EP1921401B1 - Procédé de récuperation de chaleur - Google Patents

Procédé de récuperation de chaleur Download PDF

Info

Publication number
EP1921401B1
EP1921401B1 EP20070021952 EP07021952A EP1921401B1 EP 1921401 B1 EP1921401 B1 EP 1921401B1 EP 20070021952 EP20070021952 EP 20070021952 EP 07021952 A EP07021952 A EP 07021952A EP 1921401 B1 EP1921401 B1 EP 1921401B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat exchanger
outside
temperature
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20070021952
Other languages
German (de)
English (en)
Other versions
EP1921401A2 (fr
EP1921401A3 (fr
Inventor
Alfred Lotter
Günter Haunschmidt
Berthold Stiftinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
"arneg" Kuehlmobel und Ladeneinrichtungen Produktions- U Handelsgesellschaft Mbh
Original Assignee
"arneg" Kuehlmobel und Ladeneinrichtungen Produktions- U Handelsgesellschaft Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by "arneg" Kuehlmobel und Ladeneinrichtungen Produktions- U Handelsgesellschaft Mbh filed Critical "arneg" Kuehlmobel und Ladeneinrichtungen Produktions- U Handelsgesellschaft Mbh
Publication of EP1921401A2 publication Critical patent/EP1921401A2/fr
Publication of EP1921401A3 publication Critical patent/EP1921401A3/fr
Application granted granted Critical
Publication of EP1921401B1 publication Critical patent/EP1921401B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements

