EP1768798A1 - Verfahren und vorrichtung zum präzisen positionieren einer anzahl zusammenwirkender walz- oder rollenelemente - Google Patents

Verfahren und vorrichtung zum präzisen positionieren einer anzahl zusammenwirkender walz- oder rollenelemente

Info

Publication number
EP1768798A1
EP1768798A1 EP06776173A EP06776173A EP1768798A1 EP 1768798 A1 EP1768798 A1 EP 1768798A1 EP 06776173 A EP06776173 A EP 06776173A EP 06776173 A EP06776173 A EP 06776173A EP 1768798 A1 EP1768798 A1 EP 1768798A1
Authority
EP
European Patent Office
Prior art keywords
rolling
elements
roller
reference points
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06776173A
Other languages
English (en)
French (fr)
Other versions
EP1768798B1 (de
Inventor
Horst Von Wyl
Ulrich Zenz
Frank MÖNSTERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1768798A1 publication Critical patent/EP1768798A1/de
Application granted granted Critical
Publication of EP1768798B1 publication Critical patent/EP1768798B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1282Vertical casting and curving the cast stock to the horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/208Controlling or regulating processes or operations for removing cast stock for aligning the guide rolls

Definitions

  • the invention relates to a method for precisely positioning a number of cooperating rolling or rolling elements of a rolling or casting device relative to each other. Furthermore, the invention relates to a rolling or casting device with a number of cooperating rolling or rolling elements.
  • the individual roller elements In order to eliminate detected incorrect positions of the roller elements, in particular of recognized transitional errors, by so-called messages, the individual roller elements (segments) must be removed by means of a crane or a manipulator and deposited elsewhere. Then, serving for positioning serving lamination packages are disassembled and changed and reinstalled and attached. Then the segment can be reinstalled. Since often only a crane or a manipulator is available, all segments must be aligned one after the other. The time required per segment is at least two to three hours, whereby the alignment of up to 15 segments per line is required, in particular for new buildings or after conversions.
  • a laser beam is used to align a number of rollers of a casting machine, wherein the distance of individual elements of the device is determined to the laser beam.
  • the laser beam thus serves as a kind of solder.
  • DE 101 60 636 A1 describes a method for setting a casting gap on a strand guide of a continuous casting plant.
  • the detection of defects and a trouble-free casting start it is provided that the casting gap before G thinkbeginn according to an ideal course of the strand thickness via a distance measuring system inserted. is presented. After the start of pouring, a continuous and gap-free pouring gap is set under operating load. Special measures to set up the individual segments of the caster are not disclosed in this solution.
  • the disadvantages of existing methods and associated devices for aligning or setting up the individual rolling or rolling elements of rolling or casting devices are that the times required for setting up are very long, especially after conversions or Maintenance work of the systems.
  • the availability of the systems is correspondingly low, which results in high operating costs.
  • the accuracy with which the alignment of the individual elements can take place is in some cases inadequate, and consequently the product quality is also not optimal.
  • by a non-optimal alignment of the elements relative to each other a greatly reduced reliability in the process and increased error rate.
  • the invention is in the light of the above-described solutions for the alignment of the rolling or rolling elements of rolling or casting devices the object of a method and an apparatus of the type mentioned in such a way that the disadvantages mentioned are eliminated.
  • the alignment or messages of segments should therefore be much easier and more accurate possible. This should be a significant part of the time required so far can be saved.
  • This object is achieved by the method according to the invention by measuring the distance between at least three directly or indirectly arranged reference points and the measuring device by means of a measuring device and that depending on the measurement result adjusting elements on each rolling or rolling element so be actuated that the distances between the reference points and the meter best match predetermined values, the measuring points of each rolling or rolling element are arranged directly or indirectly on a support member of the rolling or rolling element.
  • the method is used for precise alignment of the segments of a continuous casting plant.
  • a further embodiment provides that more reference points are measured with the measuring device than is necessary for an unambiguous positioning of the rolling or rolling elements, and that the actuation of at least a part of the adjusting elements takes place according to a compensating function formed from all measuring points.
  • the equalization function is preferably a regression function that may be linear or polynomial; Of course, other types of regression functions are possible, eg. Eg exponential functions.
  • a regression analysis is used as a statistical method for analyzing the measured data.
  • so-called "one-sided" statistical dependencies, ie statistical cause-and-effect relationships, are described by a regression function, creating "confidence measures" in the positioning of the individual rolling or rolling elements. below.
