EP1796843B1 - Vorrichtung zur dielektrophoretischen trennung von partikeln in einer flüssigkeit - Google Patents

Vorrichtung zur dielektrophoretischen trennung von partikeln in einer flüssigkeit Download PDF

Info

Publication number
EP1796843B1
EP1796843B1 EP05800525A EP05800525A EP1796843B1 EP 1796843 B1 EP1796843 B1 EP 1796843B1 EP 05800525 A EP05800525 A EP 05800525A EP 05800525 A EP05800525 A EP 05800525A EP 1796843 B1 EP1796843 B1 EP 1796843B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
fluid
potential
particles contained
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05800525A
Other languages
English (en)
French (fr)
Other versions
EP1796843A1 (de
Inventor
Pascale Pham
François PERRAUT
Adrien Plecis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1796843A1 publication Critical patent/EP1796843A1/de
Application granted granted Critical
Publication of EP1796843B1 publication Critical patent/EP1796843B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]

Definitions

  • the invention relates to a device for performing the dielectrophoretic separation of a fluid, and in particular a liquid, in particular to allow the isolation or collection of particles in the broad sense, contained in such a fluid.
  • these particles consist, without limitation, of biological cells, such as bacteria (a few tens of micrometers) and / or biomolecules (DNA, enzymes, proteins, liposomes ...), whose sizes can go down to a few tens of nanometers, even a few nanometers.
  • these objects can consist of molecules, or aggregates of molecules (micelles).
  • these objects may consist of solid particles in a liquid medium (suspension), colloids or even aerosols.
  • biosafety we can mention the field of biosafety, sanitary controls, agrifood quality controls, the search for new drugs. It is also possible to mention applications using micro-capsules and micro-spheres (paints, cosmetics, food industry), aerosols (atmospheric pollution), etc.
  • the particles subjected to the electric field gradient do not "see” the change of sign of the applied electric field. In doing so, it is possible to move a polarizable particle by dielectrophoresis with an alternating signal.
  • the implementation of the alternating electric field makes it possible to reduce or even eliminate the parasitic electrochemical reactions that may occur in particular at the level of the electrodes in the electrical systems in ionic liquid solution. We try to fight against these phenomena, insofar as they generally induce gaseous releases to the electrodes, and also modify locally the chemical characteristics of the media.
  • electrodes generating an electric field gradient are deposited on a flat surface (glass, passivated silicon, etc.) thus leading to planar configuration systems.
  • the fluid and the particles contained therein are in contact with the upper plane of the electrodes.
  • FIG. 1 a cross section of a planar configuration with interdigital electrodes.
  • Planar configurations however, have a number of major disadvantages, which will be described below.
  • the dielectrophoretic force F DEP has a small range in the direction perpendicular to the plane of the electrodes, that is to say in the volume of the fluid containing the particles (axis oz in the figures).
  • the force is maximal in contact with the edge of the electrode.
  • the edge of the electrode creates a wedge effect, at which the electric field is maximum. It is further demonstrated that the range of the dielectrophoretic force according to oz is effective in a zone of radius equal to about 40% of the parameter d, that is to say the distance between the center of the inter-electrode gap and the center of the electrode in question.
  • the collection of particles under the effect of dielectrophoretic forces is effective in volume, if the dimension h of the fluid located above the electrodes is of the order of magnitude of the pattern d of the electrodes. In other words, this efficiency is more limited, or requires working with very limited volumes of the fluid to be treated.
  • planar configuration systems Another major disadvantage of planar configuration systems lies in the fact that the electrical nature of the particle-fluid pair can make collection ineffective due to a negative dielectrophoresis regime.
  • the direction of the dielectrophoretic force developed by the planar electrodes depends, on the one hand, on the frequency of the electrical signal applied to the electrodes, but also on parameters independent of the actual power supply, namely the electrical properties of the particle pair. /fluid.
  • the influence of the value of the electrical conductivity of the carrier fluid of the particles on the dielectrophoresis regime is particularly significant.
  • a component designed to collect particles by dielectrophoretic attraction is inefficient if the electrical conditions, and in particular the nature of the particle - fluid pair, make the dielectrophoresis regime always negative.
  • a too conductive fluid can render a planar configuration component incapable of any collection on its electrodes.
  • this kind of problem is commonly encountered in biology, where the liquids are generally aqueous ionic solutions, therefore highly conductive.
  • the dielectrophoretic forces can be inhibited by concurrent forces also from the applied electric field, including electro-convection.
  • electro-convection we mean all the phenomena of setting in motion of the fluid (convection because of the existence of an electric field which is applied to it) and in particular the setting in movement by electro-osmosis (presence of charges on the electrodes) and Joule warm-up (presence of an electric current in the fluid).
  • the moving fluid causes the particles because of their small size: this convection movement is then superimposed on the dielectrophoretic movement, which can sometimes be completely inhibited if the accumulation zones associated with each phenomenon are not the same.
