/EP1807536A1/fr
Application granted granted Critical
Publication of EP1807536B1 publication Critical patent/EP1807536B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to a method for identifying therapeutic agents for the treatment of myeloid leukemia, to a method for identifying miRNAs involved in the differentiation of myeloid leukemia cells and to the use of miRNAs or miRNA complementary sequences. to manufacture a medicament for the treatment of myeloid leukemia.
  • RNA silencing refers to repression mechanisms of RNA-mediated gene expression using specific sequence interactions. In plants and animals, there are two distinct pathways of post-transcriptional regulation of gene expression that use two different types of small RNAs.
  • siRNAs small interfering RNAs
  • dsRNA small double-stranded
  • nt nucleotides
  • RISC protein complex RNA-Induced Silencing Complex
  • miRNAs are extremely small single-stranded RNAs. conserved during evolution and which are about 20 nucleotides in length.
  • the miRNAs are generated as siRNAs, namely from a double-stranded precursor matured by the DICER enzyme.
  • the same RNA precursor codes for several miRNAs.
  • the miRNAs miR-19b, miR-92, miR-17, miR-18, miR-19a, miR-19b, miR-20 and miR-91 are encoded by the same RNA precursor.
  • the miRNAs miR-23 miR-24 and miR-27 are also encoded by the same RNA precursor.
  • miRNAs nevertheless have a number of differences with siRNAs.
  • miRNAs are single-stranded molecules whereas siRNAs are double-stranded molecules.
  • miRNA miR-196 is able to cleave the Hox8 mRNA ( YEKTA et al., Science, vol. 304, p: 594-596, 2004 ; MANSFIELD, Nat Genet., Vol.36 (10), p: 1079-83 2004), most animal miRNAs do not induce endonucleolytic cleavage of the targeted RNAs.
  • animal miRNAs generally inhibit the translation of targeted RNAs by hybridizing to their 3'UTR (untranslated region) via an unknown mechanism (for a review, see BARTEL DP, Cell, vol.116, p: 281-297, 2004 ).
  • miRNAs unlike plant miRNAs, have partial sequence homology with their targets that could justify differences in their mode of action.
  • miRNAs do not seem to be involved in defense mechanisms but rather to development, and more particularly to differentiation. Indeed, the expression of a specific miRNA (miR-181) in hematopoietic stem cells in culture and in vivo increases the fraction of B lymphocytes, suggesting an involvement of this miRNA in the differentiation of hematopoietic cells into B lymphocytes. ( CHEN et al., Science, Vol. 303 (5654p, p: 83-6 ).
  • let-7 miRNA Due to the link between expression of miRNAs and differentiation processes, the expression profile of miRNAs during carcinogenesis is attracting increasing interest. It has been shown that let-7 miRNA is under-expressed in human lung cancers and its over-expression in a lung adenocarcinoma cell line inhibits cell growth in vitro ( TAKAMIZAWA et al., Cancer Res., Vol. 64, p: 3753-3756, 2004 ).
  • Leukemia is called a blood cancer and is characterized by a proliferation of leukocytes. Leukemia can be acute and cause death in a few weeks or months. This disease can evolve into a lymphocytic form or a myeloid form depending on the origin of the cells. The lymphocyte form results from a hyper-proliferation of the progenitors involved in the lymphoid differentiation pathway, whereas the myeloid form results from a hyperproliferation of the progenitors involved in the myeloid differentiation pathway. With particular reference to myeloid leukemias, they are treated by a combination of various pharmacological agents that allow the differentiation and subsequent apoptosis of the cancer cells. However, there are often phenomena of resistance to treatment, which diminish all the chances of healing the patient.
  • AML3 Acute myeloid leukemia type 3
  • APL acute promyelocytic leukemia
  • Cancerous cells from AML3 are characterized by granulopoiesis blocking (granulocyte differentiation pathway) at the promyelocyte stage ( DE THE and CHELBI-ALIX, oncogene, vol. 20, p: 7136-9, 2001 ). Cells blocked at an early stage of differentiation continue to proliferate and accumulate in the bone marrow. Sometimes this accumulation of cells extends to the peripheral bloodstream most often causing the death of patients by disseminated intravascular coagulation.
  • the t (15; 17) chromosomal translocation is specifically associated with this type of leukemia and leads to the synthesis of a fusion protein between the retinoic acid ⁇ receptor (RAR ⁇ ) and the PML protein.
  • This fusion protein called PML-RAR ⁇ , negatively interferes with RAR ⁇ .
  • This interference leads to a blocking of the differentiation of the cells at the promyelocyte stage.
  • the clinical treatment of this leukemia uses agents inducing cell differentiation ( BENOIT et al., Oncogene, vol. 20, p: 7161-7177, 2001 ).
  • One of the most used anti-cancer therapeutics for the treatment of AML3 is trans- retinoic acid, all-trans or ATRA.
  • ATRA allows the remission of the disease by restoring the differentiation of leukemic cells and resulting in their death by apoptosis.
  • resistance phenomena have emerged showing the limitations of using ATRA alone in anti-cancer therapy. Different combinations are currently under study to develop more efficient protocols.
  • the inventors have been able to demonstrate that the differentiation of cancer cells resulting from myeloid leukemia is accompanied by a modification of miRNA expression, and in particular that the differentiation of cancer cells resulting from myeloid leukemia Acute Type 3 (AML3) is accompanied by a modification of miR23a miRNA expression (SEQ ID NO: 9, AUCACAUUGCCAGGGAUUUCCA), miR27a (SEQ ID NO: 11, UUCACAGUGGCUAAGUUCCGC), and miR24-2 (SEQ ID NO: 12, TGGCTCAGTTCAGCAGGAAC) encoded by the same RNA precursor (cf. . figure 1 ) of sequence SEQ ID NO: 13 ( figure 2 ).
  • miRNAs are also involved in the differentiation mechanism. cells derived from myeloid leukemia.
  • the inventors have been able to confirm this involvement of miRNAs in the differentiation mechanism of cells derived from myeloid leukemia and to demonstrate the inhibition of this differentiation in response to over-expression of the RNA precursor of sequence SEQ ID NO: 13.
  • the step (i) of culturing cells from myeloid leukemia can be performed according to techniques well known to those skilled in the art. Culture protocols that can be used in the process according to the invention are described in particular in BENOIT et al . (2001, supra).
  • the method according to the invention makes it possible to identify therapeutic agents or combinations of therapeutic agents that are effective for treating myeloid leukemia associated with blockage of granulopoiesis, and particularly for treating myeloid leukemia associated with a promyelocyte stage block such as LAM3.
  • the cells used in the method of the invention may then be derived from an acute myeloid leukemia associated with blockage of granulopoiesis, and particularly from a myeloid leukemia associated with a cell block at the promyelocyte stage such as AML3.
  • the cells used may be cells of the NB4 cell line or a cell line derived therefrom, such a derived line may be chosen from NB4-LR1 and NB4-LR2 cell lines (RUCHAUD et al., 1994, supra ).
  • a protocol for culturing the NB4 cell line or its derived lines is described in particular in BENOIT et al. (2001, supra).
  • the human promyelocyte line NB4 was isolated from a bone marrow sample from a patient with acute promyelocytic leukemia (BENOIT et al., 2001, cited above). These cells carry the translocation t (15; 17) and have the ability to differentiate into neutrophil granulocytes under the effect of ATRA.
  • the NB4-LR1 and NB4-LR2 lines which are derived from the NB4 line, exhibit resistance to ATRA-induced differentiation.
  • For the NB4-LR1 line if the transcriptional response to ATRA is maintained, their differentiation requires a joint ATRA / cAMP treatment. The study of this resistance mechanism made it possible to identify an alteration of the membrane signaling pathways in this line which causes a blockage of the maturation process normally initiated by the ATRA.
  • the NB4-LR2 cell line its cells express a PML-RAR ⁇ protein which is truncated in its RAR ⁇ part.
  • This mutation which is localized in the retinoic acid binding domain of PML-RAR ⁇ , renders these cells insensitive to ATRA and to an ATRA / cAMP mixture.
  • Restoration of differentiation requires cooperation between the rexinoid signaling pathways, such as FR 11237 or BMS 749 (strict RXR agonists (nuclear retinoid X receptor)), and cAMP. Since RAR ⁇ is no longer functional, it is also possible to use 9-cis retinoic acid, an agonist of both RAR and RXR, to induce RXR-dependent differentiation.
  • the cells cultured in step i) may be derived from a sample, in particular a blood sample, from a person suffering from myeloid leukemia. Culture protocols for such cells are well known to those skilled in the art and are described in particular in LANOTTE et al. (Blood, vol.77, p: 1080-1086, 1991 ).
  • the compound (s) that may be used in step (ii) of the process according to the invention may be of any nature, in particular protein, carbohydrate or lipid. Those skilled in the art can thus easily and quickly test compounds in the process according to the invention which it envisages may have an effect on the differentiation of cells derived from myeloid leukemia.
  • the compound (s) used in step (ii) of the process according to the invention may be therapeutic agents used in the treatment of other diseases, and more particularly in the treatment other cancers.
  • the compound (s) used in step (ii) of the process according to the invention may be therapeutic agents used in the treatment of myeloid leukemia.
  • the method according to the invention then makes it possible to determine the optimal doses and / or combinations of therapeutic agents to obtain a differentiation of the cells.
  • therapeutic agents particular mention may be made of cAMP, arsenic, interferons, TNF, retinoic acid and retinoid derivatives, such as ATRA, and rexinoids.
  • the compound added in step (ii) of the process according to the invention may be directly in the cell culture medium at a concentration which may be between 1 ⁇ M and 1 M, preferably between 1 nM and 100 mM, and particularly preferably between 100 nM and 1 mM.
  • Step (iii) can be carried out according to the analysis techniques known to those skilled in the art.
  • this step can use the Northern blot, Rnase protection, quantitative RT-PCR or use of microarrays integrating oligonucleotides complementary to miRNAs.
  • this analysis step can use the northern blot technique according to the protocol described in LLAVE et al. (Plant Cell, vol 14, p: 1605-1619, 2002 .
  • the cell RNAs cultured in step (i) before and after the addition of a therapeutic agent in step (ii) can be extracted by extraction techniques. known to those skilled in the art. In particular, cell samples can be taken daily.
  • the purified RNA can then be deposited on an electrophoresis gel. After migration of the gel electrophoresis and transfer of RNA on membrane, the membrane can be hybridized with a labeled probe, cold (biotin, etc.) or radioactive (P 32 , P 33 , etc.), having a complementary sequence in whole or in part with the RNA precursor of sequence SEQ ID NO: 13, or at least one miRNA encoded by this precursor.
  • the sequence of the probe has a length greater than or equal to 10 nucleotides, preferably 15 nucleotides, and particularly preferably 20 nucleotides.
  • the sequence of the probe is complementary wholly or partially to the sequence of the precursor RNA SEQ ID NO: 13, preferably to the sequence of at least one miRNA encoded by this precursor, and particularly preferably to at least one miRNA selected from miR23a (SEQ ID NO: 9), miR27a (SEQ ID NO: 11), and miR24-2 (SEQ ID NO: 12).
  • the hybridization signal corresponding to the miRNA analyzed can be quantified according to techniques well known to those skilled in the art, in particular by using a phosphoimager®.
  • the hybridization signal obtained with a probe complementary to this miRNA may then be normalized with the hybridization signal obtained with a probe complementary to a transcript constitutively expressed in the cells, such as 28S RNA.
  • the normalized value obtained for each sample corresponds to the expression level of the miRNA in the cells for each condition tested.
  • the cells used in step (i) may be previously transfected using techniques known to those skilled in the art by a construct containing a reporter gene, such as the gene GFP, and potentially a resistance gene, such as a hygromycin or neomycin resistance gene.
  • the reporter gene further contains at least one sequence that is wholly or partially complementary to the sequence of the precursor RNA SEQ ID NO: 13, preferably at least one sequence of a miRNA encoded by this precursor, and in a particularly preferred manner at least one miRNA selected from miR23a (SEQ ID NO: 9), miR27a (SEQ ID NO: 11), and miR24-2 (SEQ ID NO: 12).
  • said complementary sequences have a length of between 10 and 100 nucleotides, preferably between 15 and 50 nucleotides, and particularly preferably between 18 and 25 nucleotides.
  • Protocols for obtaining such a construction are known to those skilled in the art; such a protocol is described in particular for siRNAs in MANSFIELD et al. (2004, cited above).
  • the use of such a construction makes it possible to considerably simplify the analysis of the level of expression of the different miRNAs since it does not require the extraction of the RNAs. Indeed, it has been demonstrated that an animal miRNA is capable of inducing the cleavage of an RNA when the latter has a sequence perfectly complementary to the miRNA.
  • the expression of the reporter gene in particular GFP, is then conditioned on the expression of miRNA, a complementary sequence of which is present within the sequence coding for the reporter gene.
  • miRNA a complementary sequence of which is present within the sequence coding for the reporter gene.
  • the monitoring of the expression of the reporter gene may be carried out according to techniques known to those skilled in the art and in particular, in the case of GFP, by following the fluorescence emission of the transfected cells.
  • Step (iv) consists in identifying the compounds or combinations of compounds causing an increase and / or decrease in the level of expression of the precursor RNA SEQ ID NO: 13, or at least one coded miRNA. by this precursor, preferably a miRNA selected from miR23a (SEQ ID NO: 9), miR27a (SEQ ID NO: 11), and miR24-2 (SEQ ID NO: 12).
  • step (iv) consists in identifying compounds or combinations of compounds causing a decrease in the level of expression of at least one of said miRNAs.
  • the decrease in the level of expression at least one of said miRNAs may appear between the day after the addition of the therapeutic agent (J1) and the fourth day of treatment (J4).
  • the step of culturing (i) cells from myeloid leukemia can be carried out as previously described.
  • the method described makes it possible to identify miRNAs whose expression is associated with the differentiation of cells derived from a myeloid leukemia associated with blocking of the granulopoiesis of said cells, preferably associated with a promyelocyte stage blocking such as LAM3.
  • the cell line resulting from a myeloid leukemia associated with blocking of granulopoiesis may be the NB4 cell line or lines derived therefrom, in particular the NB4-LR1 and NB4-LR2 lines described above.
  • the culturing of said cell lines can be carried out as described in BENOIT et al . (2001, supra).
  • Step (ii) of adding differentiation-inducing compounds may employ therapeutic agents that are currently used in the treatment of cancer, and preferably in the treatment of myeloid leukemia.
  • therapeutic agents that can be used in step (ii) of the process according to the invention, mention may in particular be made of cAMP, arsenic, interferons, TNF, retinoic acid and derivatives of retinoids, such as ATRA, rexinoids.
  • the therapeutic agent used can be added directly to the cell culture medium at a concentration of between 1 ⁇ M and 1 M, preferably between 1 nM and 100 mM, and particularly preferably between 100 nM and 1 mM.
  • the differentiation-inducing compounds for the NB4 line can be selected from ATRA and an ATRA / cAMP mixture.
  • the concentration of ATRA used may be between 1 nM and 1 mM, preferably between 10 nM and 100 ⁇ M, particularly preferably between 100 nM and 10 ⁇ M.
  • ATRA can also be used in combination with cAMP present at a concentration of between 100 nM and 100 mM, preferably between 1 ⁇ M and 10 mM, particularly preferably between 10 ⁇ M and 1 mM.
  • a differentiation-inducing compound for the NB4-LR1 line may be an ATRA / cAMP mixture.
  • the preferred concentrations for these therapeutic agents are the same as those described above.
  • a differentiation-inducing compound for the NB4-LR2 line may be a cAMP / rexinoid mixture, such as a cAMP / FR 11237 or cAMP / BMS 749 mixture, or a cAMP / 9-cis retinoic acid mixture.
  • the concentration of rexinoids, such as FR 11237 or cAMP / BMS 749, or retinoic acid 9-cis can be between 1 nM and 1 mM, preferably between 10 nM and 100 ⁇ M, particularly preferably between 100 nM and 10 ⁇ M.