Definitions

  • the invention relates to a method for heat recovery in a refrigeration system and a refrigeration system with heat recovery.
  • refrigerated cabinets which can be subdivided into refrigeration units for normal refrigeration for a temperature range of +2 to + 6 ° C and refrigerated cabinets for freezing for temperatures around -18 ° C.
  • the refrigerated cabinets are often part of a refrigeration system.
  • the individual refrigeration units or cooling points are supplied via a pipe network with refrigerant.
  • the systems are designed as composite systems in which a pressure line and a condenser for the cooling points of both the normal cooling and the deep-freezing are provided.
  • the EP 0 473 286 discloses a method for heat recovery in a refrigeration system with the features of the preamble of claim 1.
  • the FR 2 539 495 A2 discloses a method of operating a refrigeration system having evaporator and compressor units that allows for the provision of heat when needed.
  • a corresponding refrigeration system to be created.
  • the object is achieved by a method having the features of claim 1 or a refrigeration system having the features of claim 11.
  • the inventive method for heat recovery in a refrigeration system uses a portion of the heat of the guided in a pressure line coolant for heating the interior of a building.
  • the refrigeration system comprises a compressor device, hereby via the refrigerant pressure line connected and equipped with a ventilation device condenser, at least one arranged in the interior of the building and serving as a cooling point evaporator and an outside of the building arranged outdoor heat exchanger.
  • the provision of the heat takes place by means of an interior heat exchanger, which is connected to the pressure line and arranged with respect to the flow direction of the refrigerant in front of the condenser.
  • the inventive method is characterized in that depending on at least the outside temperature, a part of the guided in the pressure line refrigerant is passed through the outdoor heat exchanger to the compressor device and thereby absorbs heat from the ambient air of the outer space.
  • the ambient air of the outer space is extracted by a heat exchanger arranged outside the building heat and fed to the refrigerant.
  • the ambient air is thus withdrawn under energy expense heat that is used to heat the building interior.
  • the outdoor heat exchanger is connected in parallel to the cooling points of the refrigeration system and ultimately acts as another cooling point or heat pump, which introduces additional heat output into the refrigerant circuit.
  • this heat is not taken from the building interior, as is the case with an indoor cooling point.
  • the commissioning of the outdoor heat exchanger as a heat pump takes place at least as a function of the outside temperature, for example, when a predetermined outdoor temperature is reached.
  • the ventilation device of the capacitor is at least partially deactivated as a function of at least the interior temperature of the building.
  • the ventilation device is completely or partially switched off or down depending on the heat request, thereby ultimately reducing the effective capacitor area and slightly increasing the temperature and pressure levels inside the condenser.
  • the refrigerant condenses in the indoor heat exchanger at least partially, whereby an adjustable additional heat output can be dissipated in the building interior and therefore is no longer discharged on the capacitor as pure heat loss.
  • the effective opening cross-section of a pressure regulating throttle arranged in the pressure line is changed as a function of at least the interior temperature in order to allow additional heat dissipation into the building interior.
  • the pressure regulating throttle is arranged behind the interior heat exchanger with respect to the flow direction of the refrigerant, wherein it may be located in front of or behind the condenser.
  • a back pressure is generated, whereby the condensation of the refrigerant in the indoor heat exchanger is assisted. Controlled throttling makes it possible to provide additional heat output for heating the building interior.
  • the part of the refrigerant that is guided as a function of at least the outside temperature by the outside heat exchanger can be supplied to at least one of a plurality of compressors of the compressor device.
  • This compressor can be decoupled from the suction side of the other compressor of the compressor device. This compressor is then available for heat pump operation of the outdoor heat exchanger.
  • the use of a compressor of the compressor device to provide additional heat output allows efficient utilization of the installed compressor capacity.
  • the compressor capacity is necessarily designed for high summer outdoor temperatures where high cooling capacities have to be provided. In winter, on the other hand, only part of the capacity is used. This power reserve is utilized by the method according to the invention for the building heating required in winter.
  • control and regulation method according to the invention preferably takes place in several stages:
  • the ventilation device of the condenser can be partially deactivated when the outside temperature falls below a first outside temperature threshold. As a result, it is achieved that the refrigerant in the interior heat exchanger at least partially condenses. The resulting heat is dissipated to the interior of the building.
  • an indoor temperature set point or a set flow temperature setpoint of a building heater is not reached and the outdoor temperature falls below a second outdoor temperature threshold that is lower than the first outdoor temperature threshold, may be in an optional further step, the effective opening area of the pressure regulating throttle to be changed.
  • the pressure in the indoor heat exchanger can be raised when additional heat needs to be provided for heating. This pressure increase leads to increased condensation of the coolant in the interior heat exchanger.
  • a part of the guided in the pressure line refrigerant through the outdoor heat exchanger to be passed.
  • the suction side of the at least one compressor of the compressor device is decoupled from the suction side of the other compressor and connected to the outdoor heat exchanger.
  • the outdoor heat exchanger is then used as described above as an additional evaporator which extracts heat from the ambient air of the outdoor space.
  • the heat pump operation of the outdoor heat exchanger can also be done independently of the pressure control by the pressure control throttle.
  • electrical heating means for heating the interior of the building or a buffer memory are switched on when the indoor temperature setpoint or the flow temperature setpoint is not reached and the outdoor temperature fourth outside temperature threshold, which is lower than the third outside temperature threshold.
  • a hot gas defrosting of the outdoor heat exchanger is provided.
