EP1771689B1 - Machine frigorifique et procede d'exploitation d'une machine frigorifique - Google Patents

Machine frigorifique et procede d'exploitation d'une machine frigorifique Download PDF

Info

Publication number
EP1771689B1
EP1771689B1 EP05748140.0A EP05748140A EP1771689B1 EP 1771689 B1 EP1771689 B1 EP 1771689B1 EP 05748140 A EP05748140 A EP 05748140A EP 1771689 B1 EP1771689 B1 EP 1771689B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
temperature
compressor
overheating
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05748140.0A
Other languages
German (de)
English (en)
Other versions
EP1771689A1 (fr
Inventor
Ali R. Nejad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Europe GmbH
Original Assignee
Emerson Climate Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Climate Technologies GmbH filed Critical Emerson Climate Technologies GmbH
Publication of EP1771689A1 publication Critical patent/EP1771689A1/fr
Application granted granted Critical
Publication of EP1771689B1 publication Critical patent/EP1771689B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the invention relates to a refrigerating machine, in particular a heat pump, with a refrigerant having a closed circuit in which successively an evaporator, a compressor, a condenser and a, in particular electrically operated, expansion valve are arranged. Furthermore, the invention relates to a method for operating such a refrigerator.
  • chillers of the type mentioned are known.
  • the refrigerant In the evaporator, the refrigerant is vaporized and overheated, i. heated beyond its saturation temperature. Overheating of the refrigerant thus means an increase in the refrigerant temperature at a constant pressure beyond its saturation temperature. Overheating is defined as the difference between the actual temperature of the refrigerant, e.g. in the area of the evaporator outlet, and the evaporation temperature or saturation temperature of the refrigerant.
  • a predetermined value for the superheating of the refrigerant is set and the superheat controlled so that it - regardless of other operating conditions - does not differ significantly from the predetermined value, on the one hand to achieve optimum efficiency of the refrigerator and on the other hand, a complete Ensure evaporation of the refrigerant.
  • a typical value for overheating is, for example, 6K to 10K.
  • a chiller in which by a temperature sensor, the refrigerant temperature is measured in the region of the output of a compressor.
  • the temperature sensor is connected to a valve, through which liquid refrigerant in the suction line can be introduced.
  • the valve is controlled by the temperature sensor so that the refrigerant temperature at the compressor outlet does not exceed a critical upper temperature limit.
  • US-B-6185949 discloses a refrigerator in which the compressor temperature is controlled by adding liquid refrigerant to the suction line. The addition of the liquid refrigerant is controlled by a microprocessor-controlled valve.
  • US-A-2004/0134206 discloses a refrigerator in which the opening degree of the expansion valve is controlled between a minimum and a maximum value, thereby preventing overheating of the compressor.
  • the US-A-2004/0134206 discloses a refrigerator according to the preamble of claim 1 and a method according to the preamble of claim 5 for operating a refrigerator. From the EP-A-1146299 It is known to reduce the refrigerant pressure at the compressor outlet or reduce the power consumption of the compressor by closing the expansion valve, the compressor end temperature and the outside temperature are used as parameters in an algorithm by which the overheating of the refrigerant to be set in the evaporator is limited.
  • the invention has for its object to provide a refrigeration machine with improved efficiency and a method for operating such a refrigerator.
  • a method according to claim 1 and a refrigerator according to claim 5 are provided.
  • Advantageous embodiments of the invention are described in the subclaims.
  • the method according to the invention is characterized inter alia by the fact that the temperature of the refrigerant in the region of the compressor, in particular the compression end temperature, is at least temporarily regulated by means of an overheating control unit such that it does not exceed a critical upper temperature limit.
  • the critical upper temperature limit is meant a temperature at which there is a risk of damage to the compressor, e.g. by a decomposition of lubricating oil provided in the compressor and / or by a mechanical wear of the compressor.
  • the refrigerant temperature in the region of the compressor in particular the compression end temperature, can always be kept below the critical upper temperature limit. In this way, damage to the compressor and a previously required to protect the compressor shutdown of the chiller are effectively avoided. Service life of the chiller resulting from the shutdown of the chiller or from damage result in the compressor, and the associated loss of cooling or heating power are thus minimized.
