EP1771683B1 - Dispositif de postcombustion thermique et procede d'exploitation correspondant - Google Patents

Dispositif de postcombustion thermique et procede d'exploitation correspondant Download PDF

Info

Publication number
EP1771683B1
EP1771683B1 EP05774420A EP05774420A EP1771683B1 EP 1771683 B1 EP1771683 B1 EP 1771683B1 EP 05774420 A EP05774420 A EP 05774420A EP 05774420 A EP05774420 A EP 05774420A EP 1771683 B1 EP1771683 B1 EP 1771683B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
combustion chamber
section
clean air
remote
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05774420A
Other languages
German (de)
English (en)
Other versions
EP1771683A1 (fr
Inventor
Apostolos Katefidis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisenmann Anlagenbau GmbH and Co KG
Original Assignee
Eisenmann Anlagenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisenmann Anlagenbau GmbH and Co KG filed Critical Eisenmann Anlagenbau GmbH and Co KG
Publication of EP1771683A1 publication Critical patent/EP1771683A1/fr
Application granted granted Critical
Publication of EP1771683B1 publication Critical patent/EP1771683B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator

Definitions

  • the invention relates to a thermal afterburning apparatus according to the preamble of claim 1 and a method for operating such according to the preamble of claim 8.
  • Thermal afterburners are used by default in the industry for exhaust air afterburning. At the same time they serve to generate thermal energy, which is in the entrained by the exhaust air contaminants.
  • the object of the present invention is therefore to provide a thermal afterburning apparatus of the kind specified in the preamble of claim 1 and a method for operating such, with which the exhaust air or residues can be cleaned substantially without interrupting operation, the sticky residues, in particular pitch vapors , contains.
  • the thermal afterburning apparatus is constructed in such a way that, for cleaning, areas of the heat exchanger that are particularly affected by deposits and are further away from the combustion chamber can be exposed to hot clean air.
  • Their temperature is so high that the deposits are detached from the heat exchanger surfaces or oxidized. This requires a temperature of 700 ° C or more.
  • the clean gas at those points of the heat exchanger where deposits occur this temperature no longer.
  • the clean air leaving the combustion chamber in the cleaning mode bypasses a section of the heat exchanger so that it is not cooled down in this section. If it is then introduced into the section of the heat exchanger affected by the deposits, it is therefore still hot enough to be able to remove the deposits.
  • the heating of the debris-affected portion of the heat exchanger in the cleaning mode begins at its warmest end and then proceeds toward the coldest end thereof.
  • the cleaning process is completed when the entire area of the heat exchanger affected by deposits has been brought to the required temperature and the deposits have been removed.
  • the affected by the deposits portion of the heat exchanger is heated from its cold end. This deposits are closer to this cold end, achieved faster than in the embodiment of claim 2.
  • embodiment which is mentioned in claim 4 In this can be alternately or optionally heat affected by deposits portion of the heat exchanger from the warm or from the cold end ago. In this way, the shortest cleaning times can be achieved.
  • a concrete structural embodiment of a thermal afterburning apparatus, with which the mode of operation specified in claim 1 is achieved, is the subject matter of claim 5.
  • the thermal efficiency of the thermal afterburner is to be kept as high as possible, the use of that embodiment, which is mentioned in claim 7 is recommended: the fact that in this embodiment, two sections of the heat exchanger are available, the farther from the combustion chamber are removed, one of these sections can be constantly driven in normal mode.
  • the parallel thereto second section can be cleaned at the same time by a relatively small amount of gas, since a lot of time is available for the cleaning process.
  • the thermal effect of the hot clean air can assist in the removal of deposits and thus achieve a shorter time within which the thermal afterburner must be operated in the cleaning mode.
  • FIG. 1 to 3 a first embodiment of a thermal post-combustion device is shown. This is able to perform a self-cleaning in two different modes of operation, in which from the exhaust air to be cleaned deposits can be removed.
  • the thermal afterburning apparatus is designated overall by the reference numeral 1. It comprises a housing 2, which is composed of a main housing 3, a sub-housing 4 and a walk-under substructure 5.
  • the walk-under substructure 5 is arranged coaxially below the main housing 3 and carries the main housing 3 and the associated with the latter sub-housing. 4
  • the ceiling 6 of the base 5 is curved downwards and at the same time forms the bottom of a plenum 7. Through a central opening 8 of the bottom 6 of the plenum 7, a burner 9 is passed.