  • the refrigerant pressure line is removed at a point in front of the condenser refrigerant and passed through the outdoor heat exchanger.
  • the refrigerant contained in the outdoor heat exchanger is exhausted from the compressor device via a throttle line.
  • the throttle line has a smaller cross-section than a refrigerant suction line connecting the outdoor heat exchanger with the suction line of the compressor device in the heat pump operation of the outdoor heat exchanger.
  • the branched hot gas is thus directed against the direction selected in the heat pump mode by the outdoor heat exchanger and ultimately fed to the refrigerant circuit on the pressure side again.
  • refrigerant Upon completion of the de-icing, refrigerant is at an unknown temperature level in the outdoor heat exchanger. In a transition to the heat pump operation could therefore be caused in the outer space heat exchanger associated compressor liquid hammer, whereby the compressor would be damaged.
  • the throttle line however, the pressure level of the refrigerant is lowered and prevents further liquefaction of the refrigerant.
  • the sucked into the throttle line refrigerant is fed into a refrigerant suction line, which serves at least one serving as a cooling evaporator -
  • a refrigerant suction line which serves at least one serving as a cooling evaporator -
  • an evaporator for deep freezing - connects to the compressor device.
  • the extracted refrigerant is thus fed into a refrigerant flow, which comes from the cooling points, and mixed with this, so that at most a metered supply of liquid residues to the compressor takes place and the risk of liquid blows is virtually eliminated.
  • the invention further relates to a refrigeration system with heat recovery, which has a compressor device, a connected thereto via a refrigerant pressure line and equipped with a ventilation device condenser and at least one serving as a cooling evaporator, which is arranged in an interior of a building and a refrigerant suction line connected to the compressor device.
  • the refrigerant pressure line is coupled to an indoor heat exchanger for dissipating heat to the interior.
  • Serving as a cooling evaporator in the interior of the building arranged outside the building exterior heat exchanger is connected in parallel, is supplied by the heat from the ambient air to the guided in the suction refrigerant.
  • the refrigeration system according to the invention has a control device which is designed to guide a portion of the refrigerant guided in the pressure line through the outer space heat exchanger as a function of at least the outside temperature.
  • a pressure regulating throttle is arranged in the pressure line, whose effective opening cross section is variably adjustable.
  • a refrigerant suction line of the outdoor heat exchanger through a throttle line with a refrigerant suction line is coupled, which connects at least one serving as a cooling evaporator - in particular an evaporator for deep freezing - with the compressor device.
  • the compressor device may comprise a plurality of compressors, wherein at least one compressor is selectively connectable to the refrigerant suction line of the at least one evaporator or to the refrigerant suction line of the outdoor heat exchanger.
  • control device is also designed such that, depending on at least the interior temperature, the ventilation device of the condenser is at least partially deactivated and / or the effective opening cross section of the pressure control throttle is controllable.
  • Fig. 1 illustrates a refrigeration system 10 with an exemplary freezer 12 and an exemplary standard refrigeration unit 14, which are arranged in an interior of a building. Basically, any number be provided by normal and deep freezing points 14, 12.
  • the refrigeration system 10 comprises a compressor device 16 which has five compressors 18a, 18a ', 18b, 18b' and 18c.
  • the compressors 18a and 18a ' are connected to a deep-freeze suction line 20 and assigned to the deep-freezing point 12.
  • the compressors 18b and 18b ' are connected by a normal cooling suction line 22 to the normal cooling point 14.
  • the compressor 18c is also connected to the normal cooling suction line 22, but can be separated from it by the controllable solenoid valve MV1.
  • the refrigerant supplied via the suction lines 20, 22 of the compressor device 16 in a gaseous state is compressed by the compressors 18a, 18a ', 18b, 18b' and 18c and passed through the pressure line 24 to an indoor heat exchanger 26.
  • the indoor heat exchanger communicates via a buffer storage line 28 with a buffer memory 30 in connection.
  • the buffer tank 30 contains water that can be used for heating the interior of the building in which the cooling points 12, 14 are installed.
  • a heating cartridge 32 is arranged in the buffer memory 30, but it is also possible to provide a plurality of heating cartridges 32.
  • a pressure regulating throttle 34 is arranged in a second pressure line 24 '.
  • the pressure regulating throttle 34 allows the regulation of the pressure level of the refrigerant in the pressure line 24 '.
  • the pressure line 24 'establishes a connection between the interior heat exchanger 26 and a condenser 36 with a ventilation device 38.
  • the pressure and temperature level in the condenser 36 can be influenced by the ventilation device 38.
  • a refrigerant collector 40 is provided in the flow direction of the coolant behind the condenser 36.
  • the refrigerant collector 40 is in turn connected by a refrigerant line 42 to the cooling points 12, 14.
  • the refrigerant line 42 has a connection to an outside of the building arranged outdoor heat exchanger 44, which can be interrupted by a valve V.
  • the dashed rectangle around the exterior heat exchanger 44 makes it clear that this is not in the interior of the building in which the cooling points 12, 14 are installed.
  • the outdoor heat exchanger 44 communicates with the compressor 18c via a heat exchanger suction line 46.
  • the heat exchanger suction line 46 has a solenoid valve MV2, through which the connection between the outdoor heat exchanger 44 and the compressor 18c can be interrupted.
  • a throttle line 48 Between the heat exchanger suction line 46 and the normal cooling suction line 20 is a compound which is formed by a throttle line 48, wherein the cross section of the throttle line 48 is smaller than the cross section of the heat exchanger suction line 46. Further, there is between the heat exchanger suction line 46 and the pressure line 24 a hot gas connection 50. Solenoid valves MV3 and MV4 allow the throttle line 48 and the hot gas connection 50 to close.
  • the compressors 18a and 18a 'and the compressors 18b, 18b' and 18c form two groups of compressors. Since the cooling points 12, 14 operate at different temperature levels, there are also different pressures in the suction lines 20, 22. This circumstance is taken into account by the formation of the separate compressor groups.
  • a heater pump not shown, is turned on, so that heating water of the buffer memory 30 flows through the indoor heat exchanger 26. In this case, 26 heat of dissipation of the refrigerant is discharged to the heating water in the indoor heat exchanger.