  • each rolling or rolling element has a carrier element on which at least three reference points are arranged directly or indirectly, wherein the rolling or casting device further comprises a measuring device or in the rolling or casting device, a measuring device can be introduced, which is suitable for making distance and / or angle measurements between itself or a predetermined direction and the reference points.
  • the rolling or rolling elements are the segments of a continuous casting plant. They advantageously have at least two rollers or rollers.
  • the measuring device is designed in particular as a laser tracker or as a tachymeter.
  • Laser trackers have a high-precision, kinematic, three-dimensional measuring system capable of performing a distance measurement with high accuracy.
  • the tachymeters provided for use as precision instruments are capable of precisely measuring distances and positions.
  • Electronic tachymeters which are preferred here, measure the directions for a target process automatically, for. B. by interference methods.
  • the distances are determined by electronic distance measurement. In this case, either the transit time or the phase shift of an emitted and reflected in the target point laser beam is measured.
  • the light of the carrier wave of the laser beam is usually in the infrared range or in the near infrared of the light spectrum.
  • the reflection of the laser beam at the target point takes place either directly on the surface of the targeted object or in a targeted prism.
  • the determination of the measured value with regard to direction and distance takes place electronically.
  • the reference points are preferably designed as spheres which are arranged directly or indirectly on the carrier element.
  • Adjusting elements can be arranged on each carrier element with which the carrier element can be positioned or displaced relative to its receptacle.
  • the adjusting elements preferably allow a translational displacement of the carrier element relative to its receptacle.
  • the adjusting elements permit a rotation of the carrier element relative to its receptacle about at least one spatial axis, preferably about the transverse axis.
  • adjusting elements are used in particular as such well-known machine shoes, which have at least one (double) wedge element.
  • This can be generated in a simple manner, namely by tightening or loosening a screw, a translational adjustment, which has a function of the arrangement of the machine shoe on the support element a translational and / or rotational movement of the support member relative to its inclusion result.
  • the adjustment should be under load So without the help of cranes or manipulators done.
  • the adjusting element is designed to be self-locking.
  • the proposed invention is preferably used in continuous casting, but it can also be used for other metallurgical equipment, such. B. for rolling mills and strip processing lines.
  • the "ideal" roll plan is thus replaced by a curve which is derived from the measured data itself by means of regression calculation made the reliability of the measurement quantifiable ("confidence measure").
  • the measurement task for a segment can be carried out in two sub-steps. First, the measurement of the roller conveyor in the segment and a transfer to an external reference point in advance in the workshop. On the other hand, the system measurement is limited to the measurement of the reference points and the reconstruction of the pass line via the transfer information. Although the overall effort is slightly larger due to the transfer, the continuous casting plant can continue to produce during workshop work. The upper frames of the segments do not need to be removed for investment measurement.
  • FIG. 1 shows schematically a continuous casting plant in the side view with the representation of some of the components of the plant
  • Fig. 2 shows an enlarged detail of Fig. 1 with three roller elements
  • Fig. 3 is an enlarged detail of Fig. 2 with a single roller element.
  • a casting plant 1 is sketched in the form of a continuous casting.
  • Liquid metallic material exits vertically downward from a mold 21 and is gradually diverted from a vertical to a horizontal along a casting arc section 14.
  • the casting arc section 14 is defined by a number of RoI lenimplantation 2, 3, 4 are formed, which are aligned relative to each other so that they form the Gellobogenabites 14. It should be noted that actually only the segment subframes are shown, which is however correct in that the dimension reference line is always the "trailing edge strand.” In the concept described below, it is particularly advantageous that the measurement of the system also be carried out with mounted upper frame can be done.
  • the pouring arc section 14 has a center M, d. H.
  • the cast metal strand runs in a quarter circle around the midpoint M from the vertical to the horizontal.
  • a measuring device 5 is arranged in the form of a laser tracker.
  • each roller element 2, 3, 4 has at least three, in the exemplary embodiment four, reference points 6, 7, 8 and 9, which are designed as measuring balls, which are arranged on a carrier element 13, i. H.
  • a measuring ball for the sake of simplicity, this is referred to as a measuring ball, although a measuring ball holder is meant more precisely and actually better, in which a measuring ball can be inserted temporarily and only during the actual measuring and aligning process ,
  • the elements 2, 3, 4 to be seen in FIG. 2 that again the segment subframes can be seen.
  • the arrangement of the measuring balls via a measuring ball holder is also remarkable from the aspect that in this way it is possible in a simple manner to react selectively to roller wear and other changes in geometry of the system or its components.