  • the preferred concentrations for cAMP are the same as those described above.
  • the analysis step (iii) can be carried out as described above, but using as probe sequences complementary to the sequence of at least one miRNA. Sequences of miRNAs are described in particular in the application WO 03/029459 or on the website http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml.
  • RNA SEQ ID NO: 7 As an internal control, it will be possible to use a probe complementary in whole or in part to the sequence of the precursor RNA SEQ ID NO: 7 (see figure 3 ), preferably at least one miRNA encoded by this precursor, and particularly preferably at least one miRNA selected from miR-17 (SEQ ID NO: 1), miR-18 (SEQ ID NO: 2), miRNA 19a (SEQ ID NO: 3), miR-19b (SEQ ID NO: 4), miR-20 (SEQ ID NO: 5), miR-91 (SEQ ID NO: 8) and miR-92 (SEQ ID NO: 6).
  • miRNA-17 SEQ ID NO: 1
  • miR-18 SEQ ID NO: 2
  • miRNA 19a SEQ ID NO: 3
  • miR-19b SEQ ID NO: 4
  • miR-20 SEQ ID NO: 5
  • miR-91 SEQ ID NO: 8
  • miR-92 SEQ ID NO: 6
  • Step (iv) consists in the identification of miRNAs which exhibit a variation of their expression profile during the differentiation of the cell line used.
  • step (iv) consists of identifying miRNAs that have an expression profile identical to or similar to at least one miRNA encoded by the precursor RNA SEQ ID NO: 7, preferably at least one miRNA selected from miR-17 (SEQ ID NO: 1), miR-18 (SEQ ID NO: 2), miR-19a (SEQ ID NO: 3), miR-19b (SEQ ID NO: 4), miR-20 (SEQ ID NO: 5), miR-91 (SEQ ID NO: 8) and miR-92 (SEQ ID NO: 6).
  • miRNA having an expression profile identical to that of at least one miRNA encoded by the precursor RNA SEQ ID NO: 7, we mean a miRNA whose variations in level of expression follow the same kinetics and with the same amplitude. than those of at least one miRNA encoded by the precursor RNA SEQ ID NO: 7 during the differentiation of cells of the cell line used, and in particular cells of the NB4 cell line or of a cell line derived therefrom.
  • miRNA having an expression profile similar to that of at least one miRNA encoded by the precursor RNA SEQ ID NO: 7, we mean a miRNA whose expression level variations follow kinetics shifted by a few days, typically by a day or two, and / or with a greater or lesser amplitude than the expression level variations of at least one miRNA encoded by the precursor RNA SEQ ID NO: 7 during the differentiation of the cells of the line NB4 cell or a derived cell line.
  • the identified miRNAs have an increase in their level of expression in response to the addition of a differentiation-inducing therapeutic agent, such as ATRA or an ATRA / cAMP mixture, between the day of treatment (D0) and the fourth day of treatment (D4), preferably between the first and third day of treatment with said therapeutic agent.
  • a differentiation-inducing therapeutic agent such as ATRA or an ATRA / cAMP mixture
  • the identified miRNAs show a decrease in their level of expression in response to the addition of a differentiation-inducing therapeutic agent, such as ATRA, between the second (J2) and the fourth day of treatment (J4) of treatment with said therapeutic agent.
  • a differentiation-inducing therapeutic agent such as ATRA
  • Another object of the present invention is the use, for the manufacture of a medicament for the treatment of myeloid leukemia, of a nucleic acid molecule selected from the miR23a / 24-2 precursor RNA (SEQ ID NO: 13), a sequence derived from such an RNA, a sequence complementary to such RNA and a sequence derived from such a complementary sequence.
  • said drug is a nucleic acid molecule chosen from a complementary sequence miR23a / 24-2 precursor RNA (SEQ ID NO: 13) and a sequence derived from such a complementary sequence.
  • said drug comprises a nucleic acid molecule chosen from a complementary sequence of miR23a (SEQ ID NO: 9), miR27a (SEQ ID NO: 11) and miR24-2 (SEQ ID NO: 12), and the sequences derived from such complementary sequences.
  • the subject of the invention is the use of at least one of said nucleic acid molecules, for the manufacture of a medicament for the treatment of myeloid leukemia associated with blocking of granulopoiesis, and particularly preferably for blocking at the promyelocyte stage, such as LAM3.
  • the nucleic acid molecules may be used in single-stranded or double-stranded form, preferably in single-stranded form.
  • the nucleic acids may be selected from DNA, RNA or modified nucleic acids such as ribonucleotides or deoxyribonucleotides having a sugar moiety or a modified carbon moiety.
  • RNA or DNA molecules used in the present invention may also contain one or more modified nucleotides, i.e. a natural ribonucleotide or deoxyribonuleotide substituted with a synthetic analog of a nucleotide.
  • modified nucleotides i.e. a natural ribonucleotide or deoxyribonuleotide substituted with a synthetic analog of a nucleotide.
  • nucleotide analogs may for example be located at the 3 'or 5' end of the nucleic acid molecule.
  • Synthetic analogues of preferred nucleotides are selected from ribonucleotides having a sugar group or modified carbon group.
  • the ribonucleotides having a modified sugar group have a 2'-OH group replaced by a group selected from a hydrogen atom, a halogen, a group OR, R, SH, SR, NH 2 , NHR, NR 2 or CN, wherein R is an alkyl, alkenyl or alkynyl group of 1 to 6 carbon and the halogen is fluorine, chlorine, bromine or iodine.
  • the ribonucleotides having a modified carbon group have their phosphoester group attached to the adjacent ribonucleotide which is replaced by a modified group such as a phosphthioate group.
  • a modified group such as a phosphthioate group.
  • modified nuclei examples include, in particular, uridines or cytidines modified in the 5-position, such as 5- (2-amino) propyl uridine and 5-bromo uridine, adenosines and guanosines modified at position 8, such as 8-bromo guanosine, denitrogenated nucleotides, such as 7-deaza-adenosine, N- and O-alkylated nucleotides, such as N6-methyl adenosine.
  • uridines or cytidines modified in the 5-position such as 5- (2-amino) propyl uridine and 5-bromo uridine
  • adenosines and guanosines modified at position 8 such as 8-bromo guanosine
  • denitrogenated nucleotides such as 7-deaza-adenosine
  • N- and O-alkylated nucleotides such as N6-methyl adenosine
  • the nucleic acid molecules used in the present invention can be obtained by chemical synthesis methods or by molecular biology methods, in particular by transcription from DNA templates or plasmids isolated from recombinant microorganisms.
  • this transcription step uses phage RNA polymerase such as T7, T3 or SP6 RNA polymerase.
  • derivative sequence a sequence having an identity of at least 80%, preferably at least 90%, and particularly preferably at least 95% with a reference sequence.
  • nucleotides A, C, G, and U may be ribonucleotides, deoxyribonucleotides, and / or nucleotide analogs, such as synthetic nucleotide analogs.
  • the nucleotides may be substituted with nucleotides forming analogous hydrogen bonds with a complementary nucleic sequence.
  • the nucleotide U may be substituted with a nucleotide T.
  • the nucleic acid molecules used to manufacture a medicament for the treatment of myeloid leukemia preferably have a length of between 15 and 100 nucleotides, preferably between 18 and 80 nucleotides and particularly preferably between 18 and 30 nucleotides.
  • mature miRNA molecules they have a length of between 19 and 24 nucleotides, and more particularly 21, 22 or 23 nucleotides.
  • the sequence complementary to a miRNA has a length of between 19 and 24 nucleotides.
  • the administration of the nucleic acid molecules can be carried out by methods of gene transfer known to those skilled in the art.
  • the nucleic acid molecules to be administered may be in the form of a solution, in particular an injectable solution, a cream, a tablet or a suspension.
  • the carrier can be any pharmaceutical carrier.
  • a carrier capable of improving the entry of nucleic acid molecules into the cells will be used.
  • Such carriers include liposomes, preferably cationic liposomes.
  • an effective amount of nucleic acid molecules to be administered to a patient can be determined simply by those skilled in the art.
  • an effective amount of nucleic acid molecules is between 0.001 mg and 10 g / kg of the patient to be treated, preferably between 0.01 mg and 1 g / kg, and particularly preferably between 0.1 and 100mg / kg.
  • ATRA all-trans retinoic acid
  • SIGMA-ALRICH all-trans retinoic acid
  • 8-CPT-cAMP 8-CPT-cAMP, SIGMA-ALRICH
  • the cell proliferation was determined daily by counting the cells using a cell counter (BECKMAN COULTER FRANCE SA) from day 0, following the addition of the therapeutic agent, to day 4. The results show that the different treatments induce a decrease in proliferation.
  • the cell pellet was then taken up in 200 ⁇ l of phosphate buffered saline (PBS) supplemented with NBT (SIGMA ALDRICH, 1 mg / ml) and PMA (Phorbol 12-myristate 13-acetate, SIGMA, 10 -7 M), then was incubated for 20 minutes at 37 ° C.
  • PBS phosphate buffered saline
  • NBT SIGMA ALDRICH, 1 mg / ml
  • PMA Phorbol 12-myristate 13-acetate, SIGMA, 10 -7 M
  • Table I Cell line Treatment Evolution of the percentage of differentiated cells during treatment (in days) 0 1 2 3 4 NB4 ATRA 0% 6% 20% 43% 95% ATRA cAMP + 0% 6% 30% 80% 100% NB4-LR1 ATRA 0% 0% 2% 5% 5% ATRA cAMP + 0% 5% 25% 75% 95%
  • the figure 4 shows an example of NB4 cell staining with NBT before and after three days of ATRA treatment. The morphology of the cells resulting from their differentiation is then clearly observed.
  • miR23a (SEQ ID NO: 9) AUCACAUUGCCAGGGAUUUCCA miR27a (SEQ ID NO: 11) UUCACAGUGGCUAAGUUCCGC miR24-2 (SEQ ID NO: 12) UGGCUCAGUUCAGCAGGAACAG miR15a (SEQ ID NO: 14) UAGCAGCACAUAAUGGUUUGUG miR16 (SEQ ID NO: 15) UAGCAGCACGUAAAUAUUGGCG miR19b (SEQ ID NO: 4) UGUGCAAAUCCAUGCAAAACUGA miR92 (SEQ ID NO: 6) UAUUGCACUUGUCCCGGCCUGU miR19a (SEQ ID NO: 3) UGUGCAAAUCUAUGCAAAACUGA miR20 (SEQ ID NO: 5) UAAAGUGCUUAUA
  • miRNAs some belong to the same precursor, thus (A) the miRNAs miR-19b, miR-92 miR-17, miR-18, miR-19a, miR-19b, miR-20, miR-91 and miR- 92, (B) the miRNAs miR15a and miR16, and (C) the miRNAs miR23a, miR27a and miR24-2 (cf. figure 1 ).
  • a model posits that such miRNAs generated from the same RNA precursor have the same expression profile ( LEE et al., Embo J., vol. 21, p: 4663-4670, 2002 ).
  • RNAs were extracted from the cells of the NB4 cell lines treated or not treated with 1 ⁇ M ATRA, at the same time intervals as in Example 1, and using the Tri-Reagent® kit (SIGMA) according to the instructions of the maker.
  • Northern analysis of the low molecular weight RNAs was performed as described in LLAVE et al. (2002, cited above). All Northern experiments were done in duplicate. DNA oligonucleotides complementary to the analyzed miRNA sequences were labeled at the end with ⁇ -P 32 ATP using T4 polynucleotide kinase (NEW ENGLAND BIOLABS) following the manufacturer's instructions.
  • the figure 5 shows the expression profile of the various miRNAs analyzed in NB4 cells after 0, 1, 2, 3 and 4 days of treatment. The amount of RNA in each well was monitored by staining the ethidium bromide gel and visualizing the ribosomal RNAs (rRNA) under UV light.
  • rRNA ribosomal RNAs
  • results obtained show a modulation of the miR-19b, miR-23a and miR-92 miRNA expression level during the differentiation of NB4 cells in response to the ATRA treatment.
  • miR-23a its level of expression increases over time in response to treatment with ATRA.
  • the expression pattern of miR-19b and miR-92 differs from that of miR-23.
  • This expression profile corresponds to a first increase in the expression level of miR-19b and miR-92, immediately after the treatment (J0) with then a maximum of expression on the third day of treatment.
  • the expression level of miR-19b and miR-92 drop between the 3 rd and the 4 th day of treatment (between J3 and J4) while the differentiation of granulocytes is complete (see Table I).
  • the expression level of miR-19b and miR-92 in the 4 th day of treatment is less than the expression level in untreated cells.
  • Northern experiments were carried out according to the protocol described in Example 2. The various Northern experiments were carried out with probes complementary to the miRNAs miR-23a, miR-17, miR-18, miR-19a, miR-19b. , miR-20, miR-23 and miR-92.
  • cells of the NB4 and NB4-cell lines LR1 were cultured in the presence or absence of ATRA / cAMP as described in Example 1. Following ATRA / cAMP co-treatment, cell differentiation of the NB4-LR1 cell line into granulocyte is restored.
  • the expression profile of these different miRNAs is identical between the NB4 and NB4-LR1 cells in response to the ATRA / cAMP co-treatment.
  • the expression pattern of these miRNAs differs from that seen in NB4 cells in response to treatment with ATRA alone.
  • the miRNAs miR-17, miR-18, miR-19a, miR-19b, miR-20 and miR-92 show indeed a maximum of expression at the 2nd day of treatment, then one significant decrease in expression level between the 2nd and the 3rd day of treatment, then their expression level initial recovers between the 3 rd and 4 th day of expression.
  • results obtained thus confirm the correlation between the expression of certain miRNAs, and in particular miR-17, miR-18, miR-19a, miR19b, miR-20 and miR-92 miRNAs and the differentiation of NB4 and NB4-LR1 cells. in granulocytes.
  • miRNAs and in particular miR-17, miR-18, miR-19a, miR19b, miR-20 and miR-92 miRNAs and the differentiation of NB4 and NB4-LR1 cells. in granulocytes.
  • the different expression kinetics of the miRNAs studied between the ATRA treatment and the ATRA / cAMP co-treatment can be justified by the different kinetics of differentiation between the two treatments.
  • miRNA expression kinetics miR-17, miR-18, miR-19a, miR19b, miR-20 and miR-92 thus show, in succession, an induction of their expression with the initiation of differentiation, followed by an inhibition of their expression at the end of differentiation.
  • the genomic sequences coding for the precursor RNA of sequence SEQ ID NO: 7 coding for miR17 / 92 miRNAs (see figure 3 , the sequence complementary to the sequence coding for the precursor RNA of sequence SEQ ID NO: 7 is represented in FIG.
  • FIG 8 SEQ ID NO: 10
  • the precursor RNA of sequence SEQ ID NO: 13 encoding the miR23a / 24-2 miRNAs and for the precursor RNA of sequence SEQ ID NO: 16 (see figure 7 ) encoding the miR16 / 15a miRNAs were cloned upstream of the ribosomal internal entry site (IRES) of the MIE vector (MSCV IRES Enhanced Green Fluorescent Protein), SYSTEMIX) as described in CHANGCHUN et al. (Blood, vol.94 (2), p: 793-802, 1999 ).
  • IRES ribosomal internal entry site
  • MIE MIE containing in particular the genomic sequence SEQ ID NO: 10 under the control of a pol II promoter
  • MIE MIE-miRNA retroviruses
  • Bosc 23 cell line PEAR et al., Proc. Natl. Acad. Sci. USA, vol.90, p8392-8396, 1993
  • LAVAU et al. EMBO J., vol.16, p: 4226-4237, 1997
  • Cells of the NB4 cell line were then infected with the different retroviruses and selected according to the protocol described in CHANGCHUN et al. (1999, supra).
  • the cells of the NB4 cell line infected with the MIE vector alone or with the various MIE-miRNA vectors are then cultured as described in Example 1 in the presence or absence of ATRA.
  • the genomic sequence coding for the precursor RNA of sequence SEQ ID NO: 13 encoding the miRNAs miR23a / 24 -2, as well as different constructs with a deletion for one or two miRNAs encoded by the latter ( ⁇ 24 ⁇ 27, ⁇ 24, ⁇ 23 ⁇ 24, ⁇ 23, ⁇ 23 ⁇ 27 and ⁇ 27) were cloned upstream of the internal ribosomal entry site (IRES) of the MIE vector. as previously described.
  • IRS internal ribosomal entry site
  • Cells of the NB4 cell line were then infected with these different retrovirus vectors, then selected according to the protocol described in Example 5, and then cultured as described in Example 1 in the presence or absence of ATRA.
  • the miRNAs miR23a, miR27a and miR24-2 coordinated expression is required to block the differentiation of NB4 cells in the presence of ATRA.
  • NB4 cells were co-infected with the MIE vector alone or with the MIE- ⁇ 23 ⁇ 27 vectors. and MIE- ⁇ 24 simultaneously.
  • oligonucleotides Chemically modified oligonucleotides (LNA®-DNA, PROLIGO) and sequence complementary to miR23a, miR27a and miR24-2 were synthesized. These modified oligonucleotides are composed of nucleotide analogues containing a 2'-O, 4'-C methylene bridge which makes it possible to improve both the stability of the oligonucleotide obtained and the hybridization performance thereof.
  • RNA, vol.10 (3), p: 544-50, 2004 were then transfected with the oligonucleotides synthesized according to the protocol described in MEISTER et al. (RNA, vol.10 (3), p: 544-50, 2004 ).
  • the cells of the NB4 and NB4-LR1 cell lines, transfected or not with an oligonucleotide complementary to the miRNAs miR23a, miR27a and miR24-2 are then cultured as described in Example 1 in the presence or absence of ATRA or an ATRA / cAMP mixture.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