  • the ventilation device 38 is down-regulated or completely deactivated, whereby the effective capacitor area is reduced and the temperature level and the pressure level in the pressure line 24 'are slightly increased.
  • the refrigerant in the indoor heat exchanger 26 at least partially condenses. The resulting heat benefits the heating of the building.
  • the next step in increasing the heat output is to extract heat in a heat pump operation from the ambient air in the exterior of the building and supply it to the refrigerant circuit.
  • the solenoid valve MV 1 are closed and the solenoid valve MV2 and the valve V open.
  • the refrigeration system ultimately comprises three evaporators, wherein the outdoor heat exchanger 44, in contrast to the cooling points 12, 14 takes heat from the outer space of the building and supplies the refrigerant circuit.
  • the three different temperature and pressure levels of the suction lines 20, 22, 46 are each associated with their own compressor 18c or compressor groups 18a, 18a 'and 18b, 18b'.
  • the compressor capacity not required at low outside temperatures T A is thus used in this stage in a heat pump operation for heating the building. On a conventional building heating can therefore be dispensed with.
  • the solenoid valve MV2 and the valve V are closed and the solenoid valve MV1 is opened.
  • the compressor 18c then works again in conjunction with the compressors 18b and 18b '.
  • the outdoor heat exchanger 44 may be de-iced by hot gas as needed or at fixed intervals, particularly prior to its use in heat pump operation.
  • the solenoid valves MV1 and MV2 closed and the compressor 18c thus dissolved out of the normal cooling point 14 associated compressor group.
  • the solenoid valve MV4 in the hot gas connection 50 and the valve V are opened, whereby now hot gas from the pressure line 24 is directed against the flow direction in heat pump operation by the outdoor heat exchanger 44 until an end of the defrosting process is reached.
  • the valve V is formed by an electrically controllable solenoid valve and a check valve connected in parallel in a bypass line, wherein the check valve opens against the flow direction in the heat pump mode, ie, the check valve opens passively.
  • solenoid valve MV4 and valve V are closed, and solenoid valve MV3 in choke line 48 is opened, thereby establishing communication with vacuum refrigeration line 20.
  • the refrigerant used for deicing is sucked off and the pressure in the outdoor heat exchanger 44 is lowered to a desired value.
  • the fans of the outdoor heat exchanger 44 run.
  • the solenoid valve MV3 is closed.
  • the solenoid valve MV2 and the valve V are then opened.
  • the compressor 18c starts its work and compresses the refrigerant coming from the outdoor heat exchanger.
  • step 110 After the start of the control in step 100, a query is made in step 110 as to whether the outside temperature T A is lower than 18 ° C. If this is not the case (N), the system returns to step 100.
  • a heating pump is turned on in step 120.
  • the indoor heat exchanger 26 now outputs heat of enhancement to the heating water.
  • a target condensation temperature T K is automatically raised from 28 ° C (summer operation) to 32 ° C (transitional period) in step 125. As a result, the operation of the ventilation device 38 of the capacitor 36 is influenced.
  • step 130 it is queried whether the outside temperature T A falls below a second threshold value of 15 ° C. If the outside temperature T A is higher, it is returned to step 110, that is, it is again checked whether the outside temperature T A is less than 18 ° C. If appropriate, the heating pump remains switched on (step 120), and the target condensation temperature T K remains at the raised value (32 ° C., step 125). On the other hand, if it is determined in step 130 that the outside temperature T A is lower than 15 ° C, the target condensing temperature T K is raised to 38 ° C. A control device the cooling system 10 attempts in step 135 by raising the nominal condensation temperature T K to reach a flow temperature Tv of 35 ° C. If an interior temperature T I at 22 ° C, the desired flow temperature Tv is slid by up to 3 K slidably.
  • step 140 it is checked whether the outside temperature T A is smaller than 10 ° C, returning to step 130, if not, that is, the state of step 135 is maintained if necessary. If the outside temperature T A is below, the control device tries in step 145, depending on the interior temperature T I and the outside temperature T A, the required flow temperature Tv of 35 ° C to 45 ° C by controlling the pressure control throttle 34 and by raising the target condensation temperature T K to reach.
  • a compressor 18c is cold-separated from the compressor unit associated with the normal refrigeration units 14 of the refrigeration system 10. This compressor then operates in step 160 in heat pump operation in conjunction with the outdoor heat exchanger 44.
  • the solenoid valve MV 1 are closed and the solenoid valve MV2 and the valve V open.
  • the solenoid valves MV1 and MV2 are closed in step 200, and the solenoid valve MV4 and the valve V are opened. Heated refrigerant can now be passed through the outdoor heat exchanger 44 until a defrost end temperature Tw of about + 8 ° C is reached, which is queried in step 210.
  • the solenoid valves MV4 and V are closed and the solenoid valve MV3 is opened in step 220, which leads to a suction of the refrigerant contained in the outdoor heat exchanger 44. Suction is continued until a pressure threshold P of about 1.8 bar in the heat exchanger suction line 46 coming from the outdoor heat exchanger 44 is reached (step 225). As already explained above, when the pressure threshold value is reached, the suction process is ended in step 230, i. H. the solenoid valve MV3 is closed, the solenoid valves MV2 and V are opened, and the compressor 18c connectable to the outdoor heat exchanger 44 is released. This completes the hot gas defrost.
  • step 250 the compressor 18c is briefly turned off while the solenoid valve MV2 closed and the solenoid valve MV1 are opened, whereby the compressor 18c is again associated with the normal cooling point 14.
  • step 170 it is checked in step 170 whether the outside temperature T A is less than -10 ° C. If the outside temperature T A falls below this value and the desired flow temperature Tv or the interior temperature T I is not reached (step 180), the heat pump operation is continued in step 185, ie the state according to step 230 Fig. 3 is maintained, and delayed in step 190, a heating cartridge 32 is switched on to heat the heating water. It can be provided that several heating cartridges can be switched on as needed.
  • connection of the outdoor heat exchanger 44 can also be done without the prior regulation of the condensation temperature by the ventilation device 38 and / or the dynamic pressure control by means of the pressure control throttle 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Claims (16)