  • Electro-convection then constitutes a parasitic phenomenon, which is found in particular in systems with planar configuration, where the drive by electro-convection generally goes against the dielectrophoretic forces: for example in systems with interdigital electrodes, electro-convection induces the creation of accumulation zones located in the middle of the electrodes and / or in the center of the inter-electrode space, which are not located in the same place as those due to dielectrophoresis, constituted, as already said, by the edge of said electrodes.
  • This phenomenon of electro-convection is a phenomenon that depends on the power supply frequency of the electrodes, and which is all the more important that the particles are small.
  • this phenomenon decreases as the frequency increases, whereas the positive dielectrophoresis requires not to work above the cutoff frequency, corresponding to the frequency marking the change from positive dielectrophoresis regime to negative dielectrophoresis.
  • the object of the present invention therefore aims to separate particles from a fluid by dielectrophoresis, overcoming all of these various disadvantages.
  • the device according to the invention for the dielectrophoretic separation comprises two types of electrodes, each of the two types of electrodes being brought to a different potential, so as to generate an electric field within said fluid, both types of electrodes.
  • electrode being positioned within a chamber or pipe receiving the fluid subjected to dielectrophoretic separation, said enclosure itself being provided with a particle collecting surface.
  • the electrodes lose their role of collection surface and have only a limited electrical role, namely to deliver a non-uniform electric field, in order to produce effective dielectrophoretic forces for collection and directed to the collection surface, and thus to the bottom of the enclosure or the pipe.
  • the two types of electrodes are alternately supplied with electric current.
  • One of the objectives of the invention is to obtain, on the one hand, a dielectrophoretic force parallel to the oz axis, ie perpendicular to the collection plane, and on the other hand, distributed in a controlled manner according to ounces
  • the intensity of the di-electrophoretic force may be of substantially constant intensity along the axis oz.
  • the electrodes no longer constitute a collection surface of the particles to be separated, the dimensions of said electrodes therefore no longer constitute a limiting factor for the reading step. their size can be adapted to the volume of fluid to be treated.
  • the device can operate both in positive dielectrophoresis and in negative dielectrophoresis, thus making it possible to significantly increase the fields of application of the present invention.
  • the efficiency of the device of the invention is no longer dependent on the type of dielectrophoresis regime. It should be remembered in this respect that the aforementioned planar configurations necessarily require a positive dielectrophoresis regime, to perform the collection on a solid surface.
  • the potential V (z) will be decreasing with oz, and applicable to a determined particle-fluid set and with a signal frequency of electrodes also determined.
  • the signal V (z) is inverted with respect to the preceding configuration, in order to maintain a dielectrophoretic force always directed toward the collection surface, especially if the fluid becomes very conductive, or if wants to work with another frequency.
  • microelectronics techniques already used to produce the planar systems can be preserved for the realization of these electrodes. They can be assembled in a macrosystem which contains the collecting surface and which must perform all the other non-electrical functions (sealing, fluid supply, connection to a reading system, etc.) associated with the component according to its type of use. (capture, separation, sorting, etc ). They can also be performed in a microsystem.
  • the invention recommends, according to a first embodiment, called “beveled electrodes", according to the figure 5 , that the electrode groups A and B are each composed of a single electrode, supplied at the peak value potential V 0 , whose respective surface in contact with the fluid has an inclination of an angle ⁇ relative to the horizontal, giving them a beveled appearance.
  • the electrodes have a rectangular trapezoidal longitudinal section, whose inclined face is in contact with the fluid.
  • the angle ⁇ depends on the volume of fluid to be treated and the nature of the particle-fluid pair: it must satisfy the condition 0 ⁇ ⁇ ⁇ 90 °.
  • Beveled electrodes is equivalent to the configuration obtained with two facing electrodes, which are inclined at an angle ⁇ , always with respect to the horizontal illustrated in relation to the figure 6 .
  • the compensation of the transition from a positive dielectrophoresis regime to a negative dielectrophoresis regime can be done either by reversing the inclination of the electrodes ( figure 7b ), or by moving the collection surface C on the upper part of the component, as shown in FIG. Figure 7c .
  • a negative dielectrophoresis regime is implemented in the Figures 7b and 7c , respectively by inverting the profile of the electrodes, in order to result in a decreasing variation of the potential as a function of oz, and by positioning the collecting surface at the upper level of the storage or displacement chamber of the liquid to be treated and retaining the increasing variation of the potential with the axis oz.
  • the invention proposes a second embodiment called "isolated electrodes", more particularly described in relation to the figure 8 .
  • the electrode groups A and B are each composed of a single electrode, supplied at the peak value potential V 0 , each of said electrodes being coated at its face in contact with the fluid, with a layer made of an electrical insulating material I.
  • the deposition of this layer of insulating material is made such that the surface of said insulator in contact with the fluid has an inclination of an angle ⁇ relative to the horizontal. In other words, this amounts to varying the thickness of the insulation layer along the axis oz.
  • the invention consists in playing on the thickness of the insulating layer to create a variable potential V (z) along the electrode and along the axis oz.