  • the measuring ball holder can namely be designed so that they can compensate by adjusting the effects mentioned.
  • a plurality of rollers or rollers 15, 16, 17, 18 are rotatably mounted in each support member 13.
  • the support element 13 and thus the entire roller element 2 is mounted on a receptacle 19.
  • the laser tracker 5 has - due to its favorable arrangement in the region of the midpoint M - "visual contact" to the individual reference points 6, 7, 8, 9 of each roller element 2, 3, 4.
  • the laser tracker is capable of exact distances a 6 , a 7> a 8 and a 9 to the reference points 6, 7, 8 and 9 and, if appropriate, to measure the angles ⁇ 6 , ⁇ 7 , ⁇ 8 and ⁇ 9 (see Fig. 3) with an accuracy of a few tenths of a millimeter.
  • Reference points 7 and 8 should be noted that, in contrast to the drawing in FIG. 2, they are preferably located on the outside of the subframe of an element 2, 3, 4, preferably in the same plane as points 6 and 9, but in FIG Casting direction on the other side.
  • the carrier element 13 is arranged on the receptacle 19 via adjusting elements 10, 11 and 12, which are only sketched very schematically and designed as machine shoes.
  • the adjustment of the adjusting elements 10, 11, 12 has the consequence that the carrier element 13 and thus the entire roller element 2 can be moved relative to the stationary mount 19 both in the translational direction and in rotation.
  • Fig. 3 of the three possible translation directions or directions of rotation in space only two are entered, namely the spatial directions x and y and the spatial axes ⁇ and ß.
  • the corresponding actuation of the individual adjusting elements - there may be much more than the three outlined - leads to the precise positioning of the carrier element 13 relative to the recording in all spatial directions and spatial axes.
  • Fig. 3 only schematically shows the adjustment in the individual spatial directions and the individual spatial axes are, although the different axes and directions of different importance.
  • the adjustment by means of the adjusting element 10 of minor importance since this is no significant influence on the continuous casting process is exercised.
  • the adjusting elements 11 and 12 must have a partner lying on the opposite side, as seen in the casting direction, in order to make the angle ⁇ adjustable.
  • Fig. 3 the position of the support member 13 is shown schematically before the precise alignment with dashed lines and the position after the alignment with solid lines.
  • the distances a 6 , a 7) a 8 and a 9 and the associated angles ⁇ , 6 , ⁇ 7 , ⁇ and ⁇ g are measured by means of the laser tracker 5, ie the distances and angles between the measuring device 5 and the Reference points 6, 7, 8 and 9 in the form of measuring balls.
  • the distance between the measuring device 5 and the reference point 7 before the Jus- days is shown in Fig. 3 - representative of the other reference points - with a 7 '.
  • the measuring device 5 is connected to not shown calculating means in connection.
  • the target positions of the rollers 15, 16, 17 and 18 and thus of the carrier element 13 are stored in the computing means. Since the position of the reference points 6, 7, 8 and 9 on the carrier element 13 is known, the desired positions and desired distances between the reference points 6, 7, 8, 9 and the measuring device 5 are obtained immediately. B. in the segment workshop, the position of the roles on the external reference points and have been stored.
  • the position of the roller element 2 in the room can be determined. Due to the given geometry of the roller element 2, after performing the distance measurement between measuring device 5 and reference points 6, 7, 8, 9, it is possible in a simple manner to calculate adjustment amounts for the adjusting elements 10, 11 and 12, which are carried out automatically in the computing means can. By appropriate Chendes pressing the adjustment elements 10, 11, 12 can be done in a simple manner, very precise and above all very fast adjustment of a roller element 2.
  • the invention proposal can again be described essentially as follows:
  • the measurement of the strand guide geometry is carried out by means of a measuring device 5, preferably in the form of a laser tracker or precision tachymeter.
  • a measuring device 5 preferably in the form of a laser tracker or precision tachymeter.
  • targets in the form of measuring balls are used, so that the position of the carrier element 13 can be determined three-dimensionally (each individual measurement directly supplies a spatial coordinate triplet.)
  • the processing of the measured data takes place online or offline in a computer.
  • the position of the roller conveyor is not measured, but the reference points attached to the stationary part of the carrier element (frame) are considered.
  • the position of the reference points relative to the relevant for the process roller conveyors is in advance, z. B. in the workshop, recorded in a so-called. Transfer measurement. There is no need to use special Ausrichtrise required, but possible.