  • the necessary for the operation of the burner 9 and not shown in the drawing components, in particular the electrical control and supply lines and the fuel supply lines are housed in the base 5 and can be easily maintained from there.
  • the top of the plenum 7 is formed by a flat separating plate 10, which also serves as the bottom of a cylindrical combustion chamber 11. This is limited in the lateral direction by a cylinder wall 12 and is open at the top.
  • the upper end of the burner 9 is inserted through an axial opening 43 in the separating plate 10 in the combustion chamber 11, so that the flame generated by the burner 9 burns within the combustion chamber 11.
  • the combustion chamber 11 is coaxially surrounded by a deflecting insert 13, which has the shape of a downwardly open cup.
  • the cylinder wall 14 of the deflecting insert 13 terminates at the bottom at a distance from the separating plate 10.
  • two annular spaces namely an inner annular space 16 and an outer annular space 17, the bottom through an annular gap 18 are interconnected.
  • an annular channel 19 or 20 is formed in each case by a radial extension of the cylinder wall 5 of the main housing 3.
  • the outer annular space 17 is separated upwards by a second, planar separating plate 21 from an upper plenum 22.
  • the upper parting plate 21 is guided away in the illustrated embodiment on the deflecting insert 13, could However, as a ring plate to be attached to the bottom of the deflector insert 13.
  • the lower plenum 7 is connected to the upper plenum 22 by a plurality of axially parallel lying on an imaginary cylinder jacket surface heat exchanger tubes 23 which pass through the outer annular space 17 and form a primary heat exchanger 50 a.
  • the heat exchanger tubes 23 are provided with a plurality of surface structures 24 over most of their axial extent, with which the effective surface of the heat exchanger tubes 23 can be increased in a manner not of interest here.
  • the interior of the secondary housing 4 is bounded by a cylinder wall 25, a lower planar separating plate 26 and an upper planar separating plate 27. It has a lower, coaxial with the cylinder wall 25 extending inlet port 28 for the exhaust air to be cleaned and at the top and bottom end of a respective radially outflow outlet port 29 and 30 for clean air.
  • the interior of the secondary housing 4 is penetrated by a plurality of heat exchanger tubes 31, which together form a preheat exchanger 50 b and connects the inlet nozzle 28 with the upper plenum 22. This extends from the main housing 3 to the secondary housing 4.
  • the heat exchanger tubes 31 of the preheat exchanger 50b are provided in the same way with recesses 32 as the heat exchanger tubes 23 of the primary heat exchanger 50a within the main housing. 3
  • the annular channels 19, 20 of the main housing 3 are each connected by a connecting line 33 and 34 with the lower and upper end portion of the inner space of the secondary housing 4 connected.
  • the two connecting lines 33, 34 in turn communicate via a further connecting line 35, which runs substantially parallel to the axis.
  • a first flap 36 In the lower connecting line 33 between the main housing 3 and the sub-housing 4 is a first flap 36 and that in the section which lies between the mouth of the connecting line 35 and the sub-housing 4.
  • the flow through the connection line 35 can be controlled by a second flap 37; a third flap 38 is finally in the upper connecting line 34 and that between the upper annular channel 20 of the main housing 3 and the discharge point of the connecting line 35.
  • Further flaps 39, 40 are located in the two outlet ports 29, 30 for clean air. All flaps 36 to 40 can be brought by hand or motor into all positions between a full closed position and a full open position.
  • thermal post-combustion device 1 functions as follows.
  • the exhaust air to be cleaned is supplied via the inlet port 28 and flows through the preheat exchanger 50b formed by the heat exchanger tubes 31, thus entering the upper plenum 22, flows from there through the primary heat exchanger 50a formed by the heat exchanger tubes 23 in the main housing 3 down into the lower plenum 7. From there, the exhaust air is blown through the axial opening in the lower separating plate 10 into the combustion chamber 11; the entrained impurities begin to oxidize there at the temperature generated by the burner 9.
  • the hot air flows over the upper edge of the cylinder wall 12 of the combustion chamber 11 into the inner annular space 16, within this downward and passes through the gap 18.
  • the now called clean air hot air passes from there into the outer annular space 17 and flows around the heat exchanger tubes located there 23 of the primary heat exchanger 50a on their way up into the upper annular channel 20. From the upper annular channel 20, the hot clean air flows past the open flap 38 through the upper connecting line 34 in the upper end portion of the interior of the sub-housing 4, from there on the outside of the heat exchanger tubes 31 to the lower outlet port 29, where it leaves the thermal afterburning device 1 with the door open 39 for further use and disposal.