  • La présente invention est relative à un procédé pour identifier des agents thérapeutiques pour le traitement de la leucémie myéloïde, à un procédé pour identifier des miRNAs impliqués dans la différenciation de cellules leucémiques myéloïdes et à l'utilisation de miRNAs ou de séquences complémentaires à des miRNAs pour fabriquer un médicament destiné au traitement de la leucémie myéloïde.
  • Le terme « RNA silencing » est relatif à des mécanismes de répression de l'expression d'un gène médiés par un ARN et utilisant des interactions séquence spécifique. Chez les plantes et les animaux, il existe notamment deux voies distinctes de régulation post-transcriptionnelle de l'expression génique qui utilisent deux types différents de petits ARNs.
  • D'une part, on trouve les siRNAs (short interfering RNA) qui sont de petits ARNs double brin (ARNdb) de 21 à 26 nucléotides (nt) de longueur et qui agissent comme des médiateurs séquence spécifique pour la dégradation d'ARNm au cours du mécanisme d'ARN interférence (RNAi). Chez la Drosophile, ces siRNAs sont dérivés d'ARNdb par l'action d'une enzyme de type RNAse III appelée DICER. Les siRNAs formés vont alors s'associer au complexe protéique RISC (RNA-Induced Silencing Complex) qui possède une activité endonucléase. Le complexe RISC/siRNA formé va alors pouvoir couper de façon spécifique les molécules d'ARN cytoplasmique qui présentent une identité de séquence avec le siRNA présent dans le complexe. Chez les plantes et les animaux, ce mécanisme joue un rôle défensif important. Ce mécanisme, en réprimant la prolifération des éléments transposables, est également impliqué dans le maintien de l'intégrité du génome.
  • D'autre part, on trouve également les miRNAs (micro RNAs) qui sont de petits ARNs simple brin extrêmement conservés au cours de l'évolution et qui ont une longueur d'environ 20 nucléotides. Les miRNAs sont générés comme les siRNAs, à savoir à partir d'un précurseur double brin maturé par l'enzyme DICER. Un même précurseur ARN code pour plusieurs miRNAs. Ainsi, les miRNAs miR-19b, miR-92, miR-17, miR-18, miR-19a, miR-19b, miR-20 et miR-91 sont codés par le même précurseur ARN. De même, les miRNAs miR-23 miR-24 et miR-27 sont également codés par un même précurseur ARN. Toutefois, les miRNAs présentent néanmoins un certain nombre de différences avec les siRNAs. Ainsi, les miRNAs sont des molécules simple brin alors que les siRNAs sont des molécules doubles brins. Bien que le miRNA miR-196 soit capable de cliver l'ARNm Hox8 (YEKTA et al., Science, vol.304, p :594-596, 2004 ; MANSFIELD, Nat Genet., vol.36(10), p :1079-83, 2004), la majeure partie des miRNAs animaux n'induisent pas de clivage endonucléolytique des ARN ciblés. Au contraire, les miRNAs animaux inhibent en général la traduction des ARN ciblés en s'hybridant à leur séquence 3'UTR (région non traduite) via un mécanisme encore inconnu (pour une revue, voir BARTEL D.P., Cell, vol.116, p : 281-297, 2004). Pour autant les miRNAs animaux, à la différence des miRNAs végétaux présentent une homologie de séquence partielle avec leurs cibles qui pourrait justifier des différences de leur mode d'action. Enfin, à la différence des siRNAs, les miRNAs ne semblent pas impliqués dans des mécanismes de défense mais plutôt de développement, et plus particulièrement de différenciation. En effet, l'expression d'un miRNA spécifique (miR-181) dans des cellules souches hématopoïétiques en culture et in vivo augmente la fraction des lymphocytes B, ce qui suggère une implication de ce miRNA dans la différenciation des cellules hématopoïétiques en lymphocyte B (CHEN et al., Science, vol.303 (5654p, p :83-6). Une indication indirecte de l'importance des miRNAs dans les processus de développement chez l'animal est fournie par un arrêt de l'embryogenèse, lié à des défauts précoces du processus de différenciation, chez des souris dont le gène codant pour DICER a été muté (BERSTEIN et al., Nat. Genet., vol.35, p :215-7, 2003). À partir de ces différentes observations, il a été proposé un modèle du mécanisme de développement dans lequel pour chaque type cellulaire particulier, et à un stade de développement déterminé, un ensemble de miRNAs spécifiques influence l'expression d'une fraction déterminée du transcriptome (BARTEL D.P., 2004, précité).
  • Du fait du lien entre expression des miRNAs et les processus de différenciation, le profil d'expression des miRNAs au cours de la cancérogenèse suscite aujourd'hui un intérêt croissant. Il a ainsi été démontré que le miRNA let-7 est sous-exprimé dans les cancers des poumons humains et sa sur-expression dans une lignée cellulaire d'adénocarcinome de poumon inhibe la croissance cellulaire in vitro (TAKAMIZAWA et al., Cancer Res., vol.64, p :3753-3756, 2004).
  • La leucémie est qualifiée de cancer du sang et se caractérise par une prolifération des leucocytes. La leucémie peut être aiguë et entraîner la mort du patient en quelques semaines ou quelques mois. Cette maladie peut évoluer sous une forme lymphocytaire ou sous une forme myéloïde selon l'origine des cellules. La forme lymphocytaire résulte d'une hyper-prolifération des progéniteurs impliqués dans la voie de différenciation lymphoïde, alors que la forme myéloïde résulte d'une hyper-prolifération des progéniteurs impliqués dans la voie de différenciation myéloïde. Concernant plus particulièrement les leucémies myéloïdes, elles sont traitées par une combinaison de divers agents pharmacologiques qui permettent la différenciation et l'apoptose consécutive des cellules cancéreuses. Pour autant, il apparaît souvent des phénomènes de résistance au traitement, lesquels diminuent d'autant les chances de guérison du patient.
  • La leucémie aiguë myéloïde de type 3 (LAM3) ou encore leucémie aiguë promyélocytaire (LAP) représente près de 10% des cas de leucémie aiguë myolécytaire. Les cellules cancéreuses issues de LAM3 se caractérisent par un blocage de la granulopoïèse (voie de différenciation des granulocytes) au stade promyélocyte (DE THE et CHELBI-ALIX, oncogene, vol. 20, p :7136-9, 2001). Les cellules bloquées à un stade précoce de différenciation continuent de proliférer et s'accumulent dans la moelle osseuse. Parfois, cette accumulation de cellules s'étend à la circulation sanguine périphérique provoquant le plus souvent la mort des patients par coagulation intra-vasculaire disséminée. Au niveau moléculaire, la translocation chromosomique t(15 ;17) est associée spécifiquement à ce type de leucémie et conduit à la synthèse d'une protéine de fusion entre le récepteur α de l'acide rétinoïque (RARα) et la protéine PML. Cette protéine de fusion, baptisée PML-RARα interfère négativement avec le RARα. Cette interférence entraîne un blocage de la différenciation des cellules au stade promyélocyte. Le traitement clinique de cette leucémie utilise des agents induisant la différenciation cellulaire (BENOIT et al., Oncogene, vol.20, p :7161-7177, 2001). Un des agents thérapeutiques anti-cancéreux les plus utilisés pour le traitement de la LAM3 est l'acide rétinoïque tout trans ou ATRA. L'ATRA permet la rémission de la maladie en restaurant la différenciation des cellules leucémiques et en entraînant de façon consécutive leur mort par apoptose. Cependant, comme pour les autres leucémies myéloïdes, des phénomènes de résistance sont apparus montrant les limites de l'utilisation de l'ATRA seul en thérapie anti-cancéreuse. Différentes combinaisons sont actuellement à l'étude pour développer des protocoles plus efficaces.
  • Par conséquent, il existe un besoin urgent d'identifier de nouvelles molécules présentant une action thérapeutique vis-à-vis des leucémies myéloïdes, de nouveaux protocoles de traitement efficaces et encore d'évaluer l'efficacité d'un traitement chez un patient atteint de leucémie myéloïde.
  • De façon inattendue, les inventeurs ont pu démontrer que la différenciation de cellules cancéreuses issue d'une leucémie myéloïde s'accompagne d'une modification de l'expression des miRNAs, et en particulier que la différenciation de cellules cancéreuses issues d'une leucémie myéloïde aiguë de type 3 (LAM3) s'accompagne d'une modification de l'expression des miRNAs miR23a (SEQ ID NO : 9, AUCACAUUGCCAGGGAUUUCCA), miR27a (SEQ ID NO: 11, UUCACAGUGGCUAAGUUCCGC), et miR24-2 (SEQ ID NO: 12, TGGCTCAGTTCAGCAGGAAC) codés par un même précurseur ARN (cf. figure 1) de séquence SEQ ID NO : 13 (figure 2).
  • Au regard de l'implication des miRNAs dans les processus de différenciation au cours de l'embryogénèse, la corrélation existant entre l'expression des miRNAs et la différenciation de cellules dérivées de leucémie myéloïde suggère que les miRNAs sont également impliqués dans le mécanisme de différenciation des cellules dérivées de leucémie myéloïde.
  • Les inventeurs ont pu confirmer cette implication des miRNAs dans le mécanisme de différenciation des cellules dérivées de leucémie myéloïde et mettre en évidence l'inhibition de cette différenciation en réponse à une sur-expression du précurseur ARN de séquence SEQ ID NO :13.
  • En conséquence, la présente invention a pour objet un procédé in vitro pour identifier des agents thérapeutiques ou des combinaisons d'agents thérapeutiques efficaces pour induire la différenciation de cellules leucémiques myéloïde, caractérisé en ce qu'il comprend les étapes de :
    1. i) mise en culture de cellules issues d'une leucémie myéloïde,
    2. ii) addition d'au moins un composé au milieu de culture de ladite lignée cellulaire,
    3. iii) analyse de l'évolution du niveau d'expression d'au moins un miRNA codé par le précurseur ARN de séquence SEQ ID NO : 13 entre les étapes (i) et (ii),
    4. iv) identification des composés ou de combinaisons de composés entraînant une modification du niveau d'expression dudit miRNA entre les étapes (i) et (ii).
  • L'étape (i) de mise en culture de cellules issues d'une leucémie myéloïde peut être effectuée selon les techniques bien connues de l'homme du métier. Des protocoles de mise en culture utilisables dans le procédé selon l'invention sont décrits notamment dans BENOIT et al. (2001, précité).
  • Selon un mode de réalisation préféré, le procédé selon l'invention permet d'identifier des agents thérapeutiques ou de combinaisons d'agents thérapeutiques efficaces pour traiter une leucémie myéloïde associée à un blocage de la granulopoïèse, et particulièrement pour traiter une leucémie myéloïde associée à un blocage au stade promyélocyte telle que la LAM3. Les cellules utilisées dans le procédé de l'invention peuvent alors être issues d'une leucémie myéloïde aiguë associée à un blocage de la granulopoïèse, et particulièrement d'une leucémie myéloïde associée à un blocage des cellules au stade promyélocyte telle que la LAM3.
  • Avantageusement, les cellules utilisées peuvent être des cellules de la lignée cellulaire NB4 ou une lignée cellulaire dérivée de cette dernière, une telle lignée dérivée peut être choisie parmi les lignées cellulaires NB4-LR1 et NB4-LR2 (RUCHAUD et al., 1994, précité). Un protocole de mise en culture de la lignée cellulaire NB4 ou de ses lignées dérivées est notamment décrit dans BENOIT et al. (2001, précité).
  • La lignée promyélocytaire humaine NB4 a été isolée à partir d'un prélèvement de moelle osseuse d'une patiente atteinte d'une leucémie aiguë promyélocytaire (BENOIT et al., 2001, précité). Ces cellules portent la translocation t(15 ; 17) et ont la capacité de se différencier en granulocytes neutrophiles sous l'effet de l'ATRA.
  • Les lignées NB4-LR1 et NB4-LR2, qui sont dérivées de la lignée NB4, présentent une résistance à la différenciation induite par l'ATRA. Pour la lignée NB4-LR1, si la réponse transcriptionnelle à l'ATRA est maintenue, leur différenciation nécessite un traitement conjoint ATRA/AMPc. L'étude de ce mécanisme de résistance a permis d'identifier une altération des voies de signalisation membranaires dans cette lignée qui entraîne un blocage du processus de maturation normalement enclenché par l'ATRA. Pour la lignée cellulaire NB4-LR2, ses cellules expriment une protéine PML-RARα qui est tronquée dans sa partie RARα. Cette mutation qui est localisée dans le domaine de liaison à l'acide rétinoïque de PML-RARα rend ces cellules insensibles à l'ATRA et à un mélange ATRA/AMPc. La restauration de la différenciation nécessite la coopération entre les voies de signalisation des réxinoïdes, tel que le F R 11237 ou le B M S 749 (agonistes stricts du RXR (nuclear retinoid X receptor)), et de l'AMPc. Puisque le RARα n'est plus fonctionnel, il est également possible d'utiliser l'acide rétinoïque 9-cis, agoniste à la fois du RAR et du RXR, pour induire une différenciation RXR dépendante.
  • Avantageusement encore, les cellules mises en culture à l'étape i) peuvent être issues d'un prélèvement, notamment d'un prélèvement sanguin, d'une personne atteinte de leucémie myéloïde. Des protocoles de mise en culture pour de telles cellules sont bien connus de l'homme du métier et sont décrits notamment dans LANOTTE et al. (Blood., vol.77, p : 1080-1086, 1991).
  • Selon un mode de réalisation préféré de l'invention, le ou les composés qui peuvent être utilisés à l'étape (ii) du procédé selon l'invention peuvent être de toute nature, notamment protéique, glucidique ou lipidique. L'homme du métier peut ainsi tester simplement et rapidement dans le procédé selon l'invention des composés dont il envisage qu'ils pourraient présenter un effet sur la différenciation des cellules issues d'une leucémie myéloïde.
  • Selon un autre mode de réalisation préféré de l'invention, le ou les composés utilisés dans l'étape (ii) du procédé selon l'invention peuvent être des agents thérapeutiques utilisés dans le traitement d'autres maladies, et plus particulièrement dans le traitement d'autres cancers. L'homme du métier peut ainsi tester simplement et rapidement dans le procédé selon l'invention des agents thérapeutiques connus dans le traitement d'autres pathologies et dont il envisage qu'ils pourraient présenter un effet sur la différenciation des cellules issues d'une leucémie myéloïde.