  • a setpoint can be determined for each reference point with reference to the dimension reference system of the system (roller plan, pass line).
  • the result of the system measurement can be compared for evaluation with this target topology (roll plan, pass line) and the deviations from each other can be converted into message amounts for the position correction of the segments.
  • the regression from the (redundant) measurement results can be done according to a linear or polynomial distribution function.
  • the measurements can be made using a reference point field in the vicinity of the system to facilitate the location of the instrument during the measurement process.
  • the expected error is limited by using as many points as possible (a redundancy compensates for errors) which are as fixed as possible and independent of the object to be measured.
  • a program can be used, which converts the height correction at the input and output rollers (after the set of rays and possibly taking into account elastic shape changes) to the support points.
  • the measurement should be taken from a location that allows the best possible insight into as many segments of the plant as possible, which is usually the midpoint of the casting arc section be used on each other.
  • more reference points 6, 7, 8, 9 are provided than is necessary for the unambiguous definition of the spatial position of a carrier element 13; three points are enough to define a plane.
  • this over-determination serves to reduce a statistically never completely exclude measuring error by redundant compensation.
  • segment transition scrap ions are used in order, if appropriate, to be able to check the alignment result of the individual rolling or rolling elements.
  • the proposal according to the invention therefore divides the entire measuring task into a transfer measurement, on the one hand, which can be carried out in the workshop during production of the rolling or rolling elements, and a system measurement with the reconstruction of the pass line from the transfer measurement, which takes place on-site at the continuous casting plant. This results in the significant reduction of the adjustment of the rolling or rolling elements and thus the downtime, which make up the economic advantage of the inventive concept.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Continuous Casting (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Jigs For Machine Tools (AREA)
  • Control Of Metal Rolling (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

Verfahren und Vorrichtung zum präzisen Positionieren einer Anzahl zusammenwirkender Walz- oder Rollenelemente
Die Erfindung betrifft ein Verfahren zum präzisen Positionieren einer Anzahl zusammenwirkender Walz- oder Rollenelemente einer Walz- oder Gießvorrichtung relativ zueinander. Des Weiteren betrifft die Erfindung eine Walz- oder Gießvorrichtung mit einer Anzahl zusammenwirkender Walz- oder Rollen- elemente.
Insbesondere bei Stranggießanlagen ist es erforderlich, eine Anzahl zusammenwirkender Rollenelemente relativ zueinander möglichst präzise auszurichten, wobei die Rollenelemente im ausgerichteten Zustand einen Gießbogenab- schnitt für den zu gießenden Metallstrang bilden.
Um die Ausrichtung vorzunehmen, ist es bekannt, die Lage der einzelnen Elemente durch Messungen mit Theodoliten, Nivelliergeräten bzw. Schnurgerüsten zu ermitteln. Dabei wird meist auf Referenzmarken Bezug genommen, die rela- tiv zur idealen Anlagen-Maßbezugslinie, d. h. in der Regel auf die Passlinie der Hinterkante des Strangs, nicht ortsfest sind (thermische Dehnungen, Fundamentsetzungen). Jede Einzelmessung liefert jeweils nur zwei der drei Raumkoordinaten eines Messpunktes. Die vollständige Bestimmung eines Punktes im Raum erfolgt durch Kreuzkorrelation, die meist von Hand mit Taschenrechner vorgenommen wird.
Zur Kontrolle nach einer optischen Vermessung werden oft die Segmentübergänge mittels Schablonen nachvermessen. Dabei zeigen sich häufig Diskrepanzen zwischen den erwarteten Ergebnissen aus dem Rollenplan, d. h. den theoretischen Sollpositionen, den ermittelten Messergebnissen und den Ergebnissen aus der Kontrolle. Um einen optimalen Abgleich der einzelnen Positionen eines Walz- oder Rollenelements (Idealposition - Messung - Kontrolle) zu erreichen, ist ein sehr hoher Aufwand erforderlich. Typischerweise dauert die Ausrichtung aller Rollenelemente einer Stranggießanlage ca. zwei Wochen. Außerdem können fehler- hafte Ausrichtungen nicht immer gänzlich vermieden werden, was in der Folge Qualitätsprobleme und Produktionseinschränkungen verursacht. Entsprechend hoch sind die Folgekosten einer unzureichenden Ausrichtung der einzelnen Rollenelemente der Stranggießanlage.