  • V (z) variable potential
  • the actual electrode has a surface parallel to the direction oz and it is the variable thickness insulation with z that creates the non-constant function V (z).
  • the nature of the insulating material is not predefined. It must be chosen so that it ensures a good mechanical adhesion on the electrode, a good homogeneity to the impermeability of the electrical charges and mechanical properties which make it easily machinable.
  • the use of isolated electrodes can bring a very clear improvement in the performance of a dielectrophoresis system.
  • the presence of electric fields in the conductive fluids can induce electric charge transfers at the electrodes, thus capable of generating electrochemical reactions.
  • These electrochemical reactions to the electrodes are all limiting factors to the efficiency of the separation, because they generally cause gaseous releases that quickly degrade the electrical performance of the component.
  • the intensities of the applied electric fields are mainly limited by these electrochemical effects. However, if the intensity of the applied fields is increased, the intensity of the dielectrophoretic forces resulting therefrom are also increased, thus optimizing the effectiveness of the component.
  • the insulating layer prevents electrical charges from passing between the fluid and the electrode in question. It thereby limits the occurrence of electrochemical reactions to the electrodes and allows working with higher electric field levels (ie applied potential levels V 0 ) than those usually achieved with uninsulated electrodes.
  • the increase in the intensity of the electric field leads to more intense dielectrophoretic forces.
  • the performance of the devices employing such isolated electrodes is better, regardless of their geometric configuration.
  • each electrode group A and B consists of a stack of electrodes, fed by an electrical signal individually, and separated by an insulating material.
  • the number N of stacked electrodes in each group and their size according to oz are not fixed. Each group must have at least two electrodes and their increasing number N enhances the desired performance of the component.
  • the stacked electrode configuration can be used either by simultaneously applying to each of the two groups A and B of electrodes a different potential (V 1 , V 2 , V 3 ) on each electrode (spatial variation of the potential), or by applying a potential (constant or not) sequentially on each electrode (temporal variation of the potential).
  • the electrodes are consecutively "lit” one after the other, ie they are brought to the same potential consecutively, inducing a spatio-temporal gradient of the potential and a dielectrophoretic force which, in time, is moves towards the capture surface, conferring a piston effect on the particles.
  • each electrode of each group is indicated on the electrical diagrams represented in relation to the Figures 11a, 11b and 11c .
  • an impedance Z i composed of a combination of resistance and inductance R i L i , is placed across the terminals of each electrode.
  • a configuration without phase shift is obtained with the electrical diagram of the figure 11b , limitingly implements a resistance, and thus causing a spatial variation of the potential V.
  • the electrical diagram of the figure 11c using inductances, a spatio-temporal variation of the potential V is obtained, the inductance inducing a delay.
  • FIG. 12a and 12b illustrate a pyramidal checkerboard structure obtained from a beveled electrode configuration, respectively in cross section and seen from above.
  • the checkered structure component can be adapted to microwell plates already used for this type of application. These plates have microcuvettes, generally distributed in matrix. The flanks of the cuvettes may constitute the support of the electrodes implemented in accordance with the invention.
  • Each well consists of an elementary pyramidal component and acts as a pad capable of chemically differentiating, by the nature of the capture surface positioned at the bottom of the well, a desired molecule.
  • the individual ignition (addressing) of each pad consists in applying an electric potential on each group of electrodes. Ignition of the wells simultaneously or sequentially promotes the capture of molecules by dielectrophoresis.
  • the main interest of this particular configuration is to find the operation of a planar system while separating the electrical surfaces of the capture surfaces.
  • the collection is improved if an insulating base is used as the collection surface. Indeed, it is demonstrated that with such a collection surface, it avoids the concentration of particles collected at the electrodes, that is to say at the place where the electric field is the most intense.
  • the insulating base then acts as a stopping or confinement zone, which is no longer in contact with the electrodes.
  • this insulating base is replaced by a base made of a conductive material, electrically isolated from the electrodes, and carried for example to ground or polarized.
  • the substrate to be conductive it advantageously has a layer made of gold, silver, platinum, aluminum or chromium.
  • a layer made of gold, silver, platinum, aluminum or chromium To be more transparent, it can be made in ITO (generic term designating the oxides of Indium) or polyaniline.
  • the detection can thus be carried out optically, and in particular by fluorescence, whether the base is transparent or not. In the latter case, we go through the excitation of fluorescence via a surface plasmon. This detection can also be carried out in surface plasmon resonance. It can also be performed electrically then using the base as an active electrode during a read operation.
  • the device of the present invention is of interest inasmuch as, first and foremost, it makes it possible to define a field of dielectrophoretic forces extending within the entire volume of fluid, which the could not be obtained with the devices of the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (10)