  1. Procédé pour la récupération de chaleur dans une installation frigorifique, qui comprend un système compresseur (16), un condenseur (36) relié à celui-ci via une conduite sous pression d'agent frigorifique (24, 24') et équipé d'un système de ventilation (38), et au moins un évaporateur (12, 14) agencé dans un espace intérieur d'un bâtiment et servant de point de refroidissement,
    dans lequel, au moyen d'un échangeur de chaleur d'espace intérieur (26), qui est relié à la conduite sous pression (24, 24') et qui est agencé avant le condenseur (36) par référence à la direction d'écoulement de l'agent frigorifique, une partie de la chaleur de l'agent réfrigérant mené dans la conduite sous pression (24, 24') est utilisée pour le chauffage de l'espace intérieur du bâtiment,
    caractérisé en ce que l'installation frigorifique comprend en outre un échangeur de chaleur d'espace extérieur (44) agencé à l'extérieur du bâtiment, de sorte qu'une partie de l'agent réfrigérant mené dans la conduite sous pression (24, 24') est mené, en fonction au moins de la température extérieure (TA), jusqu'au système compresseur (16) via l'échangeur de chaleur (44) d'espace extérieur, et absorbe ici de la chaleur de l'air environnement de l'espace extérieur.
  2. Procédé selon la revendication 1, caractérisé en ce que en fonction d'au moins la température d'espace intérieur (TI), le système de ventilation (38) de condenseur (36) est au moins partiellement désactivé.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que, en fonction au moins de la température d'espace intérieur (TI), la section d'ouverture efficace d'un étranglement de régulation de pression (34) agencé dans la conduite sous pression (24, 24') est modifiée, et l'étranglement de régulation de pression (34) est agencé derrière l'échangeur de chaleur d'espace intérieur (26) par référence à la direction d'écoulement de l'agent réfrigérant.
  4. Procédé selon l'une au moins des revendications précédentes, caractérisé en ce que, en fonction au moins de la température extérieure (TA), la partie de l'agent réfrigérant menée à travers l'échangeur de chaleur d'espace extérieur (44) est amenée à au moins un compresseur parmi plusieurs compresseurs (18a, 18a', 18b, 18b', 18c) du système compresseur (16), ce compresseur (18c) pouvant être découplé vis-à-vis du côté aspiration des autres compresseurs (18a, 18a', 18b, 18b') du système compresseur (16).
  5. Procédé selon l'une au moins des revendications précédentes, caractérisé en ce que le système de ventilation (38) du condenseur (36) est partiellement désactivé quand la température extérieure (TA) passe au-dessous d'une première valeur seuil de température extérieure afin que l'agent réfrigérant dans l'échangeur de chaleur d'espace intérieur (26) condense au moins partiellement, et la chaleur délivrée ici par l'agent réfrigérant est évacuée vers l'espace intérieur du bâtiment.
  6. Procédé selon la revendication 3 et 5,
    caractérisé en ce que la section d'ouverture efficace de l'étranglement de régulation de pression (34) est modifiée quand une valeur de consigne de température d'espace intérieur ou une valeur de consigne de température de démarrage d'un chauffage de bâtiment n'est pas atteinte et que la température extérieure (TA) passe au-dessous d'une seconde valeur seuil de température extérieure qui est plus basse que la première valeur seuil de température extérieure, grâce à quoi la condensation de l'agent réfrigérant dans l'échangeur de chaleur d'espace intérieur (26) est assistée.
  7. Procédé selon la revendication 4 et la revendication 5 ou 6, caractérisé en ce que le côté aspiration dudit au moins un compresseur (18c) est découplé vis-à-vis du côté aspiration des autres compresseurs et est relié à l'échangeur de chaleur d'espace extérieur (44) lorsqu'on n'atteint pas une valeur de consigne de température d'espace intérieur ou une valeur de consigne de température de démarrage et que la température extérieure (TA) passe au-dessous d'une troisième valeur seuil de température extérieure qui est plus basse que la première ou que la seconde valeur seuil de température extérieure, et en ce qu'une partie de l'agent réfrigérant mené dans la conduite sous pression (24, 24') est menée à travers l'échangeur de chaleur d'espace extérieur (44), afin d'encaisser ici la chaleur depuis l'air environnant de l'espace extérieur.
  8. Procédé selon la revendication 7,
    caractérisé en ce qu'il est prévu des moyens de chauffage électrique (32) mis en service pour le chauffage de l'espace intérieur du bâtiment ou un accumulateur tampon (30) lorsqu'on n'atteint pas la valeur de consigne de température d'espace intérieur ou la valeur de consigne de température de démarrage et que la température extérieure (TA) passe au-dessous d'une quatrième valeur de consigne de température extérieure qui est plus basse que la troisième valeur seuil de température extérieure.