  • Selon un autre mode de réalisation préféré de l'invention, le ou les composés utilisés dans l'étape (ii) du procédé selon l'invention peuvent être des agents thérapeutiques utilisés dans le traitement de la leucémie myéloïde. Le procédé selon l'invention permet alors de déterminer les doses et/ou les combinaisons optimales d'agents thérapeutiques pour obtenir une différenciation des cellules. À titre d'exemple de tels agents thérapeutiques, on peut citer notamment l'AMPc, l'arsenic, les interférons, le TNF, l'acide rétinoïque et les dérivés des rétinoïdes, tel que l'ATRA, et les réxinoïdes.
  • Le composé ajouté à l'étape (ii) du procédé selon l'invention peut l'être directement au milieu de culture cellulaire à une concentration qui peut être comprise entre 1 pM et 1 M, de préférence entre 1 nM et 100 mM, et de manière particulièrement préférée entre 100 nM et 1mM.
  • L'étape (iii) peut être effectuée selon les techniques d'analyse connues de l'homme du métier. Par exemple, cette étape peut utiliser la technique de northern blot, de protection à la Rnase, de RT-PCR quantitative ou encore utiliser des puces à ADN intégrant des oligonucléotides complémentaires à des miRNAs. De préférence, cette étape d'analyse peut utiliser la technique de northern blot selon le protocole décrit dans LLAVE et al. (Plant Cell., vol. 14, p : 1605-1619, 2002. Pour mettre en oeuvre une telle analyse, les ARN de cellules mises en culture à l'étape (i), avant et après l'addition d'un agent thérapeutique à l'étape (ii) peuvent être extraits selon des techniques d'extraction connues de l'homme du métier. En particulier, des prélèvements de cellules peuvent être effectués de façon journalière. Les ARN purifiés peuvent ensuite être déposés sur un gel d'électrophorèse. Après migration du gel d'électrophorèse et transfert des ARN sur membrane, la membrane peut être hybridée avec une sonde marquée, froide (biotine, etc.) ou radioactive (P32, P33, etc.), présentant une séquence complémentaire en tout ou partie avec le précurseur ARN de séquence SEQ ID NO :13, ou à au moins un miRNA codé par ce précurseur. La séquence de la sonde présente une longueur supérieure ou égale à 10 nucléotides, de préférence à 15 nucléotides, et de manière particulièrement préférée à 20 nucléotides. La séquence de la sonde est complémentaire en tout ou partie à la séquence de l'ARN précurseur SEQ ID NO : 13, de préférence à la séquence d'au moins un miRNA codé par ce précurseur, et de manière particulièrement préférée à au moins un miRNA choisi parmi miR23a (SEQ ID NO : 9), miR27a (SEQ ID NO: 11), et miR24-2 (SEQ ID NO: 12). Après hybridation et lavage de la membrane, le signal d'hybridation correspondant au miRNA analysé peut être quantifié selon des techniques bien connues de l'homme du métier, notamment en utilisant un phosphoimager®. Le signal d'hybridation obtenu avec une sonde complémentaire à ce miRNA peut ensuite être normalisé avec le signal d'hybridation obtenu avec une sonde complémentaire à un transcrit exprimé de façon constitutive dans les cellules, tel que l'ARN 28S. La valeur normalisée obtenue pour chaque prélèvement correspond au niveau d'expression du miRNA dans les cellules pour chaque condition testée.
  • Selon un mode de réalisation particulier du procédé selon l'invention, les cellules utilisées à l'étape (i) peuvent être préalablement transfectées en utilisant des techniques connues de l'homme du métier par une construction contenant un gène rapporteur, tel que le gène de la GFP, et potentiellement un gène de résistance, tel qu'un gène de résistance à l'hygromycine ou à la néomycine. Le gène rapporteur contient en outre au moins une séquence complémentaire en tout ou partie à la séquence de l'ARN précurseur SEQ ID NO :13, de préférence à au moins une séquence d'un miRNA codé par ce précurseur, et de manière particulièrement préférée à au moins un miRNA choisi parmi miR23a (SEQ ID NO : 9), miR27a (SEQ ID NO: 11), et miR24-2 (SEQ ID NO: 12). Avantageusement, lesdites séquences complémentaires ont une longueur comprise entre 10 et 100 nucléotides, de préférence entre 15 et 50 nucléotides, et de manière particulièrement préférée entre 18 et 25 nucléotides. Les protocoles permettant l'obtention d'une telle construction sont connus de l'homme du métier ; un tel protocole est notamment décrit pour les siRNAs dans MANSFIELD et al. (2004, précité). L'utilisation d'une telle construction permet de simplifier considérablement l'analyse du niveau d'expression des différents miARNs puisqu'elle ne nécessite pas l'extraction des ARN. En effet, il a été démontré qu'un miRNA animal est capable d'induire le clivage d'un ARN lorsque ce dernier présente une séquence parfaitement complémentaire au miRNA. L'expression du gène rapporteur, notamment la GFP, est alors conditionnée à l'expression du miRNA dont une séquence complémentaire est présente au sein de la séquence codant pour le gène rapporteur. Ainsi, selon que l'agent thérapeutique induise une diminution ou une augmentation du précurseur ARN ou d'au moins un miRNA codé par celui-ci, on observera une augmentation ou une diminution de l'expression du gène rapporteur respectivement. Le suivi de l'expression du gène rapporteur pourra se faire selon des techniques connues de l'homme du métier et notamment, dans le cas de la GFP, en suivant l'émission de fluorescence des cellules transfectées.
  • L'étape (iv) consiste en l'identification des composés ou des combinaisons de composés entraînant une augmentation et/ou une diminution du niveau d'expression de l'ARN précurseur SEQ ID NO :13, ou d'au moins un miRNA codé par ce précurseur, de préférence d'un miRNA choisi parmi miR23a (SEQ ID NO : 9), miR27a (SEQ ID NO: 11), et miR24-2 (SEQ ID NO: 12).
  • Selon un mode de réalisation particulier de l'invention, l'étape (iv) consiste en l'identification des composés ou des combinaisons de composés entraînant une diminution du niveau d'expression d'au moins un desdits miRNAs. Dans ce mode de réalisation, la diminution du niveau d'expression d'au moins un desdits miRNAs peut apparaître entre le jour suivant l'addition de l'agent thérapeutique (J1) et le quatrième jour de traitement (J4).
  • Un deuxième procédé décrit ci-dessous est relatif à un procédé in vitro pour identifier des miRNAs associés à la différenciation de cellules dérivées d'une leucémie myéloïde, caractérisé en ce qu'il comprend les étapes de :
    1. i) mise en culture d'une lignée cellulaire issue d'une leucémie myéloïde,
    2. ii) addition, dans le milieu de culture, d'au moins un composé induisant la différenciation de ladite lignée cellulaire,
    3. iii) analyse de l'évolution du niveau d'expression d'au moins un miRNA, ou d'un précurseur de miRNAs entre les étapes (i) et (ii),
    4. iv) identification des miRNAs qui présentent une variation de leur profil d'expression au cours de la différenciation.
  • L'étape de mise en culture (i) de cellules issues d'une leucémie myéloïde peut être effectuée comme décrit précédemment.
  • Le procédé décrit permet d'identifier des miRNAs dont l'expression est associée à la différenciation de cellules dérivées d'une leucémie myéloïde associée à un blocage de la granulopoïèse desdites cellules, de préférence associée à un blocage au stade promyélocyte telle que la LAM3.
  • Avantageusement, la lignée cellulaire issue d'une leucémie myéloïde associée à un blocage de la granulopoïèse peut être la lignée cellulaire NB4 ou des lignées dérivées de celle-ci, notamment les lignées NB4-LR1 et NB4-LR2 décrites précédemment. La mise en culture desdites lignées cellulaires peut s'effectuer comme décrit dans BENOIT et al. (2001, précité).
  • L'étape (ii) d'addition de composés induisant la différenciation peut utiliser des agents thérapeutiques qui sont utilisés actuellement dans le traitement du cancer, et de préférence dans le traitement de la leucémie myéloïde. A titre d'exemple d'agents thérapeutiques utilisables dans l'étape (ii) du procédé selon l'invention, on peut citer notamment l'AMPc, l'arsenic, les interférons, le TNF, l'acide rétinoïque et les dérivés des rétinoïdes, tel que l'ATRA, les réxinoïdes. L'agent thérapeutique utilisé peut être ajouté directement au milieu de culture cellulaire à une concentration comprise entre 1 pM et 1 M, de préférence entre 1 nM et 100 mM, et de manière particulièrement préférée entre 100 nM et 1mM.
  • Les composés inducteurs de la différenciation pour la lignée NB4 peuvent être choisis parmi l'ATRA et un mélange ATRA/AMPc. Pour obtenir une différenciation desdites cellules, la concentration d'ATRA utilisée peut être comprise entre 1 nM et 1 mM, de préférence entre 10 nM et 100 µM, de manière particulièrement préférée entre 100 nM et 10 µM. L'ATRA peut aussi être utilisé en combinaison avec de l'AMPc présent à une concentration comprise entre 100 nM et 100 mM, de préférence entre 1 µM et 10 mM, de manière particulièrement préférée entre 10 µM et 1 mM.
  • Selon un second mode de réalisation préféré de l'invention, un composé inducteur de la différenciation pour la lignée NB4-LR1 peut être un mélange ATRA/AMPc. Les concentrations préférées pour ces agents thérapeutiques sont les mêmes que celles décrites précédemment.
  • Un composé inducteur de la différenciation pour la lignée NB4-LR2 peut être un mélange AMPc/réxinoïdes, tel qu'un mélange AMPc/F R 11237 ou AMPc/B M S 749, ou un mélange AMPc/acide rétinoïque 9-cis. Pour obtenir une différenciation desdites cellules, la concentration de réxinoïdes, tel que le F R 11237 ou AMPc/B M S 749, ou d'acide rétinoïque 9-cis peut être comprise entre 1 nM et 1 mM, de préférence entre 10 nM et 100 µM, de manière particulièrement préférée entre 100 nM et 10 µM. Les concentrations préférées pour l'AMPc sont les mêmes que celles décrites précédemment.
  • L'étape (iii) d'analyse peut être effectuée comme décrit précédemment, mais en utilisant comme sonde des séquences complémentaires à la séquence d'au moins un miRNA. Des séquences de miRNAs sont notamment décrites dans la demande WO 03/029459 ou sur le site internet http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml.
  • À titre de contrôle interne, on pourra utiliser une sonde complémentaire en tout ou partie à la séquence de l'ARN précurseur SEQ ID NO :7 (voir figure 3), de préférence à au moins un miRNA codé par ce précurseur, et de manière particulièrement préférée à au moins un miRNA choisi parmi miR-17 (SEQ ID NO :1), miR-18 (SEQ ID NO :2), miR-19a (SEQ ID NO :3), miR-19b (SEQ ID NO :4), miR-20 (SEQ ID NO :5), miR-91 (SEQ ID NO :8) et miR-92 (SEQ ID NO :6).
  • L'étape (iv) consiste en l'identification des miRNAs qui présentent une variation de leur profil d'expression au cours de la différenciation de la lignée cellulaire utilisée.
  • Selon un mode de réalisation préféré, l'étape (iv) consiste en l'identification des miRNAs qui présentent un profil d'expression identique ou similaire à au moins un miRNA codé par l'ARN précurseur SEQ ID NO :7, de préférence à au moins un miRNA choisi parmi miR-17 (SEQ ID NO :1), miR-18 (SEQ ID NO :2), miR-19a (SEQ ID NO :3), miR-19b (SEQ ID NO :4), miR-20 (SEQ ID NO :5), miR-91 (SEQ ID NO :8) et miR-92 (SEQ ID NO :6).
  • Par miRNA présentant un profil d'expression identique à celui d'au moins un miRNA codé par l'ARN précurseur SEQ ID NO :7, on entend un miRNA dont les variations de niveau d'expression suivent la même cinétique et avec la même amplitude que celles d'au moins un miRNA codé par l'ARN précurseur SEQ ID NO :7 au cours de la différenciation des cellules de la lignée cellulaire utilisée, et notamment des cellules de la lignée cellulaire NB4 ou d'une lignée cellulaire dérivée de celle-ci.
  • Par miRNA présentant un profil d'expression similaire à celui d'au moins un miRNA codé par l'ARN précurseur SEQ ID NO :7, on entend un miRNA dont les variations de niveau d'expression suivent une cinétique décalée de quelques jours, typiquement d'un jour ou deux, et/ou avec une amplitude supérieure ou inférieure aux variations de niveau d'expression d'au moins un miRNA codé par l'ARN précurseur SEQ ID N0 : 7 au cours de la différenciation des cellules de la lignée cellulaire NB4 ou d'une lignée cellulaire dérivée.
  • Selon un mode de réalisation préféré du procédé décrit, les miRNAs identifiés présentent une augmentation de leur niveau d'expression en réponse à l'addition d'un agent thérapeutique inducteur de la différenciation, tel que l'ATRA ou un mélange ATRA/AMPc, entre le jour du traitement (J0) et le quatrième jour de traitement (J4), de préférence entre le premier et le troisième jour de traitement avec ledit agent thérapeutique.
  • Les miRNAs identifiés présentent une diminution de leur niveau d'expression en réponse à l'addition d'un agent thérapeutique inducteur de la différenciation, tel que l'ATRA, entre le deuxième (J2) et le quatrième jour de traitement (J4) de traitement avec ledit agent thérapeutique.
  • Un autre objet de la présente invention est relatif à l'utilisation, pour fabriquer un médicament destiné au traitement de la leucémie myéloïde, d'une molécule d'acides nucléiques choisie parmi l'ARN précurseur miR23a/24-2 (SEQ ID NO :13), une séquence dérivée d'un tel ARN, une séquence complémentaire d'un tel ARN et une séquence dérivée d'une telle séquence complémentaire.
  • Avantageusement, ledit médicament est une molécule d'acides nucléiques choisie parmi une séquence complémentaire de l'ARN précurseur miR23a/24-2 (SEQ ID NO :13) et une séquence dérivée d'une telle séquence complémentaire.