  1. Vorrichtung zum Durchführen einer dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, zwei Elektrodenarten A und B umfassend, wobei jede der beiden Elektrodenarten auf ein anderes Potential gebracht wird, um in der Flüssigkeit ein elektrisches Feld zu erzeugen, wobei die beiden Elektrodenarten A und B in einem Behälter oder einer Rohrleitung positioniert sind, der bzw. die die der dielektrophoretischen Trennung unterzogene Flüssigkeit aufnimmt, wobei der Behälter selbst mit einer Partikelsammelfläche ausgestattet ist, dadurch gekennzeichnet, dass:
    - jede der beiden Elektrodenarten in die Flüssigkeit in dem Behälter oder der Rohrleitung eingetaucht ist und sich auf einer Ebene befindet, die sich von der Ebene der Partikelsammelfläche unterscheidet;
    - jede der beiden Elektrodenarten gegenphasig mit elektrischem Strom gespeist werden;
    - und das von den beiden Elektrodenarten erzeugte Potential einen Gradienten aufweist, der vom Abstand in der Richtung oz senkrecht zur Ebene der Partikelsammelfläche abhängt.
  2. Vorrichtung nach Anspruch 1, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass die Elektroden mit einer Schicht bedeckt sind, die aus einem elektrisch isolierenden Material hergestellt ist.
  3. Vorrichtung nach den Ansprüchen 1 und 2, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass die beiden Gruppen A und B jeweils aus einer einzigen Elektrode bestehen, die auf ein Potential mit einem Spitzenwert V0 gespeist werden, und dass die Oberfläche jeder der Elektroden, die mit der zu behandelnden Flüssigkeit in Kontakt ist, ein in Bezug auf die Waagerechte geneigtes Profil aufweist.
  4. Vorrichtung nach Anspruch 3, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass jede der Elektroden, die die Gruppen A und B bilden, einen rechtwinklig trapezförmigen Längsquerschnitt aufweist, dessen geneigte Fläche mit der Flüssigkeit in Kontakt ist.
  5. Vorrichtung nach Anspruch 3, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass jede der Elektroden, die die Gruppen A und B bilden, einen rechteckigen Längsquerschnitt aufweist.
  6. Vorrichtung nach Anspruch 3, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass jede der Elektroden eine mit der Flüssigkeit in Kontakt stehende Fläche senkrecht zur Ebene der Partikelsammelfläche aufweist, und dass die zur Flüssigkeit gerichtete Seite der Elektroden mit einer aus einem isolierenden Material hergestellten Schicht in einer zur Ebene der Partikelsammelfläche senkrechten Richtung zu- oder abnehmenden Dicke überzogen ist.
  7. Vorrichtung nach Anspruch 1, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass die beiden Gruppen A und B jeweils aus mehreren, in der zur Ebene der Partikelsammelfläche senkrechten Richtung übereinander gestapelten Elektroden bestehen, wobei die Elektroden in Zweiergruppen durch elektrisches Isoliermaterial getrennt sind, wobei die Elektroden jeder der Gruppen A und B einer räumlichen Veränderung in der Richtung oz des Potentials unterliegen, das an sie angelegt wird.
  8. Vorrichtung nach Anspruch 1, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass die beiden Gruppen A und B jeweils aus mehreren, in der zur Ebene der Partikelsammelfläche senkrechten Richtung übereinander gestapelten Elektroden bestehen, wobei die Elektroden in Zweiergruppen durch elektrisches Isoliermaterial getrennt sind, wobei die Elektroden jeder der Gruppen A und B einer sequenziellen und zeitlichen Veränderung eines konstanten oder nicht-konstanten Potentials unterliegen, das an sie angelegt wird.
  9. Vorrichtung nach Anspruch 8, zum Durchführen der dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass die Elektroden jeder der Gruppen A und B aufeinanderfolgend in der zur Ebene der Partikelsammelfläche senkrechten Richtung so auf ein bestimmtes Potential gebracht werden, dass ein räumlich-zeitlicher Gradient des Potentials und in der Folge eine dielektrophoretische Kraft induziert wird.
  10. Komplexe Vorrichtung zum Durchführen einer dielektrophoretischen Trennung von in einer Flüssigkeit vorhandenen Partikeln, dadurch gekennzeichnet, dass sie aus einem Verbund mehrerer Grundvorrichtungen nach einem der Ansprüche 1 bis 9 besteht.
EP05800525A 2004-10-04 2005-09-15 Vorrichtung zur dielektrophoretischen trennung von partikeln in einer flüssigkeit Active EP1796843B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410443A FR2876045B1 (fr) 2004-10-04 2004-10-04 Dispositif pour realiser la separation dielectrophoretique de particules contenues dans un fluide
PCT/FR2005/050745 WO2006037910A1 (fr) 2004-10-04 2005-09-15 Dispositif pour realiser la separation dielectrophoretique de particules contenues dans un fluide