  9. Procédé selon l'une au moins des revendications précédentes, caractérisé en ce que,
    pour un dégivrage au gaz chaud de l'échangeur de chaleur d'espace intérieur (44) de la conduite sous pression pour agent réfrigérant (24, 24'), on prélève de l'agent réfrigérant à un emplacement avant le condenseur (36) et ont le mène à travers l'échangeur de chaleur d'espace extérieur (44), de sorte que l'agent réfrigérant contenu dans l'échangeur de chaleur d'espace extérieur (44) est aspiré, après terminaison du dégivrage, par le système de compresseur (36) via une conduite à étranglement (48) qui présente une section plus faible qu'une conduite d'aspiration d'agent réfrigérant (46) qui, en fonctionnement de l'échangeur de chaleur d'espace extérieur (44) en pompe à chaleur, relie l'échangeur de chaleur d'espace extérieur (44) au système de compresseur (16).
  10. Procédé selon la revendication 9,
    caractérisé en ce que l'agent réfrigérant aspiré via la conduite à étranglement (48) est injecté dans une conduite d'aspiration d'agent réfrigérant (20, 22) qui est reliée au moins un évaporateur (12, 14) servant de point de réfrigération, en particulier un évaporateur (12) pour un refroidissement à très basse température, avec le système de compresseur (16).
  11. Installation frigorifique avec récupération de chaleur, qui comprend un système de compresseur (16), un condenseur (36) relié à celui-ci via une conduite sous pression d'agent réfrigérant (24, 24') et équipé d'un système de ventilation (38), et au moins un évaporateur (12, 14) servant de point de réfrigération, qui est susceptible d'être agencé dans un espace intérieur d'un bâtiment et qui est relié au système de compresseur via une conduite d'aspiration d'agent réfrigérant (20, 22), dans lequel un échangeur de chaleur d'espace intérieur (26) est couplé à la conduite sous pression d'agent réfrigérant (24, 24') pour évacuer de la chaleur vers l'espace intérieur,
    caractérisée en ce qu'un échangeur de chaleur d'espace intérieur (44), susceptible d'être agencé à l'extérieur du bâtiment, est branché en parallèle à l'évaporateur (12, 14) servant de point de réfrigération dans l'espace intérieur, au moyen duquel de la chaleur provenant de l'air environnant de l'espace extérieur peut être apportée à l'agent réfrigérant mené dans la conduite d'aspiration (20, 22), et
    l'installation de réfrigération comprend un système de commande qui est réalisé pour mener, en fonction au moins de la température extérieure (TA), une partie de l'agent réfrigérant menée dans la conduite sous pression (24, 24'), à travers l'échangeur de chaleur d'espace extérieur (44).
  12. Installation frigorifique selon la revendication 11,
    caractérisée en ce qu'un étranglement de régulation de pression (34) est agencé dans la conduite sous pression (24, 24'), dont la section d'ouverture efficace est réglable de façon variable.
  13. Installation frigorifique selon la revendication 11 ou 12, caractérisée en ce qu'une conduite d'aspiration d'agent réfrigérant (46) de l'échangeur de chaleur d'espace extérieur (44) est couplée via une conduite à étranglement (48) à une conduite d'aspiration d'agent réfrigérant (20, 22) qui relie au moins un évaporateur (12, 14) servant de point de réfrigération, en particulier un évaporateur (12) pour le refroidissement à très basse température, au système de compresseur.
  14. Installation de réfrigération selon la revendication 13,
    caractérisée en ce que la section de la conduite à étranglement (48) est plus petite que la section de la conduite d'aspiration d'agent réfrigérant (46) de l'échangeur de chaleur d'espace extérieur (44).
  15. Installation de réfrigération selon l'une des revendications 11 à 13, caractérisée en ce que le système de compresseur (16) comprend plusieurs compresseurs (18a, 18a', 18b, 18b', 18c), de sorte qu'au moins un compresseur (18c) est susceptible d'être relié au choix avec la conduite d'aspiration d'agent réfrigérant (20, 22) dudit au moins un compresseur (12, 14) ou avec la conduite d'aspiration d'agent réfrigérant (46) de l'échangeur de chaleur d'espace extérieur (44).
  16. Installation de réfrigération selon l'une au moins des revendications 11 à 15,
    caractérisée en ce que le système de commande est réalisé pour, en fonction au moins de la température d'espace intérieur (TI), désactiver au moins partiellement le système de ventilation (38) du condenseur (36) et/ou pour commander la section d'ouverture efficace de l'étranglement de régulation de pression (34).
EP20070021952 2006-11-13 2007-11-12 Procédé de récuperation de chaleur Not-in-force EP1921401B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT18702006A AT504135B1 (de) 2006-11-13 2006-11-13 Verfahren zur wärmerückgewinnung