Zum Eliminieren erkannter Fehlpositionen der Rollenelemente, insbesondere von erkannten Übergangsfehlern, durch sog. Nachrichten, müssen die einzelnen Rollenelemente (Segmente) mittels eines Krans oder eines Manipulators weggeschafft und an anderer Stelle abgesetzt werden. Dann werden zur Positionierung dienende Futterblechpakete demontiert und gewechselt sowie wieder eingebaut und befestigt. Daraufhin kann das Segment wieder eingebaut werden. Da häufig nur ein Kran oder ein Manipulator zur Verfügung steht, müssen alle Segmente nacheinander ausgerichtet werden. Der Zeitaufwand pro Segment beträgt mindestens zwei bis drei Stunden, wobei insbesondere bei Neubauten oder nach Umbauten die Ausrichtung von bis zu 15 Segmenten je Strang erforderlich ist.
In der FR 26 44 715 wird zur Ausrichtung einer Anzahl Rollen einer Gießanlage ein Laserstrahl eingesetzt, wobei der Abstand einzelner Elemente der Vorrichtung zum Laserstrahl ermittelt wird. Der Laserstrahl dient also quasi als Lot. Eine ähnliche Lösung zeigt die US 4,298,281.
In der DE 101 60 636 A1 ist ein Verfahren zum Einstellen eines Gießspalts an einer Strangführung einer Stranggießanlage beschrieben. Um in einfacher Weise ein Vermessen, das Feststellen von Defekten und einen störungsfreien Gießbeginn zu ermöglichen, ist vorgesehen, dass der Gießspalt vor Gießbeginn gemäß einem idealen Verlauf der Strangdicke über ein Wegmesssystem einge- stellt wird. Nach dem Gießbeginn wird ein kontinuierlich und sprungstellenfrei verlaufender Gießspalt unter Betriebsbelastung eingestellt. Spezielle Maßnahmen zur Einrichtung der einzelnen Segmente der Gießanlage sind bei dieser Lösung nicht offenbart.
Eine Abstandmessung einzelner Rollen einer Stranggießanlage entlang des Gießbogenabschnitts zur Prüfung der Ausrichtung der Rollen offenbart die JP 55070706 A.
Die US 3,831 ,661 sieht bei der Ausrichtung einer Anzahl Segmente einer Stranggießvorrichtung vor, dass die einzelnen Segmente mit Referenzmarken ausgestattet sind, an die eine Lehre angesetzt werden kann, um die Relativposition benachbarter Segmente prüfen zu können.
Weitere Lösungen, die sich mit der Ausrichtung zweier Maschinenteile, insbe- sondere Rollen, relativ zueinander beschäftigen, sind aus der EP 0 075 550 B1 , aus der EP 222 732 B1 , aus der EP 0 868 649 B1 , aus der FR 2 447 764 A, aus der CH 583 598 und aus der DE-AS 27 20 116 bekannt.
Es lässt sich also sagen, dass die Nachteile bestehender Verfahren und zuge- höriger Vorrichtungen zum Ausrichten bzw. Einrichten der einzelnen Walz- oder Rollenelemente von Walz- oder Gießvorrichtungen darin liegen, dass die für das Einrichten notwendigen Zeiten sehr lange sind, insbesondere nach Umbauten oder Instandhaltungsarbeiten der Anlagen. Die Verfügbarkeit der Anlagen ist entsprechend gering, was hohe Betriebskosten zur Folge hat. Ferner ist die Genauigkeit, mit der die Ausrichtung der einzelnen Elemente erfolgen kann, teilweise unzureichend, so dass folglich auch die Produktqualität nicht optimal ist. Weiterhin besteht durch eine nicht optimale Ausrichtung der Elemente relativ zueinander eine stark reduzierte Zuverlässigkeit im Prozess und eine erhöhte Fehleranfälligkeit. Die diversen Lösungen im Stand der Technik bringen zwar teilweise verbesserte Resultate, allerdings reichen diese für eine qualitativ hochwertige Fertigung bzw. für ein schnelles und effizientes Einrichten der Walz- oder Rollenelemente nicht aus.
Der Erfindung liegt im Lichte der vorstehend beschriebenen Lösungen für das Ausrichten der Walz- oder Rollenelemente von Walz- oder Gießvorrichtungen die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art so fortzubilden, dass die genannten Nachteile behoben werden. Das Ausrichten bzw. Nachrichten von Segmenten soll also erheblich einfacher und genauer möglich sein. Dadurch soll ein wesentlicher Teil der bislang hierfür erforderlichen Zeit eingespart werden können.