Publications (2)

Publication Number Publication Date
EP1796843A1 EP1796843A1 (de) 2007-06-20
EP1796843B1 true EP1796843B1 (de) 2011-08-17

Family

ID=34949448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05800525A Active EP1796843B1 (de) 2004-10-04 2005-09-15 Vorrichtung zur dielektrophoretischen trennung von partikeln in einer flüssigkeit

Country Status (6)

Country Link
US (1) US8034226B2 (de)
EP (1) EP1796843B1 (de)
JP (1) JP4931822B2 (de)
AT (1) ATE520467T1 (de)
FR (1) FR2876045B1 (de)
WO (1) WO2006037910A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003074A (ja) * 2006-05-26 2008-01-10 Furuido:Kk マイクロ流体デバイス、計測装置及びマイクロ流体撹拌方法
JP4997571B2 (ja) * 2006-12-19 2012-08-08 有限会社フルイド マイクロ流体デバイスおよびそれを用いた分析装置
US20100018861A1 (en) * 2007-03-26 2010-01-28 The Regents Of The University Of California Electromotive liquid handling method and apparatus
US8246802B2 (en) * 2007-05-14 2012-08-21 The Regents Of The University Of California Small volume liquid manipulation, method, apparatus and process
KR100942364B1 (ko) * 2008-02-26 2010-02-12 광주과학기술원 미세 입자분리 장치
KR101023040B1 (ko) * 2008-11-13 2011-03-24 한국항공대학교산학협력단 고속 입자분리 장치 및 그 방법
WO2013057828A1 (ja) * 2011-10-21 2013-04-25 三菱電機株式会社 空気調和装置
US8926816B2 (en) 2011-11-08 2015-01-06 Rarecyte, Inc. Systems and methods to analyze materials of a suspension by means of dielectrophoresis
KR101583633B1 (ko) * 2015-01-12 2016-01-08 한국항공대학교산학협력단 음의 유전 영동력 기반의 입자 분리 장치 및 이를 이용한 입자 분리 방법
WO2021053896A1 (ja) * 2019-09-20 2021-03-25 株式会社村田製作所 フィルタ、フィルタユニット、及びフィルタ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162592A (en) * 1960-04-20 1964-12-22 Pohl Herbert Ackland Materials separation using non-uniform electric fields
JP2910224B2 (ja) * 1990-11-07 1999-06-23 石川島播磨重工業株式会社 気液分離装置
JP3319016B2 (ja) * 1993-03-11 2002-08-26 石川島播磨重工業株式会社 気泡除去装置
US5993630A (en) * 1996-01-31 1999-11-30 Board Of Regents The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
KR100193716B1 (ko) * 1996-10-16 1999-06-15 윤종용 전계 밀도차에 의한 유전영동력을 이용하는 잉크젯 프린팅 방법 및 장치
DE19653659C1 (de) * 1996-12-20 1998-05-20 Guenter Prof Dr Fuhr Elektrodenanordnung für Feldkäfige
DE59907733D1 (de) * 1998-06-26 2003-12-18 Evotec Ag Elektrodenanordnungen zur erzeugung funktioneller feldbarrieren in mikrosystemen
US6203683B1 (en) * 1998-11-09 2001-03-20 Princeton University Electrodynamically focused thermal cycling device
CN100494360C (zh) * 2001-03-22 2009-06-03 博奥生物有限公司 细胞分离方法及其应用
JP4779261B2 (ja) * 2001-08-30 2011-09-28 パナソニック株式会社 微粒子分離方法、微粒子分離装置、およびセンサ
EP1335198B1 (de) * 2002-02-01 2004-03-03 Leister Process Technologies Mikrofluidisches Bauelement und Verfahren für die Sortierung von Partikeln in einem Fluid
DE10234487A1 (de) * 2002-07-29 2004-02-26 Evotec Oai Ag Impedanzmessung in einem fluidischen Mikrosystem
JP4039201B2 (ja) * 2002-08-20 2008-01-30 ソニー株式会社 ハイブリダイゼーション検出部とセンサーチップ及びハイブリダイゼーション方法
US7063777B2 (en) * 2002-12-12 2006-06-20 Aura Biosystems Inc. Dielectrophoretic particle profiling system and method
US7169282B2 (en) * 2003-05-13 2007-01-30 Aura Biosystems Inc. Dielectrophoresis apparatus