  • FIG. differs from the normal operating mode shown in Figure 1 only by the position of different flaps: Now, the flap 38, which connects the main housing 3 to the sub-housing 4 in the upper region, closed; Similarly, the lower outlet port 29 is blocked by a corresponding position of the flap 39. Instead, the connection between the main housing 3 and the sub-housing 4 via the lower connecting line 33 by opening the flap 36 is free; the valve 37 lying in the connecting line 35 remains closed.
  • the deposits located on the inner lateral surface of the heat exchanger tubes 31 can be loosened, possibly oxidized and flushed out with the air flowing through them.
  • Additives, for example catalysts, which are introduced into the exhaust air can assist this process.
  • the operation of the thermal afterburning apparatus 1 does not have to be interrupted.
  • the exhaust air is still cleaned, but leaves the thermal post-combustion device 1 with a slightly higher temperature, so that therefore the thermal efficiency during the first cleaning mode is slightly reduced.
  • This can be accepted as the times in which the operation in cleaning mode is required, are relatively short.
  • the cleaning mode can be discontinued as soon as the heat exchanger tubes 31 have reached the required temperature from bottom to top over their entire axial length and the contaminants have detached.
  • the thermal afterburning apparatus 1 can be operated in a second cleaning mode, in which the flaps are placed in the manner shown in FIG. 3:
  • the flap 38 in the upper connecting line 34 between the main housing 3 and the sub-housing 4 remains closed. Locked is now the upper outlet port 30 of the secondary housing 4 by appropriate closing of the flap 40, while the lower outlet port 29 is released by opening the flap 39.
  • the flap 36 in the lower connecting line 33 is moved to the closed position; instead, the flap 37 is opened in the connecting line 35.
  • the only difference between the second cleaning mode shown in Figure 3 compared to the first cleaning mode shown in Figure 2 is that in the former the hot clean air is introduced into the upper region of the interior of the secondary housing 4 and in this countercurrent to the heat exchanger tubes 31 flowing through Exhaust air flows. In this way, the upper regions of the heat exchanger tubes 31 can be heated particularly well.
  • the two cleaning modes of Figures 2 and 3 can be operated alternately clocked, so that alternately preferably the lower and then again preferably the upper portions of the heat exchanger tubes are freed of deposits.
  • FIGS. 4 and 5 The construction of the second exemplary embodiment of a thermal afterburning apparatus shown in FIGS. 4 and 5 largely corresponds to that embodiment described above with reference to FIGS. 1 to 3. Corresponding parts are therefore identified by the same reference numeral plus 100.
  • the flaps 136, 137, 138 are adjusted, as will be described below.
  • both the primary heat exchanger 150 a which is formed by the heat exchanger tubes 123
  • the main part of the preheat exchanger 150 b which is formed by the heat exchanger tubes 131
  • bypassed the clean air leaves the thermal post-combustion device 101 via the outlet port 129 thus at a relatively high temperature; the thermal post-combustion device 101 operates for a short time with a deteriorated thermal efficiency.
  • this flap position essentially only the areas of the heat exchanger tubes 131 located below the lower annular channel 141 are cleaned. However, this is sufficient in many cases, since there is the greatest risk of deposition of contaminants due to the prevailing temperature conditions.
  • the thermal afterburning apparatus 101 of FIGS. 4 and 5 can also be operated in a mixing operation between normal and cleaning modes, as shown in FIG 5 is shown.
  • the flaps 136, 137, 138 are in an intermediate position between the full open and full closed positions.
  • the self-cleaning effect can be adjusted: the more the flap 138 is closed in the upper connecting line 134, the more hot clean gases bypass the primary heat exchanger 150a formed by the heat exchanger tubes 123 and can therefore be used for cleaning purposes.
  • the position of the various flaps 136, 137, 138 during operation of the thermal afterburning apparatus 101 may also be changed continuously, as required by the particular circumstances.
  • An interruption of operation of the thermal afterburning apparatus 101 for cleaning the preheat exchanger 150b is required as little as in the embodiment of Figures 1 to 3; the loss of thermal efficiency, which is inevitable during the cleaning operation, in contrast, is readily acceptable.
  • a preheat exchanger 250b is associated with the primary heat exchanger 250a; Rather, two preheat exchangers 250b, 250b 'are provided, which are in principle laid parallel to each other and, as will be described in detail below, can be operated alternately in different operating modes.