  • the refrigerant temperature can be regulated by means of the superheat control unit so that it is as close as possible to the upper temperature limit, that is as high as possible.
  • the superheat control unit fulfills a dual function: it not only serves to control the overheating to a predetermined value, but at the same time also to control the refrigerant temperature in the region of the compressor.
  • the regulation of the refrigerant temperature in the area of the compressor, in particular the compression end temperature, does not have to be permanent. For example, it may be sufficient to maintain the refrigerant temperature only at particularly low outside temperatures, e.g. during the winter months, because under these conditions there is a high risk that the final discharge temperature will reach levels that will damage the compressor.
  • the ambient temperature of the refrigerator and in particular the outside temperature is measured. If no permanent, for example year-round, regulation of the refrigerant temperature provided is, the control is activated when measuring the ambient or outdoor temperature when the ambient or outdoor temperature falls below a predetermined lower temperature limit. The activation of the control of the refrigerant temperature is thus thus weather-dependent.
  • the refrigerant temperature is measured downstream of the compressor and in particular in the region of the compressor outlet. In this way, it can be directly determined whether the refrigerant temperature at the compressor outlet, where the refrigerant temperature is highest, exceeds the predetermined target temperature.
  • the refrigerant temperature can be regulated down accordingly by taking measures, which are explained in more detail below. As soon as the refrigerant temperature is within the range of the target temperature, the measures taken can be reversed or stopped.
  • the refrigerant temperature is regulated by a change in the overheating of the refrigerant in the evaporator.
  • An increase in the overheating of the refrigerant leads to an increase in the refrigerant temperature in the region of the compressor, in particular the compression end temperature, while, conversely, a reduction in overheating leads to a reduction in the refrigerant temperature.
  • the overheating is not regulated to a value that always remains constant, but the overheating value to be set is variable, wherein the variable control of overheating is particularly weather-dependent.
  • the refrigerant temperature in the region of the compressor, in particular the compression end temperature, within certain limits can be controlled so that it is always in the range of the predetermined target temperature.
  • the superheat is just controlled so that the refrigerant temperature in the range of the compressor output is as close as possible to the critical upper temperature limit, but this does not exceed, in order to achieve optimum heating performance.
  • the refrigerant temperature in the area of the compressor thus forms the control variable, while the overheating represents a manipulated variable and the expansion valve is the corresponding actuator.
  • the overheating is regulated as a function of the ambient temperature of the chiller, in particular the outside temperature.
  • the overheating is determined by the saturation pressure and / or the saturation temperature of the refrigerant.
  • a decrease in the saturation temperature or the saturation pressure e.g. due to a reduced outside temperature leads to an increase in overheating and thus an increase in the refrigerant temperature in the compressor, while conversely, an increase in the saturation temperature or the saturation pressure, e.g. due to an increase in the outside temperature, resulting in a reduction in overheating and thus in a reduction in the refrigerant temperature in the compressor.
  • the overheating is changed by a corresponding control of the expansion valve.
  • An increase in refrigerant flow through the expansion valve i. an opening of the expansion valve leads to a reduction in overheating, while conversely, closing the expansion valve reduces the refrigerant flow and results in an increase in overheating.
  • the refrigerant temperature in the region of the compressor can be reduced according to the invention by separate cooling of the refrigerant in the compressor. In this way, the refrigerant temperature in the compressor can still be kept below the critical upper temperature limit even if a reduction in overheating to reduce the refrigerant temperature in the compressor is insufficient or not possible.
  • the compressor can be cooled by introducing liquid refrigerant into the compressor.
  • Liquid refrigerant is used because it has a lower temperature than the compressed refrigerant in the compressor.
  • liquid refrigerant in particular in the outlet region of the compressor, is introduced into the compressed refrigerant.
  • the refrigerant is cooled directly and thus indirectly reduces the temperature of the compressor.
  • the liquid refrigerant is branched out of the circuit downstream of the condenser and directed to the compressor. After passing through the condenser, the refrigerant has a temperature at which the refrigerant is condensed, which is thus lower than the compression end temperature, but at the same time is above the temperature of the refrigerant at the compressor inlet.