Publications (3)

Publication Number Publication Date
EP1921401A2 EP1921401A2 (fr) 2008-05-14
EP1921401A3 EP1921401A3 (fr) 2009-12-16
EP1921401B1 true EP1921401B1 (fr) 2014-01-08

Family

ID=39154314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070021952 Not-in-force EP1921401B1 (fr) 2006-11-13 2007-11-12 Procédé de récuperation de chaleur

Country Status (2)

Country Link
EP (1) EP1921401B1 (fr)
AT (1) AT504135B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933484A1 (fr) * 2008-07-03 2010-01-08 2F2C Procede de refrigeration d'au moins un meuble et/ou une chambre frigorifique et de chauffage d'au moins un local, installation et echangeur de chaleur pour sa mise en oeuvre
DE102008043807B4 (de) * 2008-11-18 2014-07-03 WESKA Kälteanlagen GmbH Kälteanlage
NL2003228C2 (nl) * 2009-07-17 2011-01-18 Erney Errol Pinas Werkwijze voor het koppelen van een primair warmtepompsysteem bestemd voor het verwarmen van een gebouw en/of voor het verwarmen van tapwater aan een of meerdere secundaire warmtepompsystemen bestemd voor het verlagen van de temperatuur in een afgesloten ruimte en inrichting voor het uitvoeren van de werkwijze.
DE102009029392A1 (de) * 2009-09-11 2011-03-24 WESKA Kälteanlagen GmbH Explosionsgeschützte Kälteanlage mit brennbarem Kältemittel
DE102012024577A1 (de) * 2012-12-17 2014-06-18 Robert Bosch Gmbh Wärmepumpenanordnung und Verfahren zum Betrieb einer Wärmepumpenanordnung
CN108716771B (zh) * 2018-06-07 2023-05-19 威海双信节能环保设备有限公司 工业废水余热复叠热功转换装置及方法
CN114087800B (zh) * 2021-11-22 2023-03-10 百尔制冷(无锡)有限公司 一种全自动热回收的并联机组及其热回收方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078689A (en) * 1963-02-26 japhet
GB1015321A (en) * 1960-12-31 1965-12-31 Sterne & Company Ltd L Improvements in or relating to refrigeration apparatus
US3916638A (en) * 1974-06-25 1975-11-04 Weil Mclain Company Inc Air conditioning system
FR2539495B2 (fr) * 1974-06-26 1985-10-31 Seitha Procede et dispositif de regulation d'un systeme frigorifique destine a une production de froid et de chaleur
US4502292A (en) * 1982-11-03 1985-03-05 Hussmann Corporation Climatic control system
US4434625A (en) * 1983-04-20 1984-03-06 Control Data Corporation Computer cooling system
FR2556456B1 (fr) * 1983-12-09 1986-05-16 Bonnet Ets Installation frigorifique produisant du froid et du chaud
DE3431452A1 (de) * 1984-08-27 1986-02-27 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Als waermepumpe genutztes kuehl- oder gefriergeraet
DE3512748A1 (de) * 1985-04-10 1986-10-16 Wilhelm 2849 Goldenstedt Hakemann Vorrichtung fuer den anschluss eines kaelteaggregates an eine waermerueckgewinnungsanlage
US4833893A (en) * 1986-07-11 1989-05-30 Kabushiki Kaisha Toshiba Refrigerating system incorporating a heat accumulator and method of operating the same
JPH04110574A (ja) * 1990-08-30 1992-04-13 Union Kogyo Kk 冷媒ガスを用いた加熱冷却方法及び装置
AU7478600A (en) * 1999-09-15 2001-04-17 Ut-Battelle, Llc Combination of a refrigerator and a heat pump and a water heater
JP3972860B2 (ja) * 2003-05-15 2007-09-05 ダイキン工業株式会社 冷凍装置
GB2422653B (en) * 2005-01-10 2011-03-02 Arctic Circle Ltd Refrigeration apparatus having a heating capability during cold weather