Diese Aufgabe wird durch die Erfindung verfahrensgemäß dadurch gelöst, dass mittels eines Messgeräts der Abstand zwischen mindestens drei an jedem der Walz- oder Rollenelemente direkt oder indirekt angeordneten Referenzpunkten und dem Messgerät gemessen wird und dass in Abhängigkeit des Messergebnisses Verstellelemente an jedem Walz- oder Rollenelement so betätigt werden, dass die Abstände zwischen den Referenzpunkten und dem Messgerät bestmöglich mit vorgegebenen Werten übereinstimmen, wobei die Messpunkte eines jeden Walz- oder Rollenelements direkt oder indirekt an einem Trägerelement des Walz- oder Rollenelements angeordnet sind.
Durch das Vorsehen von mindestens drei Referenzpunkten pro Walz- oder Rollenelement ist es möglich, die räumliche Lage und Ausrichtung eines Walz- o- der Rollenelements in einfacher Weise zu bestimmen und die so ermittelte Lage durch die Betätigung von Verstellelementen derart zu verändern, dass eine optimale Lage jedes einzelnen Segments erreicht wird.
Bevorzugt ist dabei vorgesehen, dass das Verfahren zur präzisen Ausrichtung der Segmente einer Stranggießanlage eingesetzt wird. In diesem Falle wird das Messgerät mit Vorteil etwa im Mittelpunkt des Gießbogenabschnitts der Stranggießanlage angeordnet.
Eine Weiterbildung sieht vor, dass mehr Referenzpunkte mit dem Messgerät vermessen werden, als es für eine eindeutige Positionierung der Walz- oder Rollenelemente erforderlich ist, und dass die Betätigung zumindest eines Teils der Verstellelemente gemäß einer aus allen Messpunkten gebildeten Ausgleichsfunktion erfolgt. Die Ausgleichsfunktion ist bevorzugt eine Regressionsfunktion, die linear oder polynomisch sein kann; es sind natürlich aber auch andere Arten von Regressionsfunktionen möglich, z. B. Exponentialfunktionen. Nach dieser Fortbildung des Erfindungsgedankens wird also eine Regressionsanalyse als statistisches Verfahren zur Analyse der Messdaten eingesetzt. Damit sollen sog. „einseitige" statistische Abhängigkeiten, d. h. statistische Ursache-Wirkung-Beziehungen, durch eine Regressionsfunktion beschrieben werden. Es werden hiermit bei der Positionierung der einzelnen Walz- oder Rollen- elemente „Vertrauensmaße" geschaffen, s. unten.
Die Walz- oder Gießvorrichtung mit einer Anzahl zusammenwirkender Walzoder Rollenelemente zeichnet sich erfindungsgemäß dadurch aus, dass jedes Walz- oder Rollenelement ein Trägerelement aufweist, an dem direkt oder indi- rekt mindestens drei Referenzpunkte angeordnet sind, wobei die Walz- oder Gießvorrichtung weiterhin ein Messgerät aufweist bzw. in die Walz- oder Gießvorrichtung ein Messgerät eingebracht werden kann, das zur Vornahme von Abstands- und/oder Winkelmessungen zwischen sich bzw. einer vorgegebenen Richtung und den Referenzpunkten geeignet ist.
Bevorzugt sind die Walz- oder Rollenelemente die Segmente einer Stranggießanlage. Sie weisen mit Vorteil mindestens zwei Walzen oder Rollen auf.
Das Messgerät ist insbesondere als Lasertracker oder als Tachymeter ausge- bildet. Lasertracker verfügen über ein hochpräzises, kinematisches dreidimensionales Messsystem, das in der Lage ist, eine Abstandsmessung mit hoher Genauigkeit vorzunehmen. Die für den Einsatz vorgesehenen Tachymeter sind als Präzisionsgeräte in der Lage, Distanzen und Lagen präzise zu messen. Elektronische Tachymeter, die hier bevorzugt sind, messen die Richtungen nach einem Ziel- Vorgang selbsttätig, z. B. durch Interferenzmethoden. Die Distanzen werden durch elektronische Distanzmessung ermittelt. Dabei wird entweder die Laufzeit oder die Phasenverschiebung eines ausgesandten und im Zielpunkt reflektierten Laserstrahles gemessen. Das Licht der Trägerwelle des Laserstrahls liegt meist im infraroten Bereich oder im nahen Infrarot des Lichtspektrums. Die Re- flexion des Laserstrahls im Zielpunkt erfolgt entweder direkt an der Oberfläche des anvisierten Objekts oder in einem anvisierten Prisma. Die Messwertermittlung hinsichtlich Richtung und Distanz erfolgt auf elektronischem Wege.