  • the liquid refrigerant can therefore be injected into the vaporized refrigerant without damaging the compressor.
  • Fig. 1 illustrated refrigerating machine according to the invention which is described here in the function of a heat pump, comprises a closed circuit 10 having a refrigerant.
  • a refrigerant circuit 10 In the refrigerant circuit 10, an evaporator 12, a compressor 14, a condenser 16 and an electrically operated expansion valve 18 are sequentially arranged.
  • the evaporator 12 and the compressor 14 are interconnected by a suction gas line 20. Since the compressor 14 is designed for compression exclusively of vaporized refrigerant and by a Accidental penetration of liquid refrigerant would be damaged, the compressor 14 is preceded by a arranged in the suction line 20 liquid separator 22, which not completely evaporated and / or condensed in the suction gas 20 liquid refrigerant removed from the refrigerant flow in the evaporator 12 and collects.
  • the liquid separator 22 is preceded by a four-way switching valve 24 arranged in the suction gas line 20, which is arranged simultaneously in a hot gas line 26 leading from the compressor 14 to the condenser 16.
  • a four-way switching valve 24 arranged in the suction gas line 20, which is arranged simultaneously in a hot gas line 26 leading from the compressor 14 to the condenser 16.
  • the chiller - as described herein - is used as a heat pump, i. operated in heating mode
  • the refrigerant flow heated in the compressor 14 can be switched to defrost the evaporator 12 during a corresponding actuation of the reversing valve 24 and completely fed to the evaporator 12.
  • the switching valve 24 allows switching of the refrigerant flow so that the refrigerator can operate in the cooling mode.
  • a bypass line 28 Downstream of the condenser 16 branches off a bypass line 28 from the cooling circuit 10, which is connected to a connected to the compressor 14 injection line 29.
  • the bypass line 28 and the injection line 29 enable the supply of liquid refrigerant to the compressor 14.
  • a solenoid valve 30 arranged in the bypass line 28 is provided.
  • a throttle member 31 may further be arranged, for example, a nozzle or a capillary tube, through which the refrigerant to be injected into the compressor 14 can be expanded and thereby additionally cooled.
  • the liquid refrigerant supplied to the compressor 14 through the bypass pipe 28 and the injection pipe 29 is injected into the compressed refrigerant to thereby lower the temperature of the compressed refrigerant, particularly in the area of the compressor outlet. This allows the compressor 14 to be protected from excessive temperatures that would damage the compressor 14.
  • the solenoid valve 30 is connected to and controllable by an overheating control unit 32.
  • the superheat control unit 32 may be a separate unit or integrated into a central heat pump controller.
  • the superheat control unit 32 for controlling the expansion valve 18 is also connected thereto.
  • the expansion valve 18 is an electrically operated expansion valve.
  • a pressure transmitter or pressure sensor 34 connected to the superheat control unit 32 and a temperature sensor 36 connected to the superheat control unit 32 are further arranged on the suction gas line 20.
  • the pressure sensor 34 By the pressure sensor 34, the evaporation pressure of the vaporized refrigerant in the evaporator can be measured. With knowledge of the thermodynamic and physical properties of the refrigerant can be calculated from the measured evaporation pressure, the saturation temperature of the refrigerant.
  • the temperature sensor 36 determines the actual temperature of the superheated refrigerant flowing through the suction gas line 20 or the suction gas temperature. From the difference between the suction gas temperature and the saturation temperature, the superheat control unit 32 determines the superheat of the refrigerant.
  • a temperature sensor 38 for measuring the ambient temperature of the heat pump and in particular the outside temperature is connected to the superheat control unit 32.
  • a temperature sensor 40 connected to the superheat control unit 32 is also provided in the area of the compressor outlet.
  • Fig. 2 shows a log p, H diagram of one in the heat pump of Fig. 1 used refrigerant, wherein the pressure p of the refrigerant is plotted logarithmically as a function of enthalpy H. Shown are the boundaries of saturated liquid 42 and saturated gas 44 and curves 46 of constant temperature.
  • the point E indicates the state of the refrigerant after expansion by the expansion valve 18.
  • evaporation E-A and overheating A-B of the refrigerant take place.
  • the compressor 14 provides a compression B-C of the refrigerant, which is accompanied by a corresponding increase in temperature.
  • the temperature of the refrigerant is increased from + 10 ° C at the outlet of the evaporator 12 through the compressor 14 up to + 90 ° C.