  • Selon un autre mode de réalisation préféré de l'invention, l'invention a pour objet l'utilisation, pour fabriquer un médicament destiné au traitement de là leucémie myéloïde, d'au moins une molécule d'acides nucléiques présentant une séquence choisie parmi :
    1. i) la séquence de miR23a (SEQ ID NO :9), une séquence dérivée de miR23a, la séquence complémentaire de miR23a, une séquence dérivée d'une telle séquence complémentaire,
    2. ii) la séquence de miR27a (SEQ ID NO :11), une séquence dérivée de miR27a, la séquence complémentaire de miR27a, une séquence dérivée d'une telle séquence complémentaire,
    3. iii)la séquence de miR24-2 (SEQ ID NO :12), une séquence dérivée de miR24-2, la séquence complémentaire de miR24-2 et une séquence dérivée d'une telle séquence complémentaire.
  • Avantageusement, ledit médicament comprend une molécule d'acides nucléiques choisie parmi une séquence complémentaire de miR23a (SEQ ID NO :9), de miR27a (SEQ ID NO :11) et de miR24-2 (SEQ ID NO :12), et les séquences dérivées de telles séquences complémentaires.
  • De préférence, l'invention a pour objet l'utilisation d'au moins une desdites molécules d'acides nucléiques, pour fabriquer un médicament destiné au traitement d'une leucémie myéloïde associée à un blocage de la granulopoïèse, et de manière particulièrement préférée à un blocage au stade promyélocytes, telle que la LAM3.
  • Les molécules d'acides nucléiques peuvent être utilisées sous forme simple brin ou double brin, de préférence sous forme simple brin. Les acides nucléiques peuvent être sélectionnés parmi l'ADN, l'ARN ou les acides nucléiques modifiés tels que les ribonucléotides ou les désoxyribonucléotides présentant un groupement sucre ou un groupement carboné modifié.
  • Les molécules d'ARN ou d'ADN utilisées dans la présente invention peuvent également contenir un ou plusieurs nucléotides modifiés, c'est-à-dire un ribonucléotide ou désoxyribonuléotide naturel substitué par un analogue synthétique d'un nucléotide. De tels analogues de nucléotides peuvent par exemple être localisés à l'extrémité 3' ou 5' de la molécule d'acide nucléique.
  • Des analogues synthétiques de nucléotides préférés sont sélectionnés parmi les ribonucléotides présentant un groupement sucre ou groupement carboné modifié. De préférence, les ribonucléotides présentant un groupement sucre modifié présentent un groupement 2'-OH remplacé par un groupement sélectionné parmi un atome d'hydrogène, un halogène, un groupement OR, R, SH, SR, NH2, NHR, NR2 ou CN, dans lequel R est un groupement alkyle, alcényle ou alcynyle de 1 à 6 carbone et l'halogène est le fluor, le chlore, le brome ou l'iode. De préférence, les ribonucléotides présentant un groupement carboné modifié ont leur groupement phosphoester lié au ribonucléotide adjacent qui est remplacé par un groupement modifié tel qu'un groupement phosphthioate. Pour autant, il est également possible d'utiliser des ribonucléotides présentant un noyau purine ou pyrimidine modifié. Comme exemples de tels noyaux modifiés, on citera notamment les uridines ou les cytidines modifiées en position 5, telles que la 5-(2-amino)propyl uridine et la 5-bromo uridine, les adénosines et guanosines modifiées en position 8, telle que la 8-bromo guanosine, les nucléotides déazotés, telle que la 7-déaza-adénosine, les nucléotides N- et O-alkylés, telle que la N6-méthyl adénosine. Ces différentes modifications peuvent également être combinées.
  • Les molécules d'acide nucléique utilisées dans la présente invention peuvent être obtenues par des méthodes de synthèse chimique ou par des méthodes de biologie moléculaire, notamment par transcription à partir de matrices ADN ou de plasmides isolés à partir de microorganismes recombinants. De préférence, cette étape de transcription utilise des ARN polymérase de phage telles que l'ARN polymérase T7, T3 ou SP6.
  • Par séquence dérivée, on entend une séquence présentant une identité d'au moins 80%, de préférence d'au moins 90%, et de manière particulièrement préférée d'au moins 95% avec une séquence de référence. La détermination d'une identité de séquence est effectuée selon la formule suivante : I = n / L
    Figure imgb0001
  • Où I représente l'identité en pourcentage (%), n est le nombre de nucléotides identiques entre une séquence donnée et une séquence de miRNA donnée et L est la longueur de la séquence. Les nucléotides A, C, G et U peuvent correspondre à des ribonucléotides, des déoxyribonucléotides et/ou à des analogues de nucléotides, comme des analogues synthétiques de nucléotide. En outre, les nucléotides peuvent être substitués par des nucléotides formant des liaisons hydrogènes analogues avec une séquence nucléique complémentaire. Ainsi, le nucléotide U peut être substitué par un nucléotide T.
  • Les molécules d'acides nucléiques utilisées pour fabriquer un médicament destinées au traitement de la leucémie myéloïde ont de préférence une longueur comprise entre 15 et 100 nucléotides, préférentiellement entre 18 et 80 nucléotides et de manière particulièrement préférée entre 18 et 30 nucléotides. Pour les molécules de miRNA matures, elles présentent une longueur comprise entre 19 et 24 nucléotides, et plus particulièrement de 21, 22 ou 23 nucléotides. Avantageusement, la séquence complémentaire à un miRNA présente une longueur comprise entre 19 et 24 nucléotides. Pour autant, il est possible d'utiliser la séquence dérivée d'un précurseur de miRNAs d'une longueur comprise entre 50 et 90 nucléotides, le plus souvent entre 60 et 80 nucléotides, mais qui peut aussi présenter une longueur supérieure à 100 nucléotides.
  • L'administration des molécules d'acides nucléiques peut être effectuée par des méthodes de transfert de gènes connues dans l'homme du métier.
  • Des méthodes communes de transfert de gène incluent le phosphate de calcium, le DEAE-Dextran, l'électroporation, la microinjection, les méthodes virales et les liposomes cationiques (GRAHAM et VAN DER EB, Virol., vol.52, p :456, 1973 ; McCUTHAN et PAGANO, J. Natl. Cancer Inst., vol.41, p :351, 1968 ; CHU et al., Nucl. Acids Res., vol. 15, p :1311 ; FRALEY et al., J. Biol. Chem., vol.255, p :10431, 1980 ; CAPECCHI et al., Cell, vol. 22, p :479, 1980 ; FELGNER iet al., Proc. Natl. Acad. Sci. USA, vol.84, p :7413, 1988).
  • Les molécules d'acides nucléiques à administrer peuvent être sous la forme d'une solution, notamment d'une solution injectable, d'une crème, d'un comprimé ou encore d'une suspension. Le support peut être tout support pharmaceutique. De préférence, on utilisera un support capable d'améliorer l'entrée des molécules d'acides nucléiques dans les cellules. De tels supports incluent notamment les liposomes, de préférence les liposomes cationiques.
  • Une quantité efficace de molécules d'acides nucléiques à administrer à un patient peut être déterminée simplement par l'homme du métier. À titre d'exemple, une quantité efficace de molécules d'acides nucléiques est comprise entre 0,001mg et 10g/kg du patient à traiter, de préférence entre 0,01mg et 1g/kg, et de manière particulièrement préférée entre 0,1 et 100mg/kg.
  • Les exemples qui suivent sont fournis à titre d'illustration et ne sauraient limiter la portée de la présente invention.
  • Exemple 1 Différenciation des cellules NB4 et NB4-LR1-en présence d'ATRA et/ou d'AMPc
  • Les cellules de la lignée cellulaire NB4 et de la lignée cellulaire NB4-LR1, résistante à la maturation par l'ATRA seul, ont été cultivées comme décrit dans LANOTTE et al. (1991, précité) et dans RUCHAUD et al. (Proc. Natl. Acad. Sci., vol. 91, p :8428-8432, 1994). Les cellules ont ensuite été traitées pendant 4 jours en présence de 1µM d'acide rétinoïque tout-trans (ATRA, SIGMA-ALRICH) seul ou additionné de 100 µM d'un analogue d'AMPc (8-CPT-cAMP, SIGMA-ALRICH).
  • La prolifération cellulaire a été déterminée journellement par comptage des cellules en utilisant un compteur de cellules (BECKMAN COULTER FRANCE SA) du jour 0, suivant l'addition de l'agent thérapeutique, au jour 4. Les résultats montrent que les différents traitements induisent une diminution de la prolifération.
  • Parallèlement, l'évolution de la différenciation a été déterminée journellement au cours du traitement. La différenciation granulocytique a été évaluée simultanément selon des critères morphologiques et biochimiques. L'analyse morphologique a été effectuée après une coloration de May-Grünwald. L'analyse biochimique a été effectuée par un test de coloration basé sur la réduction du NBT (nitro blue tetrazolium) qui permet de mesurer la capacité oxydative des cellules matures à réduire le colorant NBT. À cet effet, 0,5 à 1 x 105 cellules ont été centrifugées pendant 5 min à 190 g. le culot cellulaire a ensuite été repris dans 200 µl de tampon salin phosphate (PBS) additionné de NBT (SIGMA ALDRICH, 1 mg/ml) et de PMA (Phorbol 12-myristate 13-acetate, SIGMA, 10-7M), puis a été incubé 20 minutes à 37°C. Les cellules ont ensuite été récoltées sur lames par centrifugation Cytospin®, puis observées par microscopie par contraste de phase. Un minimum de 200 cellules par lame a été examiné sous microscope optique et un pourcentage de différenciation a été calculé sur la base du nombre de cellules NBT positives. Les résultats obtenus sont résumés dans le tableau I ci-dessous : Tableau I
    Lignée cellulaire Traitement Évolution du pourcentage de cellules différenciées au cours du traitement (en jours)
    0 1 2 3 4
    NB4 ATRA 0% 6% 20% 43% 95%
    ATRA+AMPc 0% 6% 30% 80% 100%
    NB4-LR1 ATRA 0% 0% 2% 5% 5%
    ATRA+AMPc 0% 5% 25% 75% 95%
  • Les résultats montrent que le co-traitement ATRA/AMPc permet d'obtenir une différenciation des cellules NB4 et NB4-LR1. En revanche, seules les cellules de la lignée cellulaire NB4 se différencient en présence de l'ATRA seul. La figure 4 montre un exemple de coloration de cellules NB4 au NBT avant et après trois jours de traitement à l'ATRA. On observe alors nettement le changement de morphologie des cellules résultant de leur différenciation.
  • Exemple 2 : Expression des miRNAs au cours de la différenciation des cellules NB4 induite par l'ATRA
  • Dans une première série d'expérience, l'expression de différents miRNAs a été évaluée au cours de la différenciation des cellules NB4 en présence ou en l'absence d'ATRA. L'expression des miRNAs suivants a notamment été déterminée :
    miR23a (SEQ ID NO : 9) AUCACAUUGCCAGGGAUUUCCA
    miR27a (SEQ ID NO: 11) UUCACAGUGGCUAAGUUCCGC
    miR24-2 (SEQ ID NO: 12) UGGCUCAGUUCAGCAGGAACAG
    miR15a (SEQ ID NO: 14) UAGCAGCACAUAAUGGUUUGUG
    miR16 (SEQ ID NO: 15) UAGCAGCACGUAAAUAUUGGCG
    miR19b (SEQ ID NO : 4) UGUGCAAAUCCAUGCAAAACUGA
    miR92 (SEQ ID NO : 6) UAUUGCACUUGUCCCGGCCUGU
    miR19a (SEQ ID NO : 3) UGUGCAAAUCUAUGCAAAACUGA
    miR20 (SEQ ID NO : 5) UAAAGUGCUUAUAGUGCAGGUA
    miR17 (SEQ ID NO : 1) CAAAGUGCUUACAGUGCAGGUAGU
    miR18 (SEQ ID NO : 2) UAAGGUGCAUCUAGUGCAGAUA
    miR91 (SEQ ID NO : 8) ACUGCAGUGAAGGCACUUGU
    let-7a (SEQ ID NO: 17) UGAGGUAGUAGGUUGUAUAGUU
    let-7d (SEQ ID NO: 18) AGAGGUAGUAGGUUGCAUAGU
    miR15b (SEQ ID NO: 19) UAGCAGCACAUCAUGGUUUACA
    miR142S (SEQ ID NO: 20) CAUAAAGUAGAAAGCACUAC
    miR223 (SEQ ID NO: 21) UGUCAGUUUGUCAAAUACCCC
    miR320 (SEQ ID NO: 22) AAAAGCUGGGUUGAGAGGGCGAA
    miR422b (SEQ ID NO: 23) CUGGACUUGGAGUCAGAAGGCC
  • Parmi ces miRNAs, certains appartiennent à un même précurseur, ainsi (A) les miRNAs miR-19b, miR-92 miR-17, miR-18, miR-19a, miR-19b, miR-20, miR-91 et miR-92, (B) les miRNAs miR15a et miR16, et (C) les miRNAs miR23a, miR27a et miR24-2 (cf. figure 1). Un modèle pose que de tels miRNAs générés à partir d'un même précurseur ARN présentent un même profil d'expression (LEE et al., Embo J., vol. 21, p : 4663-4670, 2002).
  • Les ARN totaux ont été extraits des cellules des lignées cellulaires NB4 traitées ou non avec 1µM d'ATRA, aux mêmes intervalles de temps qu'à l'exemple 1, et en utilisant le kit Tri-Reagent® (SIGMA) selon les instructions du fabricant. L'analyse par northern des ARN de faible poids moléculaire a été effectuée comme décrit dans LLAVE et al. (2002, précité). Toutes les expériences de northern ont été effectuées en double. Des oligonucléotides ADN complémentaires aux séquences des miRNAs analysés ont été marqués à leur extrémité avec de l'ATP γ-P32 en utilisant la polynucléotide kinase T4 (NEW ENGLAND BIOLABS) en suivant les instructions du fabricant.
  • La figure 5 montre le profil d'expression des différents miRNAs analysés dans les cellules NB4 après 0, 1, 2, 3 et 4 jours de traitement. La quantité d'ARN dans chaque puits a été contrôlée par coloration du gel au bromure d'éthidium et visualisation des ARN ribosomiques (ARNr) sous lumière UV.
  • Les résultats montrent que l'induction de la différenciation des cellules NB4 en présence d'ATRA induit une modification de l'expression de nombreux miRNAs (voir figure 5). En outre, il apparaît que les miRNAs appartenant à un même précurseur présentent effectivement un profil d'expression similaire au cours du temps.
  • De façon plus détaillée, les résultats obtenus montrent une modulation du niveau d'expression des miRNAs miR-19b, miR-23a et miR-92 au cours de la différenciation des cellules NB4 en réponse au traitement à l'ATRA. Dans le cas de miR-23a, son niveau d'expression augmente au cours du temps en réponse au traitement à l'ATRA.
  • Le profil d'expression de miR-19b et de miR-92 diffère de celui de miR-23. Ce profil d'expression correspond à une première augmentation du niveau d'expression de miR-19b et miR-92, immédiatement après le traitement (J0) avec ensuite un maximum d'expression au troisième jour de traitement. Finalement, le niveau d'expression de miR-19b et de miR-92 chute entre le 3ème et le 4ème jour de traitement (entre J3 et J4) alors que la différenciation des granulocytes est complète (cf. tableau I). En outre, le niveau d'expression de miR-19b et de miR-92 au 4ème jour de traitement est inférieur à leur niveau d'expression dans les cellules non traitées.