Also Published As

Publication number Publication date
EP1921401A2 (fr) 2008-05-14
EP1921401A3 (fr) 2009-12-16
AT504135A4 (de) 2008-03-15
AT504135B1 (de) 2008-03-15

Similar Documents

Publication Publication Date Title
EP1921401B1 (fr) Procédé de récuperation de chaleur
EP1467879B1 (fr) Circuit de chauffage/refroidissement pour systeme de climatisation d'automobile, systeme de climatisation et procede pour le reguler
DE60219753T2 (de) Wärmepumpenartige Klimaanlage
EP1731846B1 (fr) Dispositif de chauffage et de ventilation pour bâtiments
EP2119985A2 (fr) Dispositif de régulation de la température à base d'une pompe à chaleur
DE2823395A1 (de) Verfahren und vorrichtung zum abtauen eines kuehlsystems
DE2157079A1 (de) Zweistufige Kälteanlage
DE10036038A1 (de) Klimaanlage eines Kraftfahrzeuges
WO2007115879A1 (fr) Procédé pour faire fonctionner un appareil frigorifique à évaporateurs montés en parallèle et appareil frigorifique associé
DE3301303C2 (fr)
WO2017140488A1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
EP3447403A1 (fr) Procédures de fonctionnement pour installations de récupération de chaleur, unité d'échange de chaleur air/fluide et installation de récupération de chaleur
DE2754132C2 (de) Kühlvorrichtung
EP1050726B1 (fr) Système frigorifique
DE2502072C3 (de) Anlage zur Behandlung von Luft für Räume
DE102016223050A1 (de) Kühlkreislauf für ein Fahrzeug, insbesondere zur Kühlung eines Kühlgutraums eines Transportfahrzeugs
DE10343820A1 (de) Dampfverdichtungskältemittelkreislauf
EP1498673B1 (fr) Système de dégivrage par gaz chaud pour installations de réfrigération
DE19832682C2 (de) Abtaueinrichtung für einen Verdampfer einer Wärmepumpe oder eines Klimageräts
EP3695179B1 (fr) Meuble réfrigéré à commande hydraulique intégrée et système de refroidissement
DE2704857C2 (de) Verfahren und Einrichtung zur Kühlung und Heizung von Gebäuden mit Zweirohr-Wassernetzen mittels Kältemaschinen mit wassergekühlten Kondensatoren und Warmwasser-Heizregistern
DE2153651C3 (de) Heißgasabtaueinrichtung für Kälteanlagen
DE2841765C2 (de) Abtaueinrichtung für einen Kälteerzeuger
DE112009000657B4 (de) Verfahren zum Betrieb eines Kühlgeräts sowie Kühlgerät zum Durchführen eines solchen Verfahrens
EP4168723B1 (fr) Dispositif de refroidissement doté d'un échangeur de chaleur à tube d'aspiration et procédé d'actionnement d'un dispositif de refroidissement doté d'un échangeur de chaleur à tube d'aspiration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20100616

AKX Designation fees paid

Designated state(s): AT CH DE LI

17Q First examination report despatched

Effective date: 20121108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130523

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF AND PARTNER AG INTELLECTUAL PROPERTY, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 648988

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012671

Country of ref document: DE

Effective date: 20140220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012671

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012671

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007012671

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENT- UND RECHTSANWALTSPA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007012671

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012671

Country of ref document: DE

Owner name: CAVERION OESTERREICH GMBH, AT

Free format text: FORMER OWNER: "ARNEG" KUEHLMOEBEL UND LADENEINRICHTUNGEN PRODUKTIONS- U. HANDELSGESELLSCHAFT M.B.H., LEONDING, AT

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007012671

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: CAVERION OESTERREICH GMBH, AT

Free format text: FORMER OWNER: CAVERION KAELTETECHNIK GMBH, AT

Ref country code: CH

Ref legal event code: PFUS

Owner name: CAVERION KAELTETECHNIK GMBH, AT

Free format text: FORMER OWNER: "ARNEG" KUEHLMOEBEL UND LADENEINRICHTUNGEN PRODUKTIONS- U. HANDELSGESELLSCHAFT M.B.H., AT

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 648988

Country of ref document: AT

Kind code of ref document: T

Owner name: CAVERION OESTERREICH GMBH, AT

Effective date: 20170901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201119

Year of fee payment: 14

Ref country code: CH

Payment date: 20201118

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210127

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012671

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 648988

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601