  • the condenser 16 is a liquefaction C-D of the refrigerant, wherein the liquefaction temperature in the example shown + 50 ° C.
  • the now liquid and only 50 ° C warm refrigerant is then expanded through the expansion valve 18 (D-E), where it cools down to 0 ° C.
  • the overheating is 10 K, namely just the difference between the temperatures at point B (+ 10 ° C) and at point A (0 ° C).
  • the temperature at point B corresponds to the actual temperature of the refrigerant in the suction gas line and is measured by the temperature sensor 36.
  • the temperature at point A corresponds to the evaporation temperature of the refrigerant, which is determined from the evaporation pressure of the refrigerant measured by the pressure sensor 34.
  • a situation is shown in which the evaporation temperature of the refrigerant due to a reduced evaporation pressure compared to the in Fig. 2 situation is reduced by 10 K, ie only -10 ° C.
  • Such a reduction of the evaporation pressure may for example result from a lower outside temperature.
  • the reduced evaporation temperature of the refrigerant leads to an increase in the superheat AB, which in turn causes an increase in the refrigerant temperature at the outlet of the compressor 14 (point C).
  • the increased refrigerant temperature at the compressor outlet is + 120 ° C.
  • an increase in the liquefaction temperature at which the refrigerant in the condenser 16 liquefies, CD leads to an increase in the refrigerant temperature at the compressor outlet C.
  • Fig. 4 is exemplified results in an increase in the liquefaction temperature of 50 ° C to 60 ° C compared to the in Fig. 2 shown situation at a constant evaporation temperature of 0 ° C in an increase in the refrigerant temperature at the compressor outlet C from 90 ° C to 120 ° C.
  • a regulation of the refrigerant temperature at the compressor outlet by the superheat control unit 32 is provided such that the refrigerant temperature at the compressor outlet does not exceed the above-mentioned critical upper temperature limit.
  • the refrigerant temperature at the compressor outlet is set to a specified value Target temperature regulated, which is slightly below the critical upper temperature limit.
  • the manipulated variable is the overheating AB of the refrigerant, which can be varied by changing the opening degree of the expansion valve 18, and alternatively or additionally, the injection of liquid refrigerant into the compressor 14 is provided.
  • the refrigerant temperature at the compressor outlet C or the final compression temperature within certain limits can be regulated so that it assumes a maximum value, but does not exceed the critical upper temperature limit. This optimizes the heat output of the heat pump and prevents damage to the compressor or shutdown of the heat pump. Service life of the heat pump are therefore minimized. As a result, an improved economy of the heat pump is achieved.
  • the adjustment of the required overheating is made by a corresponding control of the expansion valve 18 by the superheat control unit 32.
  • the superheat control unit 32 starts to monitor the refrigerant temperature at the compressor outlet with the aid of the temperature sensor 40. If the refrigerant temperature at the compressor outlet exceeds or threatens to exceed the predetermined target temperature below the critical upper temperature limit, the superheat control unit 32 controls the expansion valve 18 such that the flow of the refrigerant through the expansion valve 18 increases. This reduces overheating and, as a result, reduces the refrigerant temperature at the compressor outlet to the target temperature. To reduce the refrigerant temperature at the compressor outlet, the expansion valve 18 is thus opened further.
  • the superheat control unit 32 will activate the solenoid valve 30 to supply liquid refrigerant to the compressor 14 for cooling the compressed refrigerant.
  • the actuation of the solenoid valve 30 takes place in dependence on the refrigerant temperature at the compressor outlet.
  • the solenoid valve becomes 30 closed again by the superheat control unit 32 and the supply of liquid refrigerant to the compressor 14 stopped.
  • the superheat control unit 32 causes a reduction of the refrigerant flow through the expansion valve 18 by a corresponding control of the expansion valve 18 in order to bring the overheating of the refrigerant back to the original, recommended value.
  • the inventive regulation of the refrigerant temperature at the compressor outlet the efficiency of the heat pump is increased during particularly cold outdoor temperatures and extended the working range of the heat pump to higher condensing temperatures and higher heat capacity.
  • the risk of damaging the compressor 14 by exceeding a critical upper temperature limit and the risk of icing of the evaporator 12 are reduced.
  • Shutdown and defrost phases of the heat pump are thereby minimized.
  • the inventive variable and in particular weather-dependent control of overheating and the control of the refrigerant temperature at the compressor output, in particular the compression end temperature results in improved efficiency of the heat pump.