  • the two Preheat exchanger 250b and 250b 'are constructed essentially identical. To distinguish the reference numerals, those belonging to the second preheat exchanger 250b 'are each provided with a'.
  • the main housing 203 is connected to the lower inner region of the secondary housing 204 through a lower connecting line 233, in which a flap 236 is located.
  • a further connecting line 233 ' From the lower connecting line 233 branches off a further connecting line 233 ', which leads to the second sub-housing 204' of the second preheat exchanger 250b '.
  • the inlet of the connecting line 233 'in the second sub-housing 204' is dominated by a flap 236 '.
  • the main housing 203 is in turn connected by an upper connecting line 234 with the upper inner region of the first sub-housing 204, which is now extended but further to the upper inner region of the second sub-housing 204 '. Unlike in the embodiment of Figures 1 and 2, however, there is no flap in that of Figures 6 and 7 in the upper connecting line 234.
  • the interiors of the two sub-housings 204 and 204 ' are each traversed by a plurality of axially parallel heat exchanger tubes 231, 231' extending from an inlet port 228, 228 'of the respective preheat exchanger 250b, 250b' to the upper plenum 222, in the embodiment of FIGS 6 and 7 over the first sub-housing 204 across the second sub-housing 204 'is guided.
  • the two inlet ports 228, 228 'each include a motorized flap 282, 282' and are connected to a main inlet port 280, via the exhaust air to be cleaned is supplied to the thermal afterburning device 201.
  • the two outlets 229, 229 'of the two sub-housings 204, 204' are connected to a main outlet port 281, via which the clean air is discharged.
  • FIG. This shows the position of the various flaps in an operating mode in which the second preheat exchanger 250b 'operates in normal mode and the first preheat exchanger 250b is idle.
  • all the valves 236, 239 and 282 associated with the first preheat exchanger 250b are closed.
  • the flap 236 'leading to the lower end region of the interior of the second secondary housing 204' is likewise closed, while the flaps 282 'and 239' are open.
  • the exhaust air to be purified flows via the inlet port 228 'into the heat exchanger tubes 231' of the second preheat exchanger 250b ', via the upper plenum 222, through the heat exchanger tubes 223 of the primary heat exchanger 250a, through the lower plenum 207 into the combustion chamber 211 where the combustion of the contaminants is introduced, via the annular spaces 216, 217 on the outer surfaces of the heat exchanger tubes 223 along and then via the upper connecting line 234 into the interior of the second secondary housing 204 '. From there, the clean gas flows to the outer surfaces of the heat exchanger tubes 231 'of the second Preheat exchanger 250b 'over the open flap 239' to the main outlet 281.
  • the flap positions of the two preheat exchangers 250b and 250b' are simply exchanged analogously. In principle, it is also possible to drive both preheat exchangers 250b and 250b 'under the same flap position simultaneously in normal mode.
  • the flap 282 located in the inlet port 228 of the first preheat exchanger 250b is slightly opened, as well as the flap 236 determining the supply of clean air from the main housing 203. This has the following consequences for the gas flows:
  • the exhaust air is the second preheat exchanger 250b 'fed, but passes, depending on the degree of opening of the flap 282, and a certain part of the exhaust air in the preheat exchange 250b.
  • the part of the exhaust air diverted into the preheat exchanger 250b should be kept as small as possible in order to keep the overall efficiency of the thermal afterburning device 201 as high as possible. While the flow paths for that part of the exhaust air which flows through the second preheat exchanger 250b 'remain unchanged, the flow conditions change in the first preheat exchanger 250b as follows:
  • flap 236 Due to the partially opened flap 236 enters a corresponding amount of clean air at a temperature of about 700 ° C in the lower end of the interior of the first sub-housing 204 a. This flows past the outer surfaces of the heat exchanger tubes 231 of the first preheat exchanger 250b and heats them. The interior of these heat exchanger tubes 231 is simultaneously flowed through by the exhaust air which passes through the flap 282 in the inlet pipe 228. These flows can be maintained for a very long time, since the second preheat exchanger 250b 'continues to operate in normal mode.
  • the exhaust air flowing through the heat exchanger tubes 231 of the first preheat exchanger 250b and carrying the scorched deposits is mixed in the upper plenum 222 with those exhaust air coming from the second preheat exchanger 250b 'and is then supplied with it to the combustion in the combustion chamber 211.
  • the third embodiment of the thermal afterburning apparatus 201 allows extremely variable operation depending on the extent to which the flaps 236, 236 ', 239, 239' and 282, 282 'are opened, which determine the gas flows through the two preheat exchangers 250b, 250b'.
  • the following principles apply:

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (12)

  1. Dispositif de post-combustion thermique avec :
    a) un carter, qui présente une admission pour l'air entrant à purifier et une évacuation pour l'air purifié ;
    b) une chambre de combustion disposée dans le carter ;
    c) un dispositif de chauffage générant la température de réaction dans la chambre de combustion ;
    d) un échangeur thermique par l'intermédiaire duquel l'air entrant arrivant de l'admission est dirigé vers la chambre de combustion et l'air purifié arrivant de la chambre de combustion est dirigé vers l'évacuation ;
    caractérisé en ce que
    e) un dispositif (33 à 38 ; 133 à 138 ; 233, 233', 236, 236') est prévu, avec lequel au moins une partie de l'air purifié peut, dans un mode de purification, être transférée au choix dans une section (50b ; 150b ; 250 b, 250b') de l'échangeur thermique (50a, 50b ; 150a, 150b ; 250a, 250b, 250b') plus éloignée de la chambre de combustion (11 ; 111 ; 211) en passant devant une section (50a ; 150a ; 250a) de l'échangeur thermique (50a, 50b ; 150a, 150b ; 250a, 250b, 250b') plus proche de la chambre de combustion (11 ; 111 ; 211).
  2. Dispositif de post-combustion thermique selon la revendication 1, caractérisé en ce que la section (50b ; 150b) de l'échangeur thermique (50a, 50b ; 150a, 150b) plus éloignée de la chambre de combustion (11 ; 111) peut être traversée par l'air purifié dans le sens opposé à l'air entrant.
  3. Dispositif de post-combustion thermique selon la revendication 1, caractérisé en ce que la section (50b ; 250b, 250b') de l'échangeur thermique (50a, 50b ; 250a, 250b, 250b') plus éloignée de la chambre de combustion (11 ; 211) peut être traversée par l'air purifié dans le même sens que l'air entrant.
  4. Dispositif de post-combustion thermique selon la revendication 1, caractérisé en ce que la section (50b) de l'échangeur thermique (50a, 50b) plus éloignée de la chambre de combustion (11) peut être traversée par l'air purifié au choix dans le sens opposé ou dans le même sens que l'air entrant et en ce que le carter (2, 3, 4) présente deux évacuations (29, 30) pour l'air purifié pouvant être ouvertes au choix, qui communiquent chacune avec une extrémité de la section (50b) de l'échangeur thermique (50a, 50b) plus éloignée de la chambre de combustion (11).
  5. Dispositif de post-combustion thermique selon l'une quelconque des revendications précédentes, caractérisé en ce que
    a) la section (50a ; 150a ; 250a) de l'échangeur thermique (50a, 50b ; 150a, 150b, 250a, 250b, 250b') plus proche de la chambre de combustion (11 ; 111 ; 211) comprend une multitude de tubes d'échangeur thermique (23 ; 123 ; 223) qui entourent la chambre de combustion (11 ; 111 ; 211) ;
    b) la section (50b; 150b ; 250b, 250b') de l'échangeur thermique (50a, 50b ; 150a, 150b, 250a, 250b, 250b') plus éloignée de la chambre de combustion (11 ; 111 ; 211) est séparée dans l'espace de la section (50a ; 150a ; 250a) plus proche de la chambre de combustion (11 ; 111 ; 211) et comprend un regroupement de tubes d'échangeur thermique (31 ; 131 ; 231, 231') ;
    c) les deux extrémités opposées des sections (50a, 50b ; 150a, 150b ; 250a, 250b, 250b') de l'échangeur thermique sont toujours reliées par une conduite de liaison (33, 34 ; 133, 134 ; 233, 234),
    d) le débit d'air purifié pouvant être commandé par au moins une conduite de liaison (33, 34 ; 133, 134 ; 233, 234) grâce à un volet (36, 38 ; 136, 138 ; 236).