Also Published As

Publication number Publication date
ATE520467T1 (de) 2011-09-15
JP2008516215A (ja) 2008-05-15
US20080011608A1 (en) 2008-01-17
FR2876045B1 (fr) 2006-11-10
EP1796843A1 (de) 2007-06-20
US8034226B2 (en) 2011-10-11
WO2006037910A1 (fr) 2006-04-13
JP4931822B2 (ja) 2012-05-16
FR2876045A1 (fr) 2006-04-07

Similar Documents

Publication Publication Date Title
EP1796843B1 (de) Vorrichtung zur dielektrophoretischen trennung von partikeln in einer flüssigkeit
EP1773497B1 (de) Vorrichtung zur bewegung und behandlung von flüssigkeitsvolumina
US7014747B2 (en) Dielectrophoretic systems without embedded electrodes
EP2282827A2 (de) Vorrichtung zur trennung von biomolekülen aus einer flüssigkeit
US8357282B2 (en) Optoelectronic separation of biomolecules
Martinez‐Duarte et al. Dielectrophoresis of lambda‐DNA using 3D carbon electrodes
US20090045064A1 (en) Methods and Devices for High-Throughput Dielectrophoretic Concentration
EP1195603A3 (de) Elektroforetische Vorrichtung und deren Herstellungsverfahren
EP0645169A1 (de) Verbesserung der Verfahren und Vorrichtungen zum Abtrennen von Teilchen in einem Fluidstrom
JP5306092B2 (ja) 流体制御装置
US20110192724A1 (en) High resolution focusing and separation of proteins in nanofluidic channels
EP0941142B1 (de) Verfahen und vorrichtung zum trennen von teilchen oder molekulen durch migration über ein ferrofluid
Yeung Dynamics of single biomolecules in free solution
EP2350634B1 (de) Mikrofluidikvorrichtung zur trennung oder auftrennung oder vorkonzentrierung von in einem elektrolyten enthaltenen analyten
EP3194952B1 (de) Verfahren und vorrichtung zur konzentration von in einer lösung aufgelösten molekülen oder objekten
EP2384434A1 (de) Vorrichtung zur selektiven vorkonzentrierung/detektion in einem elektrolyten enthaltener geladener analyten und verfahren in verbindung damit
FR2900763A1 (fr) Structure a aimants permanents pour le piegeage et/ou le guidage de particules diamagnetiques
EP3538882B1 (de) Vorrichtung, system und verfahren im zusammenhang mit der vorkonzentrierung von analyten
FR2776072A1 (fr) Perfectionnements aux dispositifs d'electrophorese multicapillaires du type a detection en sortie des capillaires
WO2004046710A1 (fr) Dispositif et procede d'electrophorese
ABDELGHANY et al. NANOPARTICLE ACCUMULATION IN A PREDETERMINED POSITION UNDER AC ELECTRIC FIELD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005029606

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110817

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 520467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

26N No opposition filed

Effective date: 20120521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005029606

Country of ref document: DE

Effective date: 20120521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140911

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140917

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005029606

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 19