  • Exemple 3 : Expression des miRNAs dans les cellules des lignées cellulaires NB4 et NB4-LR1 en réponse à un traitement à l'ATRA
  • Pour établir formellement la corrélation entre l'expression des différents miRNAs identifiés et la différenciation en granulocytes, des cellules des lignées cellulaires NB4 et NB4-LR1 ont été cultivées en présence ou en l'absence d'ATRA comme décrit à l'exemple 1.
  • Des expériences de northern ont été effectuées selon le protocole décrit à l'exemple 2. Les différentes expériences de northern ont été réalisées avec des sondes complémentaires aux miRNAs miR-23a, miR-17, miR-18, miR-19a, miR-19b, miR-20, miR-23 et miR-92.
  • Les résultats obtenus montrent que le profil d'expression de miR-23 est similaire dans les cellules NB4 et NB4-LR1 en réponse à un traitement à l'ATRA (voir figures 5 et 6). En revanche, on n'observe aucune augmentation de l'expression de miR23a dans le cas d'un traitement des cellules NB4-LR2 avec l'ATRA.
  • En revanche, les résultats ont montré que les différents miRNAs miR-17, miR-18, miR-19a, miR19b, miR-20 et miR-92, lesquels sont codés par un même précurseur ARN, présentent un profil d'expression différent entre les cellules NB4 et NB4-LR1 en réponse au traitement à l'ATRA.
  • Exemple 4 : Expression des miRNA dans les cellules des lignées cellulaires NB4 et NB4-LR1 en réponse à un traitement simultané à l'ATRA et à l'AMPc
  • Pour confirmer la corrélation entre l'expression des différents miRNAs, et notamment miR-17, miR-18, miR-19a, miR19b, miR-20 et miR-92 et la différenciation en granulocytes, des cellules des lignées cellulaires NB4 et NB4-LR1 ont été cultivées en présence ou en l'absence d'ATRA/AMPc comme décrit à l'exemple 1. À la suite d'un co-traitement ATRA/AMPc, la différenciation des cellules de la lignée cellulaire NB4-LR1 en granulocyte est restaurée.
  • Des expériences de northern ont été effectuées selon le protocole décrit à l'exemple 2. Les différentes expériences de northern ont été réalisées avec des sondes complémentaires aux miRNAs miR-17, miR-18, miR-19a, miR-19b, miR-20 et miR-92.
  • Les résultats ont montré que le profil d'expression de ces différents miRNAs est identique entre les cellules NB4 et NB4-LR1 en réponse au co-traitement ATRA/AMPc. Pour autant, le profil d'expression de ces miRNAs diffère de celui observé dans les cellules NB4 en réponse au traitement à l'ATRA seul. En réponse au co-traitement ATRA/AMPc, les miRNAs miR-17, miR-18, miR-19a, miR-19b, miR-20 et miR-92 montrent en effet un maximum d'expression au 2ème jour de traitement, puis une diminution importante de leur niveau d'expression entre le 2ème et le 3ème jour de traitement, enfin leur niveau d'expression l'initial se rétablit entre le 3ème et le 4ème jour d'expression.
  • L'induction et la chute consécutive du niveau d'expression des miRNAs miR-17, miR-18, miR-19a, miR-19b, miR-20 et miR-92 s'opère donc de manière plus précoce en réponse au co-traitement ATRA/AMPc (par rapport au traitement à l'ATRA seul), tout comme la différenciation des cellules NB4 en granulocytes (cf. tableau I).
  • Les résultats obtenus confortent donc la corrélation entre l'expression de certains miRNAs, et notamment les miRNAs miR-17, miR-18, miR-19a, miR19b, miR-20 et miR-92 et la différenciation des cellules NB4 et NB4-LR1 en granulocytes. En outre, la cinétique d'expression différente des miRNAs étudiés entre le traitement à l'ATRA et le co-traitement ATRA/AMPc peut se justifier par la cinétique de différenciation différente entre les deux traitements. Enfin, la cinétique d'expression des miRNAs miR-17, miR-18, miR-19a, miR19b, miR-20 et miR-92 montre donc successivement une induction de leur expression avec l'initiation de la différenciation, puis une inhibition de leur expression en fin de différenciation.
  • Exemple 5 : Différenciation des cellules NB4 en réponse à une surexpression de différents miRNAs
  • Pour déterminer la possible implication de certains des miRNAs analysés dans la granulopoïése, les séquences génomiques codant pour l'ARN précurseur de séquence SEQ ID NO : 7 codant pour les miRNAs miR17/92 (voir figure 3, la séquence complémentaire de la séquence codant pour l'ARN précurseur de séquence SEQ ID NO : 7 est représentée dans la figure 8, SEQ ID NO : 10), pour l'ARN précurseur de séquence SEQ ID NO : 13 codant pour les miRNAs miR23a/24-2 et pour l'ARN précurseur de séquence SEQ ID NO : 16 (voir figure 7) codant pour les miRNAs miR16/15a ont été clonées en amont du site d'entrée interne ribosomique (IRES) du vecteur MIE (MSCV IRES EGFP (enhanced green fluorescent protein), SYSTEMIX) comme décrit dans CHANGCHUN et al. (Blood, vol.94(2), p :793-802, 1999). La production de surnageants contenant les différents rétrovirus MIE-miRNA (MIE contenant notamment la séquence génomique SEQ ID NO : 10 sous contrôle d'un promoteur pol II) dans la lignée cellulaire Bosc 23 (PEAR et al., Proc. Natl. Acad. Sci. USA, vol.90, p8392-8396, 1993) a ensuite été effectuée comme décrit dans LAVAU et al. (EMBO J., vol.16, p :4226-4237, 1997). Des cellules de la lignée cellulaire NB4 ont ensuite été infectées par les différents rétrovirus et sélectionnées selon le protocole décrit dans CHANGCHUN et al. (1999, précité).
  • Les cellules de la lignée cellulaire NB4 infectées par le vecteur MIE seul ou par les différents vecteurs MIE-miRNA, sont ensuite cultivées comme décrit à l'exemple 1 en présence ou en l'absence d'ATRA.
  • L'évolution de la différenciation a été déterminée journellement pour les différentes cultures comme décrit à l'exemple 1.
  • Les résultats montrent qu'à la différence des cellules infectées par les vecteurs MIE seul, MIE-miR17/miR92 et miR15a/16, lesquelles se différencient au bout de quatre jours de culture en présence d'ATRA, les cellules infectées par le vecteur MIE-miR23a/miR24-2 ne se différencient pas dans les mêmes conditions (voir figures 9 et 10).
  • Afin de confirmer la sur-expression des miRNAs dans les cellules NB4 infectées, des expériences de northern ont été effectuées selon le protocole décrit à l'exemple 2. Les différentes expériences de northern ont été réalisées avec des sondes complémentaires aux miRNAs miR-23a, miR16 et miR-92.
  • Les résultats confirment que les cellules infectées- par les vecteurs MIE-miRNAs présentent un niveau d'expression pour les miRNAs codés par le vecteur MIE-miRNAs utilisé pour les infecter (voir figure 11).
  • En conséquence, et de façon inattendue, les résultats suggèrent que les miRNAs miR23a, miR27a et miR24-2 sont potentiellement impliqués dans la différenciation des cellules NB4 en présence d'ATRA, et plus précisément que ces miRNAs régulent « négativement » la voie de différenciation de la granulopoïèse dans les cellules NB4.
  • Exemple 6: Différenciation des cellules NB4 en réponse à une surexpression de différents miRNAs codés par le précurseur miR23a/24-2
  • Pour déterminer individuellement l'implication des différents miRNAs codés par le précurseur miR2a/24-2 dans la granulopoïése induite par l'ATRA, la séquence génomique codant pour l'ARN précurseur de séquence SEQ ID NO: 13 codant pour les miRNAs miR23a/24-2, ainsi que différentes constructions présentant une délétion pour un ou deux miRNAs codés par ce dernier (Δ24Δ27, Δ24, Δ23Δ24, Δ23, Δ23Δ27 et Δ27) ont été clonées en amont du site d'entrée interne ribosomique (IRES) du vecteur MIE comme décrit précédemment.
  • Des cellules de la lignée cellulaire NB4 ont alors été infectées par ces différents vecteurs retrovirus, puis sélectionnées selon le protocole décrit à l'exemple 5, puis cultivées comme décrit à l'exemple 1 en présence ou en l'absence d'ATRA.
  • L'évolution de la différenciation a été déterminée journellement pour les différentes cultures comme décrit à l'exemple 1.
  • Les résultats montrent que seul le vecteur intégrant le précurseur complet miR23a/24-2 permet de bloquer la différenciation des cellules NB4 en présence d'ATRA (voir figure 12). Des expériences de northern blot effectuées selon le protocole décrit précédemment montrent que les vecteurs codant pour des précurseurs tronqués miR23a/24-2 permettent pour autant d'obtenir la sur-expression des miRNAs effectivement codés par ces derniers (voir figure 13).
  • En conséquence, l'expression coordonnée des miRNAs miR23a, miR27a et miR24-2 est nécessaire pour obtenir un blocage de la différenciation des cellules NB4 en présence d'ATRA.
  • Afin de déterminer si le précurseur complet miR23a/24-2 est nécessaire à l'inhibition de la différenciation des cellules NB4 en présence d'ATRA, des cellules NB4 ont été co-infectées par le vecteur MIE seul ou par les vecteurs MIE-Δ23Δ27 et MIE-Δ24 simultanément.
  • Les résultats montrent alors que la complémentation en trans des différents miRNAs du précurseur miR23a/24-2 ne permet pas de bloquer la différenciation des cellules NB4 en présence d'ATRA (voir figure 14). Pour autant, les expériences de northern effectuées sur les cellules infectées selon le protocole décrit précédemment montrent que les différents miRNAs miR23a, miR27a et miR24-2 sont bien sur-exprimés dans les cellules infectées simultanément par les vecteurs MIE-Δ23Δ27 et MIE-Δ24 (voir figure 15).
  • En conclusion, et de façon inattendue, ces expériences montrent que l'expression des miRNAs miR23a, miR27a et miR24-2 simultanément et à partir d'un même précurseur est nécessaire pour inhiber la différenciation des cellules NB4 en présence d'ATRA.
  • Exemple 7 Différenciation des cellules NB4 en réponse à une inhibition de l'expression des miRNAs miR23a, miR27a et miR24-2
  • Des oligonucléotides chimiquement modifiés (LNA®-DNA, PROLIGO) et de séquence complémentaires aux miR23a, miR27a et miR24-2 ont été synthétisés. Ces oligonucléotides modifiés sont composés d'analogues de nucléotides contenant un pont 2'-O, 4'-C méthylène qui permet d'améliorer aussi bien la stabilité de l'oligonucléotide obtenu que les performances d'hybridation de celui-ci.
  • Des cellules de la lignées cellulaires NB4 ou NB4-LR1 ont ensuite été transfectées par les oligonucléotides synthétisés selon le protocole décrit dans MEISTER et al. (RNA, vol.10(3), p :544-50, 2004).
  • Les cellules des lignées cellulaires NB4 et NB4-LR1, transfectées ou non par un oligonucléotide complémentaire aux miRNAs miR23a, miR27a et miR24-2 sont ensuite cultivées comme décrit à l'exemple 1 en présence ou en l'absence d'ATRA ou d'un mélange ATRA/AMPc.
  • L'évolution de la différenciation a été déterminée journellement pour les différentes cultures comme décrit à l'exemple 1.
  • Parallèlement, des expériences de northern ont été effectuées selon le protocole décrit à l'exemple 2. Les différentes expériences de northern ont été réalisées avec des sondes complémentaires aux miRNAs miR23a, miR27a et miR24-2.
  • SEQUENCE LISTING
    • <110> Centre National de la Recherche Scientifique (CNRS)
      VOINNET, Olivier
      LECELLIER, Charles-Henri
      SAUMET, Anne
      LANOTTE, Michel
    • <120> Utilisation des miRNAs dans le traitement de la leucémie myéloïde
    • <130> 36661/PCT
    • <150> FR 04/11725
      <151> 2004-11-03
    • <160> 23
    • <170> PatentIn version 3.3
    • <210> 1
      <211> 24
      <212> RNA
      <213> Homo sapiens
    • <400> 1
      caaagugcuu acagugcagg uagu    24
    • <210> 2
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 2
      uaaggugcau cuagugcaga ua    22
    • <210> 3
      <211> 23
      <212> RNA
      <213> Homo sapiens
    • <400> 3
      ugugcaaauc uaugcaaaac uga    23
    • <210> 4
      <211> 23
      <212> RNA
      <213> Homo sapiens
    • <400> 4
      ugugcaaauc caugcaaaac uga    23
    • <210> 5
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 5
      uaaagugcuu auagugcagg ua    22
    • <210> 6
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 6
      uauugcacuu gucccggccu gu    22
    • <210> 7
      <211> 980
      <212> RNA
      <213> Homo sapiens
    • <400> 7
      Figure imgb0002
    • <210> 8
      <211> 20
      <212> RNA
      <213> Homo sapiens
    • <400> 8
      acugcaguga aggcacuugu    20
    • <210> 9
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 9
      aucacauugc cagggauuuc ca    22
    • <210> 10
      <211> 980
      <212>. DNA
      <213> Homo sapiens
    • <400> 10
      Figure imgb0003
    • <210> 11
      <211> 21
      <212> RNA
      <213> Homo sapiens
    • <400> 11
      uucacagugg cuaaguuccg c    21
    • <210> 12
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 12
      uggcucaguu cagcaggaac ag    22
    • <210> 13
      <211> 950
      <212> RNA
      <213> Homo sapiens
    • <400> 13
      Figure imgb0004
    • <210> 14
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 14
      uagcagcaca uaaugguuug ug    22
    • <210> 15
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 15
      uagcagcacg uaaauauugg cg    22
    • <210> 16
      <211> 1126
      <212> RNA
      <213> Homo sapiens
    • <400> 16
      Figure imgb0005
    • <210> 17
      <211> 22
    • <212> RNA
      <213> Homo sapiens
    • <400> 17
      ugagguagua gguuguauag uu    22
    • <210> 18
      <211> 21
      <212> RNA
      <213> Homo sapiens
    • <400> 18
      agagguagua gguugcauag u    21
    • <210> 19
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 19
      uagcagcaca ucaugguuua ca    22
    • <210> 20
      <211> 20
      <212> RNA
      <213> Homo sapiens
    • <400> 20
      cauaaaguag aaagcacuac    20
    • <210> 21
      <211> 21
      <212> RNA
      <213> Homo sapiens
    • <400> 21
      ugucaguuug ucaaauaccc c    21
    • <210> 22
      <211> 23
      <212> RNA
      <213> Homo sapiens
    • <400> 22
      aaaagcuggg uugagagggc gaa    23
    • <210> 23
      <211> 22
      <212> RNA
      <213> Homo sapiens
    • <400> 23
      cuggacuugg agucagaagg cc    22