  6. Dispositif de post-combustion thermique selon la revendication 5, caractérisé en ce que les conduites de liaison (33, 34 ; 133, 134) sont reliées entre elles par une autre conduite de liaison (35 ; 135), dans laquelle se trouve un volet (37 ; 137).
  7. Dispositif de post-combustion thermique selon l'une quelconque des revendications précédentes, caractérisé en ce que au moins deux sections (250b, 250b') de l'échangeur thermique (250a, 250b, 250b') plus éloignées de la chambre de combustion (211) sont prévues, lesquelles sections sont montées quasiment en parallèle, le degré auquel l'air entrant et l'air purifié peuvent être transférés dans les sections (250b, 250b') plus éloignées de la chambre de combustion (211) pouvant être réglé individuellement pour chaque section (250b, 250b') plus éloignée de la chambre de combustion (211).
  8. Procédé de fonctionnement d'un dispositif de post-combustion thermique, qui présente :
    a) un carter, qui présente une admission pour l'air entrant à purifier et une évacuation pour l'air purifié ;
    b) une chambre de combustion disposée dans le carter ;
    c) un dispositif de chauffage générant la température de réaction dans la chambre de combustion ;
    d) un échangeur thermique par l'intermédiaire duquel l'air entrant arrivant de l'admission est dirigé vers la chambre de combustion et l'air purifié arrivant de la chambre de combustion est dirigé vers l'évacuation;
    caractérisé en ce que
    e) pour purifier l'échangeur thermique (50a, 50b ; 150a, 150b ; 250a, 250b, 250b'), au moins une partie de l'air purifié chaud arrivant de la chambre de combustion (11 ; 111 ; 211) peut par moments être transférée dans une section (50b ; 150b ; 250 b, 250b') de l'échangeur thermique (50a, 50b ; 150a, 150b ; 250a, 250b, 250b') plus éloignée de la chambre de combustion (11 ; 111 ; 211) en passant devant une section (50a ; 150a ; 250a) de l'échangeur thermique (50a, 50b ; 150a, 150b ; 250a, 250b, 250b') plus proche de la chambre de combustion (11 ; 111 ; 211).
  9. Procédé selon la revendication 8, caractérisé en ce que l'air purifié traverse - lors de la purification - la section (50b ; 150b) de l'échangeur thermique (50a, 50b ; 150a, 150b) plus éloignée de la chambre de combustion (11 ; 111) dans le sens opposé à l'air entrant.
  10. Procédé selon la revendication 8, caractérisé en ce que l'air purifié traverse - lors de la purification - la section (50b ; 150b ; 250b, 250b') de l'échangeur thermique (50a, 50b ; 150a, 150b ; 250a, 250b, 250b') plus éloignée de la chambre de combustion (11 ; 111 ; 211) dans le même sens que l'air entrant.
  11. Procédé selon la revendication 8, caractérisé en ce que l'air purifié traverse - lors de la purification - la section (50b ; 150b) de l'échangeur thermique (50a, 50b; 150a, 150b) plus éloignée de la chambre de combustion (11 ; 111) alternativement dans le sens opposé ou dans le même sens que l'air entrant.
  12. Procédé selon l'une quelconque des revendications 8 à 11, caractérisé en ce qu'un additif, en particulier un catalyseur, est ajouté dans l'échangeur thermique (50a, 50b ; 150a, 150b ; 250a, 250b, 250b') pour la purification.
EP05774420A 2004-07-27 2005-07-25 Dispositif de postcombustion thermique et procede d'exploitation correspondant Expired - Fee Related EP1771683B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004036326 2004-07-27
DE102004051491A DE102004051491B3 (de) 2004-07-27 2004-10-21 Thermische Nachverbrennungsvorrichtung sowie Verfahren zum Betreiben einer solchen
PCT/EP2005/008065 WO2006010579A1 (fr) 2004-07-27 2005-07-25 Dispositif de postcombustion thermique et procede d'exploitation correspondant