Claims (7)

  1. Procédé pour l'exploitation d'une machine frigorifique, en particulier d'une pompe à chaleur, qui inclut un circuit fermé (10) comprenant un agent frigorifique, circuit dans lequel sont agencés les uns derrière les autres un évaporateur (12), un compresseur (14), un liquéfacteur (16) et une valve d'expansion (18), en particulier actionnée par voie électrique, et qui inclut une unité de régulation de surchauffe (32) pour l'agent frigorifique, unité qui est reliée à un capteur de pression (34) et à un capteur de température (36) pour déterminer une surchauffe de l'agent frigorifique, lesdits capteurs étant agencés respectivement sur une conduite d'aspiration (20) qui relie l'évaporateur (12) et le compresseur (14), dans lequel la surchauffe est modifiée par une commande correspondante de la valve d'expansion (18), caractérisé en ce que la température environnante de la machine frigorifique est mesurée et, si la température environnante passe au-dessous d'une limite inférieure de température prédéterminée, l'unité de régulation de surchauffe (32) surveille la température de l'agent frigorifique à la sortie du compresseur, en particulier la température finale du compresseur, avec l'aide d'un capteur de température (40) et la régule au moins temporairement par une modification de la surchauffe de l'agent frigorifique dans l'évaporateur (12), de telle façon qu'elle ne dépasse pas une limite supérieure de température critique et, si ce n'est pas possible, afin de maintenir la température de l'agent frigorifique dans la zone du compresseur (14) par une réduction de la surchauffe de l'agent frigorifique dans l'évaporateur (12) au niveau ou au-dessous de la limite supérieure de température critique, une valve magnétique (30) est activée par l'unité de régulation de surchauffe (32) afin d'amener au compresseur (14) de l'agent frigorifique liquide afin de refroidir l'agent frigorifique comprimé, et la valve magnétique (30) est agencée dans une conduite de by-pass (28) qui est en dérivation du circuit frigorifique en aval du liquéfacteur (16) et qui est reliée avec une conduite d'injection (29) raccordée au compresseur (14).
  2. Procédé selon la revendication précédente,
    caractérisé en ce que la surchauffe est régulée en fonction de la température environnante de la machine frigorifique, en particulier de la température extérieure.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que la température de l'agent frigorifique est abaissée dans la région du compresseur par un refroidissement du compresseur (14), en particulier dans la zone de sa sortie.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que de l'agent frigorifique liquide est injecté dans l'agent frigorifique comprimé, en particulier dans la zone de sortie du compresseur (14).
  5. Machine frigorifique, en particulier pompe à chaleur, comprenant un circuit fermé (10) comprenant un agent frigorifique, circuit dans lequel sont agencés les uns derrière les autres un évaporateur (12), un compresseur (14), un liquéfacteur (16) et une valve d'expansion (18), actionnée en particulier par voie électrique, et comprenant une unité de régulation de surchauffe (32) pour l'agent frigorifique, laquelle est reliée à un capteur de pression (34) et à un premier capteur de température (36) pour déterminer une surchauffe de l'agent frigorifique, lesdits capteurs étant agencés respectivement sur une conduite d'aspiration (20) qui relie l'évaporateur (12) et le compresseur (14), dans lequel la valve d'expansion (18) est susceptible d'être commandée en vue d'une commande variable, en particulier en fonction des intempéries, de la surchauffe de l'agent frigorifique au moyen de l'unité de régulation de surchauffe (32), caractérisée par un second capteur de température (40) relié à l'unité de régulation de surchauffe (32) pour mesurer la température de l'agent frigorifique en aval du compresseur (14), en particulier la température finale de compression, un troisième capteur de température (38) relié à l'unité de régulation de surchauffe (32) pour mesurer la température environnante de la machine frigorifique, et une valve magnétique (30) susceptible d'être activée par l'unité de régulation de surchauffe (32) pour amener de l'agent frigorifique liquide au compresseur (14), dans laquelle la valve magnétique (30) est agencée dans une conduite de by-pass (28), qui est ramifiée depuis le circuit frigorifique (10) en aval du liquéfacteur (16) et qui est reliée à une conduite d'injection (29) raccordée au compresseur (14), dans laquelle l'unité de régulation de surchauffe (32) est réalisée :
    si la température environnante passe au-dessous d'une limite inférieure de température prédéterminée, pour réguler, par modification de la surchauffe de l'agent frigorifique dans l'évaporateur (12), au moins temporairement la température de l'agent frigorifique dans la zone du compresseur et en particulier la température finale de compression, de telle façon que la température de l'agent frigorifique dans la zone du compresseur (14) ne dépasse pas une limite supérieure de température critique, et
    si cela n'est pas possible, afin de maintenir la température de l'agent frigorifique dans la région du compresseur (14), par une réduction de la surchauffe de l'agent frigorifique dans l'évaporateur (12), au niveau ou au-dessous de la limite supérieure de température critique, pour activer la valve magnétique (30) pour amener au compresseur (14) de l'agent frigorifique liquide afin de refroidir l'agent frigorifique comprimé.
  6. Machine frigorifique selon la revendication 5,
    caractérisée en ce que le second capteur de température (40) est agencé dans la région de la sortie du compresseur.
  7. Machine frigorifique selon l'une des revendications 5 et 6,
    caractérisée en ce qu'un organe d'étranglement (31) est agencé dans la conduite d'injection (29).
EP05748140.0A 2004-07-27 2005-04-20 Machine frigorifique et procede d'exploitation d'une machine frigorifique Active EP1771689B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004036301A DE102004036301A1 (de) 2004-07-27 2004-07-27 Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
PCT/EP2005/004238 WO2006010391A1 (fr) 2004-07-27 2005-04-20 Machine frigorifique et procede d'exploitation d'une machine frigorifique