Die Referenzpunkte sind bevorzugt als Kugeln ausgebildet, die direkt oder indi- rekt am Trägerelement angeordnet sind.
An jedem Trägerelement können Verstellelemente angeordnet sein, mit denen das Trägerelement relativ zu seiner Aufnahme positioniert bzw. verschoben werden kann. Die Verstellelemente erlauben bevorzugt eine translatorische Verschiebung des Trägerelements relativ zu seiner Aufnahme. Ferner kann vorgesehen werden, dass die Verstellelemente eine Drehung des Trägerelements relativ zu seiner Aufnahme um mindestens eine Raumachse, vorzugsweise um die Querachse, erlaubt.
Als Verstellelemente kommen insbesondere als solche hinlänglich bekannte Maschinenschuhe zum Einsatz, die mindestens ein (Doppel-)Keilelement aufweisen. Damit kann in einfacher Weise, nämlich durch Anziehen oder Lösen einer Schraube, eine translatorische Verstellbewegung erzeugt werden, die in Abhängigkeit der Anordnung des Maschinenschuhs am Trägerelement eine translatorische und/oder rotatorische Bewegung des Trägerelements relativ zu seiner Aufnahme zur Folge hat. Vorzugsweise soll die Verstellung unter Last also ohne Zuhilfenahme von Kränen oder Manipulatoren erfolgen. Vorzugsweise ist das Verstellelement dabei selbsthemmend ausgeführt.
Mit der vorgeschlagenen Vorgehensweise und Ausstattung ist es möglich, in wesentlich vereinfachter und schnellerer Weise einzelne Walz- oder Rollen- elemente einer Walz- oder Gießvorrichtung zu justieren, so dass sie in einer optimalen Position relativ zueinander zu liegen kommen.
Der Erfindungsvorschlag kommt bevorzugt bei Stranggießanlagen zum Einsatz, er kann jedoch auch für andere hüttentechnische Anlagen eingesetzt werden, wie z. B. für Walzwerke und Bandbehandlungslinien.
Mit dem Erfindungsvorschlag wird es u. a. möglich, eine Selbstreferenzierung mittels einer Ausgleichsrechnung auf der Basis des gewonnenen Messergebnisses vorzunehmen. Damit wird die Zuverlässigkeit der Positionierung der ein- zelnen Walz- oder Rollenelemente relativ zueinander erhöht, und es können „Vertrauensmaße" durch Einbeziehung redundanter Messgrößen geschaffen werden, d. h. es werden beispielsweise vier statt tatsächlich benötigter drei Referenzpunkte je Segment herangezogen. Von Vorteil ist also die Verwendung von mehr Referenzpunkten, als es zur mathematisch eindeutigen (statisch be- stimmten) Festlegung eines Körpers im Raum erforderlich ist. Die vorhandenen Redundanzen reduzieren singuläre Fehler und dienen der Schaffung der genannten „Vertrauensmaße", z. B. durch Auswertung der Standardabweichung.
Zum Soll-Ist-Abgleich der einzelnen Walz- oder Rollenelemente wird also der „ideale" Rollenplan insoweit ersetzt durch eine Kurve, die durch Ausgleichsrechnung (Regression) aus den Messdaten selbst hergeleitet wird. Durch Nutzung der Redundanzen wird der nie ganz vermeidbare Messfehler verringert und die Zuverlässigkeit der Messung quantifizierbar gemacht („Vertrauensmaß"). Ein weiterer Aspekt der Erfindung besteht darin, dass die Messaufgabe für ein Segment in zwei Teilschritten erfolgen kann. Zum einen erfolgt die Vermessung der Rollenbahn im Segment und eine Transferierung auf einen externen Referenzpunkt vorab in der Werkstatt. Zum anderen erfolgt eine Begrenzung der Anlagenvermessung auf die Einmessung der Referenzpunkte und die Rekon- struktion der Passlinie über die Transferinformationen. Der Gesamtaufwand wird durch die Transferierung zwar geringfügig größer, während der Werkstattarbeiten kann die Stranggießanlage jedoch weiterproduzieren. Die Oberrahmen der Segmente müssen zur Anlagevermessung nicht abgenommen werden.