Publications (2)

Publication Number Publication Date
EP1771683A1 EP1771683A1 (fr) 2007-04-11
EP1771683B1 true EP1771683B1 (fr) 2007-11-14

Family

ID=35285357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05774420A Expired - Fee Related EP1771683B1 (fr) 2004-07-27 2005-07-25 Dispositif de postcombustion thermique et procede d'exploitation correspondant

Country Status (6)

Country Link
US (1) US8316922B2 (fr)
EP (1) EP1771683B1 (fr)
CA (1) CA2575384C (fr)
DE (2) DE102004051491B3 (fr)
NO (1) NO326129B1 (fr)
WO (1) WO2006010579A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050058B4 (de) * 2010-10-29 2012-05-24 Robert Bosch Gmbh Luftwärmetauscher
DE102011114292A1 (de) * 2011-09-23 2013-03-28 Eisenmann Ag Thermische Nachverbrennungsanlage sowie Verfahren zum Betreiben einer solchen
DE102011119436B4 (de) * 2011-11-25 2020-08-06 Eisenmann Se Vorrichtung zum Temperieren von Gegenständen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2134634A1 (de) * 1970-05-29 1973-01-25 Kurt Dr Ing Zenker Vorrichtung zum thermischen nachverbrennen von abluft aus industrieanlagen
DE3222700C1 (de) * 1982-06-16 1983-11-17 Otmar Dipl.-Ing. 8000 München Schäfer Anlage mit einem Trockner fuer organische Stoffe
GB8519715D0 (en) * 1985-08-06 1985-09-11 British Petroleum Co Plc Combustor
DE3605415A1 (de) * 1986-02-20 1987-08-27 Katec Betz Gmbh & Co Verfahren und vorrichtung zum verbrennen oxidierbarer bestandteile in einem traegergas
DE3616333C1 (de) * 1986-05-15 1987-04-16 Krantz H Gmbh & Co Verfahren zum thermischen Reinigen der Abgase einer Waermebehandlungsvorrichtung
EP0446435B1 (fr) * 1990-03-10 1993-05-26 H. Krantz GmbH & Co. Dispositif pour la combustion des composants oxydables dans un courant d'air d'échappement
WO1992017267A1 (fr) * 1991-03-28 1992-10-15 Apparatebau Rothemühle Brandt & Kritzler Gesellschaft Mit Beschränkter Haftung Echangeur de chaleur a regeneration
FR2688577A1 (fr) * 1992-03-10 1993-09-17 Dumoutier Massetat Sa Dispositif d'epuration des effluents gazeux.
US5538420A (en) * 1994-11-21 1996-07-23 Durr Industries, Inc. Heat exchanger bake out process
US5643544A (en) * 1995-04-28 1997-07-01 Applied Web Systems, Inc. Apparatus and method for rendering volatile organic compounds harmless
DE19521673C2 (de) 1995-06-14 1998-07-02 Atz Evus Applikations & Tech Verfahren zur regenerativen Abluftreinigung
DE19948212C1 (de) * 1999-10-06 2000-11-30 Eisenmann Kg Maschbau Regenerative Nachverbrennungsvorrichtung