Publications (2)

Publication Number Publication Date
EP1771689A1 EP1771689A1 (fr) 2007-04-11
EP1771689B1 true EP1771689B1 (fr) 2017-06-21

Family

ID=34969507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05748140.0A Active EP1771689B1 (fr) 2004-07-27 2005-04-20 Machine frigorifique et procede d'exploitation d'une machine frigorifique

Country Status (6)

Country Link
US (1) US7870752B2 (fr)
EP (1) EP1771689B1 (fr)
JP (1) JP5150253B2 (fr)
CN (1) CN1989378B (fr)
DE (1) DE102004036301A1 (fr)
WO (1) WO2006010391A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052042B4 (de) * 2005-10-31 2016-10-20 Kriwan Industrie-Elektronik Gmbh Verfahren und Anlage zur Steuerung eines Verdichters
JP2008240699A (ja) * 2007-03-28 2008-10-09 Daikin Ind Ltd 圧縮機容量制御操作機構、及びそれを備えた空気調和装置
CN101842646B (zh) * 2007-10-10 2013-06-12 开利公司 基于排放时制冷剂状况的吸入过热控制
EP2515313A1 (fr) 2011-04-21 2012-10-24 ABB Technology AG Ligne haute tension
CN103563013B (zh) 2011-05-27 2016-01-20 Abb技术有限公司 用于高压设备的电气部件
US20170021700A1 (en) * 2015-07-23 2017-01-26 Ford Global Technologies, Llc Method of preventing damage to a compressor in a vehicle
DE112016006713T5 (de) * 2016-04-07 2018-12-27 Mitsubishi Electric Corporation Klimatisierungsvorrichtung
DE102016214797A1 (de) * 2016-08-09 2018-02-15 Bayerische Motoren Werke Aktiengesellschaft Berücksichtigung des Öl-Einflusses in einem Klima-Kälte-Kreislauf
CN114061162A (zh) * 2020-07-31 2022-02-18 开利公司 制冷系统及其控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258553A (en) * 1979-02-05 1981-03-31 Carrier Corporation Vapor compression refrigeration system and a method of operation therefor
JPS61175460A (ja) 1985-01-30 1986-08-07 株式会社日立製作所 冷凍サイクルの制御方法
JPS63290355A (ja) 1987-05-21 1988-11-28 松下冷機株式会社 ヒ−トポンプ式空気調和機の冷媒制御方法
US5197297A (en) 1991-07-29 1993-03-30 Carrier Corporation Transport refrigeration system having compressor over-temperature protection in all operating modes
US5189883A (en) * 1992-04-13 1993-03-02 Natkin & Company Economical refrigeration retrofit systems
JP3149625B2 (ja) 1993-05-31 2001-03-26 ダイキン工業株式会社 空気調和装置の運転制御装置
JP3218419B2 (ja) 1994-08-19 2001-10-15 株式会社日立製作所 空気調和機
JP3275559B2 (ja) 1994-09-20 2002-04-15 株式会社日立製作所 冷凍装置
US6185949B1 (en) * 1997-09-15 2001-02-13 Mad Tech, L.L.C. Digital control valve for refrigeration system
US5873255A (en) * 1997-09-15 1999-02-23 Mad Tech, L.L.C. Digital control valve for refrigeration system
DE10012538C1 (de) * 2000-03-15 2001-09-20 Fraunhofer Ges Forschung Digitaler I/Q-Modulator mit Vorverzerrung
US6318100B1 (en) 2000-04-14 2001-11-20 Carrier Corporation Integrated electronic refrigerant management system
KR100421390B1 (ko) * 2001-11-20 2004-03-09 엘지전자 주식회사 터보 압축기 냉각장치
US6651451B2 (en) * 2002-04-23 2003-11-25 Vai Holdings, Llc Variable capacity refrigeration system with a single-frequency compressor
KR100484869B1 (ko) 2003-01-13 2005-04-22 엘지전자 주식회사 히트펌프 시스템의 운전제어방법