Claims (17)

  1. Utilisation, pour fabriquer un médicament destiné au traitement de la leucémie myéloïde, d'une molécule d'acides nucléiques ayant une longueur d'au moins 15 nucléotides choisie parmi l'ARN précurseur miR23a/24-2 (SEQ ID NO :13), une séquence dérivée présentant une identité d'au moins 80% avec un tel ARN, une séquence complémentaire d'un tel ARN et une séquence dérivée présentant une identité d'au moins 80% avec une telle séquence complémentaire.
  2. Utilisation selon la revendication 1, caractérisé en ce que ledit médicament comprend une molécule d'acides nucléiques choisie parmi une séquence complémentaire de l'ARN précurseur miR23a/24-2 (SEQ ID NO :13) et une séquence dérivée d'une telle séquence complémentaire.
  3. Utilisation selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que ledit médicament comprend une molécule d'acides nucléiques présentant une séquence choisie parmi :
    i) la séquence de miR23a (SEQ ID NO :9), une séquence dérivée de miR23a, la séquence complémentaire de miR23a, une séquence dérivée d'une telle séquence complémentaire,
    ii) la séquence de miR27a (SEQ ID NO :11), une séquence dérivée de miR27a, la séquence complémentaire de miR27a, une séquence dérivée d'une telle séquence complémentaire,
    iii) la séquence de miR24-2 (SEQ ID NO :12), une séquence dérivée de miR24-2, la séquence complémentaire de miR24-2 et une séquence dérivée d'une telle séquence complémentaire.
  4. Utilisation selon la revendication 3, caractérisé en ce que ledit médicament comprend une molécule d'acides nucléiques choisie parmi une séquence complémentaire de miR23a (SEQ ID NO :9), de miR27a (SEQ ID NO :11) et de miR24-2 (SEQ ID NO :12), et les séquences dérivées de telles séquences complémentaires.
  5. Utilisation selon l'une quelconque des revendications 1 à 4, pour fabriquer un médicament destiné au traitement d'une leucémie myéloïde associée à un blocage de la granulopoïèse.
  6. Utilisation selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les séquences d'acides nucléiques ont une longueur comprise entre 15 et 100 nucléotides.
  7. Utilisation selon l'une quelconque des revendications 1 à 6, caractérisée en ce que les molécules d'acides nucléiques sont choisies parmi les molécules d'ADN et d'ARN.
  8. Utilisation selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les molécules d'acides nucléiques contiennent un ou plusieurs nucléotides modifiés.
  9. Utilisation selon l'une quelconque des revendications 1 à 8, caractérisée en ce que les molécules d'acides nucléiques sont sous forme simple brin ou double brin.
  10. Procédé in vitro pour identifier des agents thérapeutiques ou des combinaisons d'agents thérapeutiques efficaces pour induire la différenciation de cellules leucémiques myéloïde, caractérisé en ce qu'il comprend les étapes de :
    i) mise en culture de cellules issues d'une leucémie myéloïde,
    ii) addition d'au moins un composé au milieu de culture de ladite lignée cellulaire,
    iii) analyse de l'évolution du niveau d'expression d'au moins un miRNA codé par le précurseur ARN de séquence SEQ ID NO : 13 entre les étapes (i) et (ii),
    iv) identification des composés ou des combinaisons de composés entraînant une modification du niveau d'expression dudit miRNA entre les étapes (i) et (ii).
  11. Procédé selon la revendication 10, caractérisé en ce que l'étape (iii) consiste en l'analyse du niveau d'expression d'au moins un miRNA choisi parmi miR-23a (SEQ ID NO :9), miR-27a (SEQ ID NO :11) et miR-24-2 (SEQ ID NO :12).
  12. Procédé selon la revendication 11, caractérisé en ce que l'étape (iv) consiste en l'identification des composés ou des combinaisons de composés modulant le niveau d'expression d'au moins un miRNA choisi parmi miR-23a (SEQ ID NO :9), miR-27a (SEQ ID NO :11) et miR-24-2 (SEQ ID NO :12).
  13. Procédé selon la revendication 12, caractérisé en ce que l'étape (iv) consiste en l'identification des composés ou des combinaisons de composés diminuant le niveau d'expression d'au moins un miRNA choisi parmi miR-23a (SEQ ID NO :9), miR-27a (SEQ ID NO :11) et miR-24-2 (SEQ ID NO :12).
  14. Procédé selon l'une quelconque des revendications 10 à 13, caractérisé en ce que le composé est un agent thérapeutique pour le traitement du cancer.
  15. Procédé selon la revendication 14, caractérisé en ce que l'agent thérapeutique est choisi parmi l'AMPc, l'arsenic, les interférons, le TNF, les réxinoïdes, l'acide rétinoïque et les dérivés des rétinoïdes.
  16. Procédé selon l'une quelconque des revendications 10 à 15, caractérisé en ce que l'étape (iii) d'analyse utilise la technique de northern blot.
  17. Procédé selon l'une quelconque des revendications 10 à 16, caractérisé en ce que les cellules mises en culture à l'étape (i) sont issues d'une leucémie myéloïde associée à un blocage de la granulopoïèse.
EP05815224A 2004-11-03 2005-11-03 IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D'UNE LEUCEMIE MYELOIDE Not-in-force EP1807536B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411725A FR2877350B1 (fr) 2004-11-03 2004-11-03 IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D'UNE LEUCEMIE MYELOIDE
PCT/FR2005/002732 WO2006048553A1 (fr) 2004-11-03 2005-11-03 IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D'UNE LEUCEMIE MYELOIDE