Also Published As

Publication number Publication date
DE102004051491B3 (de) 2006-03-02
EP1771683A1 (fr) 2007-04-11
CA2575384A1 (fr) 2006-02-02
CA2575384C (fr) 2012-09-18
DE502005002008D1 (de) 2007-12-27
WO2006010579A1 (fr) 2006-02-02
US8316922B2 (en) 2012-11-27
US20090007825A1 (en) 2009-01-08
NO20071084L (no) 2007-02-26
NO326129B1 (no) 2008-10-06

Similar Documents

Publication Publication Date Title
DE4236785C3 (de) Durchlaufofen
DE3605415A1 (de) Verfahren und vorrichtung zum verbrennen oxidierbarer bestandteile in einem traegergas
EP2547960B1 (fr) Installation d'épuration thermique de gaz d'évacuation
DE2732588A1 (de) Verfahren und vorrichtung zum veraschen von abfallmaterial
DE3025831C2 (fr)
EP1390316B1 (fr) Installation et procede de production de clinker de ciment
EP1771683B1 (fr) Dispositif de postcombustion thermique et procede d'exploitation correspondant
AT506459B1 (de) Vorrichtung und verfahren zur reinigung von schadstoffhaltigem abgas
EP0903539B1 (fr) Brûleur avec régénérateur
EP0007977A1 (fr) Procédé de cuisson de matériaux particulaires et four à cuve circulaire pour la mise en oeuvre du procédé
DE2745756A1 (de) Verbrennungsofen
EP0924464A1 (fr) Grille d'une installation de combustion et méthode pour son refroidissement
DE19905733A1 (de) Verfahren und Anlage zur Reinigung von mit Stickoxiden beladenen Abgasen
EP1135652B1 (fr) Dispositif de postcombustion a effet regeneratif
DE2350145A1 (de) Verbrennungsanlage
EP0483877B1 (fr) Dispositif de combustion pour bois et charbon
DE3201366A1 (de) Waermebehandlungsofen
EP1286115A1 (fr) Installation de post-combustion thermique
DE19926405C2 (de) Verfahren zur thermischen Regeneration des Wärmetauschermaterials einer regenerativen Nachverbrennungsvorrichtung
DE2134634A1 (de) Vorrichtung zum thermischen nachverbrennen von abluft aus industrieanlagen
EP1190201B1 (fr) Procede de regeneration thermique de la matiere echangeuse de chaleur d'un dispositif de post-combustion a regeneration
DE320439C (de) Verfahren nebst Doppelofen zur Ausnutzung der Abgaswaerme in Kupoloefen
DE2452418A1 (de) Verfahren zum thermischen nachverbrennen von abluft aus industriellen arbeitsanlagen und vorrichtung zur durchfuehrung dieses verfahrens
DE2601181C2 (de) Vorrichtung zur thermischen Reinigungsbehandlung eines Abgases
DE19648508C1 (de) Industrielle Abluftreinigungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 502005002008

Country of ref document: DE

Date of ref document: 20071227

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005002008

Country of ref document: DE

Owner name: EISENMANN AG, DE

Free format text: FORMER OWNER: EISENMANN ANLAGENBAU GMBH & CO. KG, 71032 BOEBLINGEN, DE

Effective date: 20110513

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005002008

Country of ref document: DE

Owner name: EISENMANN SE, DE

Free format text: FORMER OWNER: EISENMANN ANLAGENBAU GMBH & CO. KG, 71032 BOEBLINGEN, DE

Effective date: 20110513

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: EISENMANN AG, DE

Effective date: 20120903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140722

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150915

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005002008

Country of ref document: DE

Representative=s name: OSTERTAG & PARTNER, PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005002008

Country of ref document: DE

Owner name: EISENMANN SE, DE

Free format text: FORMER OWNER: EISENMANN AG, 71032 BOEBLINGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150729

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002008

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160725