Also Published As

Publication number Publication date
EP1771689A1 (fr) 2007-04-11
US7870752B2 (en) 2011-01-18
CN1989378A (zh) 2007-06-27
CN1989378B (zh) 2013-12-18
US20080289345A1 (en) 2008-11-27
JP5150253B2 (ja) 2013-02-20
JP2008508495A (ja) 2008-03-21
WO2006010391A1 (fr) 2006-02-02
DE102004036301A1 (de) 2006-03-23

Similar Documents

Publication Publication Date Title
EP1771689B1 (fr) Machine frigorifique et procede d'exploitation d'une machine frigorifique
EP1467879B1 (fr) Circuit de chauffage/refroidissement pour systeme de climatisation d'automobile, systeme de climatisation et procede pour le reguler
DE102006040380A1 (de) Kältemaschine und Betriebsverfahren dafür
DE112015006774T5 (de) Kühlgerät und Verfahren zum Betrieb des Kühlgeräts
DE10308268A1 (de) Klimaanlage
EP2211128B1 (fr) Procède d'utilisation d'un réfrigérateur et un réfrigérateur
EP1921401B1 (fr) Procédé de récuperation de chaleur
DE102017110560B4 (de) Kältemittelkreislauf einer Kälteanlage mit einer Anordnung zum Abtauen eines Wärmeübertragers und Verfahren zum Betreiben des Kältemittelkreislaufs
EP1965160B1 (fr) Procédé destiné à la commande d'une installation de refroidissement à compression et installation de refroidissement à compression
EP1355207A1 (fr) Procédé de fonctionnement pour un système frigorifique à compression et système frigorifique à compression
EP3922926B1 (fr) Procédé de régulation d'un processus de dégivrage d'un évaporateur d'une installation de réfrigération à compression et installation de réfrigération à compression
DE102016223050B4 (de) Kühlkreislauf für ein Fahrzeug, insbesondere zur Kühlung eines Kühlgutraums eines Transportfahrzeugs
EP1813897A2 (fr) Procédé et dispositif destinés à la fabrication de bandes de matière fibreuse multicouches
DE102014007853B3 (de) Verfahren und Vorrichtung zum Temperieren eines Wärmeaustauschers
DE102006024871A1 (de) Verfahren zum Abtauen des Verdampfers eines Wärmepumpenheizsystems
DE3240353A1 (de) Verfahren zum pumpen von waerme und waermepumpe
DE102009014682B4 (de) Wärmepumpe für einen Warmwasserbereiter
DE102006026354B4 (de) Kälteanlage mit innerem Wärmeübertrager und geregeltem Expansionsventil
DE60029851T2 (de) Fahrzeug mit mehreren gekühlten Laderäumen
DE102020123960B4 (de) Verfahren zum Betreiben einer Wärmepumpe und Wärmepumpe
EP2706312B1 (fr) Procédé destiné au fonctionnement d'une machine frigorifique et machine frigorifique
EP2827081B1 (fr) Procédé de commande d'une pompe à chaleur
DE102018210477A1 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs einer Kälteanlage eines Fahrzeugs
DE102010030619A1 (de) Kältegerät mit einem Kältespeicher
DE102019203293A1 (de) Verfahren zum Betreiben einer Kälteanlage für ein Fahrzeug mit einem eine Wärmepumpenfunktion aufweisenden Kältemittelkreislauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMERSON CLIMATE TECHNOLOGIES GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/02 20060101ALI20161123BHEP

Ipc: F25B 31/00 20060101AFI20161123BHEP

Ipc: F25B 43/00 20060101ALI20161123BHEP

Ipc: F25B 13/00 20060101ALI20161123BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMERSON CLIMATE TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 903327

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015627

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015627

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

26N No opposition filed

Effective date: 20180322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180420

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180420

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 903327

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230327

Year of fee payment: 19

Ref country code: IT

Payment date: 20230322

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 19