Publications (2)

Publication Number Publication Date
EP1807536A1 EP1807536A1 (fr) 2007-07-18
EP1807536B1 true EP1807536B1 (fr) 2008-06-04

Family

ID=34951939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05815224A Not-in-force EP1807536B1 (fr) 2004-11-03 2005-11-03 IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D'UNE LEUCEMIE MYELOIDE

Country Status (8)

Country Link
US (1) US20090029932A1 (fr)
EP (1) EP1807536B1 (fr)
AT (1) ATE397676T1 (fr)
CA (1) CA2586275A1 (fr)
DE (1) DE602005007373D1 (fr)
ES (1) ES2308575T3 (fr)
FR (1) FR2877350B1 (fr)
WO (1) WO2006048553A1 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474616B1 (fr) 2004-05-28 2015-07-08 Asuragen, Inc. Procédés et compositions impliquant du microARN
ES2503740T3 (es) 2004-11-12 2014-10-07 Asuragen, Inc. Procedimientos y composiciones que implican miARN y moléculas inhibidoras de miARN
CA2617581A1 (fr) 2005-08-01 2007-02-08 The Ohio State University Research Foundation Procedes a base de micro-arn pour le diagnostic du cancer du sein
CN101296702B (zh) * 2005-09-12 2012-11-28 俄亥俄州立大学研究基金会 用于诊断或治疗bcl2相关癌症的组合物和方法
WO2007044413A2 (fr) * 2005-10-05 2007-04-19 The Ohio State University Research Foundation Gene wwox, vecteurs renfermant celui-ci et utilisations de ceux-ci dans le traitement de cancer
EP2502630B1 (fr) 2006-01-05 2015-03-11 The Ohio State University Research Foundation Procédés à base de microARN et compositions pour le diagnostic, le pronostic et le traitement du cancer du poumon
EP1968622B1 (fr) 2006-01-05 2014-08-27 The Ohio State University Research Foundation Anomalies dans l'expression des micro-arn dans des tumeurs endocrines pancréatiques et des tumeurs à cellules acineuses
EP2505669A3 (fr) 2006-01-05 2013-02-13 The Ohio State University Research Foundation Procédés à base de micro ARN pour le diagnostic des cancers du colon, du pancreas, de la prostate et de l'estomac.
US7985584B2 (en) 2006-03-20 2011-07-26 The Ohio State University Research Foundation MicroRNA fingerprints during human megakaryocytopoiesis
EP2436787B1 (fr) 2006-07-13 2016-01-20 The Ohio State University Research Foundation Micro-ARN-21 pour le diagnostic d'adenocarcinome du colon ayant un faible prognostic de survie.
WO2008036776A2 (fr) * 2006-09-19 2008-03-27 Asuragen, Inc. Gènes régulés mir-15, mir-26, mir -31,mir -145, mir-147, mir-188, mir-215, mir-216 mir-331, mmu-mir-292-3p et voies de signalisation utiles comme cibles dans une intervention thérapeutique
AU2007346101B2 (en) 2006-09-19 2013-08-15 The Ohio State University Research Foundation TCL1 expression in chronic lymphocytic leukemia (CLL) regulated by miR-29 and miR-181
EP2076599A2 (fr) * 2006-09-19 2009-07-08 Asuragen, Inc. Gènes et voies régulés par mir-200 servant de cibles dans le cadre d'une intervention thérapeutique
CA2667617A1 (fr) 2006-11-01 2008-05-08 The Ohio State University Research Foundation Signature de l'expression de microarn pour la prediction de la survie et des metastases dans le carcinome hepato-cellulaire
CN101622349A (zh) * 2006-12-08 2010-01-06 奥斯瑞根公司 作为治疗性干预靶标的miR-21调节的基因和途径
AU2007333109A1 (en) * 2006-12-08 2008-06-19 Asuragen, Inc. Functions and targets of let-7 micro RNAs
CA2671294A1 (fr) * 2006-12-08 2008-06-19 Asuragen, Inc. Genes et voies genetiques regules par mir-21 utilises en tant que cibles pour une intervention therapeutique
WO2008094545A2 (fr) * 2007-01-31 2008-08-07 The Ohio State University Research Foundation Méthodes et compositions à base de micro-arn pour le diagnostic, le pronostic et le traitement de la leucémie aiguë myéloïde (lam)
CN104195226B (zh) * 2007-04-30 2017-01-11 俄亥俄州立大学研究基金会 用于区分胰腺癌与正常胰腺功能和/或慢性胰腺炎的方法
US20090131354A1 (en) * 2007-05-22 2009-05-21 Bader Andreas G miR-126 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
US20090232893A1 (en) * 2007-05-22 2009-09-17 Bader Andreas G miR-143 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
CN105950706A (zh) 2007-06-08 2016-09-21 由卫生与公众服务部代表的美利坚合众国政府 确定肝细胞癌亚型和检测肝癌干细胞的方法
CN101801419A (zh) * 2007-06-08 2010-08-11 米尔纳疗法公司 作为治疗干预的靶标的miR-34调控的基因和路径
WO2008157319A1 (fr) 2007-06-15 2008-12-24 The Ohio State University Research Foundation Protéines de fusion all-1 oncogènes pour cibler le traitement de micro-arn régulé par drosha
ES2496172T3 (es) 2007-07-31 2014-09-18 The Ohio State University Research Foundation Métodos para invertir la metilación por selección dirigida de DNMT3A y DNMT3B
CN101835902B (zh) 2007-08-03 2014-03-26 俄亥俄州立大学研究基金会 编码ncrna的超保守区域
CA2696887C (fr) 2007-08-22 2016-06-28 The Ohio State University Research Foundation Procedes et compositions pour induire une deregulation de la phosphorylation de epha7 et de erk dans des cas de leucemies humaines aigues
WO2009036332A1 (fr) 2007-09-14 2009-03-19 Asuragen, Inc. Microarn exprimés de manière différentielle dans le cancer du col de l'utérus et leurs utilisations
EP2212440A4 (fr) * 2007-10-11 2011-04-06 Univ Ohio State Res Found Procédés et compositions destinés au diagnostic et au traitement de l'adénocarcinome de l' sophage
JP2011504093A (ja) 2007-10-26 2011-02-03 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション 脆弱性ヒスチジン三連構造(fhit)相互作用を同定するための方法およびその使用
CA2705325C (fr) 2007-11-09 2016-11-01 The Board Of Regents Of The University Of Texas System Micro-arn de la famille mir-15 modulant la survie de cardiomyocytes et la reparation cardiaque
US20100323357A1 (en) * 2007-11-30 2010-12-23 The Ohio State University Research Foundation MicroRNA Expression Profiling and Targeting in Peripheral Blood in Lung Cancer
US8071562B2 (en) * 2007-12-01 2011-12-06 Mirna Therapeutics, Inc. MiR-124 regulated genes and pathways as targets for therapeutic intervention
US20090192114A1 (en) * 2007-12-21 2009-07-30 Dmitriy Ovcharenko miR-10 Regulated Genes and Pathways as Targets for Therapeutic Intervention
WO2009091904A2 (fr) * 2008-01-15 2009-07-23 The Johns Hopkins University Procédés à base de micro-arn et compositions pour le traitement du cancer
EP2260110B1 (fr) * 2008-02-08 2014-11-12 Asuragen, INC. Micro arn (mirna) exprimés différentiellement dans des noeuds lymphoïdes prélevés chez des patients atteints d'un cancer
US20110054009A1 (en) * 2008-02-28 2011-03-03 The Ohio State University Research Foundation MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Prostate Related Disorders
EP2254668A4 (fr) * 2008-02-28 2012-08-15 Univ Ohio State Res Found Signatures de microarn associées à la leucémie lymphoïde chronique humaine (llc) et leurs utilisations
WO2009111643A2 (fr) * 2008-03-06 2009-09-11 Asuragen, Inc. Marqueurs microrna pour la récurrence d’un cancer colorectal
WO2009154835A2 (fr) * 2008-03-26 2009-12-23 Asuragen, Inc. Compositions et procédés liés à mir-16 et à la thérapie contre le cancer de la prostate
WO2009126726A1 (fr) * 2008-04-08 2009-10-15 Asuragen, Inc Procédés et compositions pour diagnostiquer et moduler le papillomavirus humain (hpv)
EP2285960B1 (fr) 2008-05-08 2015-07-08 Asuragen, INC. Compositions et procédés liés à la modulation de miarn-184 de néovascularisation ou d angiogenèse
CN102149827B (zh) 2008-06-11 2014-08-20 由卫生与公众服务部代表的美利坚合众国政府 MiR-26家族作为肝细胞癌和对治疗的应答性的预测性标志物的用途
WO2010017510A1 (fr) * 2008-08-07 2010-02-11 University Of Southern California Système pour l'expression synergétique de multiples petits éléments d'arn fonctionnel
US20100179213A1 (en) * 2008-11-11 2010-07-15 Mirna Therapeutics, Inc. Methods and Compositions Involving miRNAs In Cancer Stem Cells
WO2011063382A1 (fr) 2009-11-23 2011-05-26 The Ohio State University Substances et procédés pouvant s'utiliser pour agir sur la croissance, la migration, et l'invasion de cellules tumorales
CN103648505B (zh) 2010-11-12 2016-09-28 俄亥俄州立大学研究基金会 与微rna-21、错配修复和结肠直肠癌相关的材料和方法
BR112013011942A2 (pt) 2010-11-15 2016-11-01 Univ Michigan formulação, forma de dosagem de droga para administração transmucosa oral, sistema transmucoso de fornecimento de droga, método de tratamento e profilaxia de uma doença ou distúrbio, método de tratamento, formulação, método para tratamento ou prevenção de carcinoma de célula escamosa de cabeça e pescoço (hnscc), método para quimioprevenção de um câncer oral ou condição pré-cancerosa, método para aumentar a concentração de uma composição de retinida, método de tratamento e profilaxia de uma doença ou condição, método de ratamento de um sujeito apresentando uma condição médica sintomática, método de tratamento de um câncer oral ou condição pré-cancerosa num paciente, método para fazer um sistema de fornecimento de droga bucal, método para aumentar a liberação e permeação de uma composição de retinida.
EP2670849A1 (fr) 2011-02-03 2013-12-11 Mirna Therapeutics, Inc. Mimétiques synthétiques de mir-124
CA2828772A1 (fr) 2011-03-07 2012-09-13 The Ohio State University Activite mutatrice induite par l'inflammation des liaisons au microarn-155 (mir-155) et le cancer
US9644241B2 (en) 2011-09-13 2017-05-09 Interpace Diagnostics, Llc Methods and compositions involving miR-135B for distinguishing pancreatic cancer from benign pancreatic disease
ES2444783T3 (es) * 2011-09-28 2014-02-26 Q-Med Ab Inyector electrónico
CN104364390B (zh) 2011-10-14 2016-08-24 俄亥俄州立大学 与卵巢癌相关的方法和材料
US9481885B2 (en) 2011-12-13 2016-11-01 Ohio State Innovation Foundation Methods and compositions related to miR-21 and miR-29a, exosome inhibition, and cancer metastasis
US8859202B2 (en) 2012-01-20 2014-10-14 The Ohio State University Breast cancer biomarker signatures for invasiveness and prognosis
US9163235B2 (en) 2012-06-21 2015-10-20 MiRagen Therapeutics, Inc. Inhibitors of the miR-15 family of micro-RNAs
CN107217055B (zh) * 2017-06-26 2019-01-18 生工生物工程(上海)股份有限公司 一种癌症诊断芯片及其试剂盒
CN113528432B (zh) * 2021-07-19 2024-04-19 东北林业大学 一种利用miR-18抑制剂促牛成肌细胞分化的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2268705T3 (es) * 1995-06-01 2007-03-16 Kishimoto, Tadamitsu Inhibidor del crecimiento de celulas leucemicas que contienen un derivado oligonucleotidico antisentido frente al gen del tumor de wiloms (wt1).
US20050159378A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
CA2462144C (fr) * 2001-09-28 2016-09-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Molecules de micro-arn
CA2533701A1 (fr) * 2003-07-31 2005-02-17 Isis Pharmaceuticals, Inc. Composes oligomeres et compositions utilisables pour moduler des petits arn non-codants
US8106180B2 (en) * 2003-08-07 2012-01-31 Whitehead Institute For Biomedical Research Methods and products for expression of micro RNAs
WO2005078139A2 (fr) * 2004-02-09 2005-08-25 Thomas Jefferson University Diagnostic et traitement de cancers a l'aide de microarn present dans ou au voisinage de caracteristiques chromosomiennes liees aux cancers

Also Published As

Publication number Publication date
WO2006048553A1 (fr) 2006-05-11
CA2586275A1 (fr) 2006-05-11
ES2308575T3 (es) 2008-12-01
FR2877350A1 (fr) 2006-05-05
ATE397676T1 (de) 2008-06-15
US20090029932A1 (en) 2009-01-29
FR2877350B1 (fr) 2010-08-27
EP1807536A1 (fr) 2007-07-18
DE602005007373D1 (de) 2008-07-17

Similar Documents

Publication Publication Date Title
EP1807536B1 (fr) IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D&#39;UNE LEUCEMIE MYELOIDE
US10030273B2 (en) MicroRNA expression in human peripheral blood microvesicles and uses thereof
US8507195B2 (en) MiRNAs dysregulated in triple-negative breast cancer
US20150119327A1 (en) Drug screening platform for rett syndrome
CN107115352B (zh) 微rna和包含微rna的组合物
KR20080051113A (ko) Mir 17-92 클러스터를 이용한 암 진단용 조성물 및 방법
EP2459232B1 (fr) Utilisation de microarn pour le traitement de pathologies liées à un dysfonctionnement des cils des cellules épithéliales multiciliées
JP6081798B2 (ja) miRNAに関連する癌を検出および処置するための方法および組成物およびmiRNAインヒビターおよび標的
Danik et al. Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as coexpression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of rat brain
WO2008029790A1 (fr) Nouvel acide nucléique
CN102421899A (zh) 用于治疗急性骨髓性白血病的方法
JP4120002B2 (ja) miRNAを用いた癌の予後判定方法、癌の遺伝子治療ベクター及び癌治療用医薬組成物
WO2019030461A1 (fr) Biomarqueurs du neuroblastome
JP2015144603A (ja) 医学および診断分野におけるマイクロrna−199b−5pの使用
WO2012142199A1 (fr) Miarn dérégulé dans le sarcome d&#39;ewing
KR20230075773A (ko) miR-92b-5p, miR-139-3p 및 miR-370-3p로 이루어진 군에서 선택된 하나 이상의 miRNA 억제제를 유효성분으로 포함하는 퇴행성 뇌신경질환 예방 또는 치료용 조성물
JP4517096B2 (ja) 癌の遺伝子治療ベクター及び癌治療用医薬組成物
O’Connor A Network Approach to Understanding miRNA Regulation in Adipose Tissue
Benway Defining a microRNA-mRNA targetome for calcineurin inhibitor induced nephrotoxicity
KR20190112870A (ko) 신경줄기세포 사멸 억제 효과를 가지는 miR-383-5p 억제제를 유효성분으로 포함하는 퇴행성 신경질환 예방 또는 치료용 조성물
WO2020170240A1 (fr) Procédé de réduction d&#39;une néphrotoxicité induite par des médicaments
KR20190112871A (ko) 신경줄기세포 사멸 억제 효과를 가지는 miR-494-3p 억제제를 유효성분으로 포함하는 퇴행성 신경질환 예방 또는 치료용 조성물
Bhat Study of the role of miR-204 in photoreceptor development
Kanasaki Combat Diabetic Nephropathy: From Pathogenesis to Treatment
Madera Cooperating Events in Core Binding Factor Leukemia Development: A Dissertation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070814

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANOTTE, MICHEL

Inventor name: VOINNET, OLIVIER

Inventor name: SAUMET, ANNE

Inventor name: LECELLIER, CHARLES-HENRI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602005007373

Country of ref document: DE

Date of ref document: 20080717

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVET ET MARQUES, GANGUILLET

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2308575

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080904

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081004

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

26N No opposition filed

Effective date: 20090305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081205

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121024

Year of fee payment: 8

Ref country code: DE

Payment date: 20121025

Year of fee payment: 8

Ref country code: CH

Payment date: 20121025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20121108

Year of fee payment: 8

Ref country code: GB

Payment date: 20121025

Year of fee payment: 8

Ref country code: IT

Payment date: 20121025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130107

Year of fee payment: 8

Ref country code: NL

Payment date: 20121022

Year of fee payment: 8

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20131130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005007373

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131103

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104