Es besteht weiterhin die Möglichkeit des Verzichts auf den Bezug zu festen, im Fundament der Anlage verankerten Referenzpunkten durch die Bildung eines „virtuellen" Bezugskoordinatensystems mittels einer Ausgleichsrechnung aus der Messung selbst. Das erspart aufwendige Transformationen des Anlagen- Koordinatenursprungs in eine arbeitsgerechte Position auf der Gießbühne.
In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
Fig. 1 schematisch eine Stranggießanlage in der Seitenansicht mit der Dar- Stellung einiger der Komponenten der Anlage,
Fig. 2 einen vergrößerten Ausschnitt aus Fig. 1 mit drei Rollenelementen und
Fig. 3 einen vergrößerten Ausschnitt aus Fig. 2 mit einem einzelnen Rollenelement.
In Fig. 1 ist eine Gießanlage 1 in Form einer Stranggießanlage skizziert. Flüssiges metallisches Material tritt vertikal nach unten aus einer Kokille 21 aus und wird einlang eines Gießbogenabschnitts 14 allmählich von der Vertikalen in die Horizontale umgeleitet. Der Gießbogenabschnitt 14 wird durch eine Anzahl RoI- lenelemente 2, 3, 4 gebildet, die so relativ zueinander ausgerichtet sind, dass sie den Gießbogenabschnitt 14 bilden. Es sei angemerkt, dass eigentlich nur die Segmentunterrahmen dargestellt sind, was allerdings insofern in Ordnung ist, als dass die Maßbezugslinie stets die „Hinterkante Strang" ist. Besonders vorteilhaft ist es bei den nachfolgend beschriebenen Konzept, dass die Ver- messung der Anlage auch mit montierten Oberrahmen erfolgen kann.
Der Gießbogenabschnitt 14 weist einen Mittelpunkt M auf, d. h. der gegossene Metallstrang verläuft viertelkreisförmig um den Mittelpunkt M herum aus der Vertikalen in die Horizontale.
Im Bereich des Mittelpunkts, nicht notwendigerweise exakt im Mittelpunkt, ist ein Messgerät 5 in Form eines Lasertrackers angeordnet.
Wie in Fig. 2 zu sehen ist, weist jedes Rollenelement 2, 3, 4 mindestens drei, im Ausführungsbeispiel vier, Referenzpunkte 6, 7, 8 und 9 auf, die als Messkugeln ausgebildet sind, die an einem Trägerelement 13 angeordnet sind, d. h. an dem Grundgerüst des jeweiligen Rollenelements 2, 3, 4. Der Einfachheit halber ist hier von einer Messkugel gesprochen, wenngleich genauer und eigentlich besser gesagt ein Messkugelhalter gemeint ist, in den temporär und nur während des eigentlichen Mess- und Ausrichtvorganges eine Messkugel eingesetzt werden kann. Es sei auch hinsichtlich der in Fig. 2 zu sehenden Elemente 2, 3, 4 wieder angemerkt, dass wieder die Segmentunterrahmen zu sehen sind.
Die Anordnung der Messkugeln über einen Messkugelhalter ist auch unter dem Aspekt beachtlich, dass damit in einfacher Weise gegebenenfalls auf Rollenverschleiß und andere Geometrieänderungen der Anlage bzw. deren Komponenten gezielt reagiert werden kann. Die Messkugelhalter können nämlich so ausgeführt werden, dass sie durch Nachstellelemente die genannten Effekte ausgleichen können. Wie am besten in Fig. 3 zu erkennen ist, sind in jedem Trägerelement 13 mehrere Rollen oder Walzen 15, 16, 17, 18 drehbar gelagert. Das Trägerelement 13 und damit das gesamte Rollenelement 2 ist auf einer Aufnahme 19 befestigt.
Der Lasertracker 5 hat - aufgrund seiner günstigen Anordnung im Bereich des Mittelpunktes M - „Sichtkontakt" zu den einzelnen Referenzpunkten 6, 7, 8, 9 eines jeden Rollenelements 2, 3, 4. Wie oben erläutert, ist der Lasertracker in der Lage, die genauen Abstände a6, a7> a8 und a9 zu den Referenzpunkten 6, 7, 8 und 9 und gegebenenfalls die Winkel α6, α7, α8 und α9 (s. Fig. 3) zu messen. Dies kann mit einer Genauigkeit von wenigen Zehntel Millimeter erfolgen.
Zu den Referenzpunkten 7 und 8 sei angemerkt, dass diese sich im Gegensatz zur zeichnerischen Darstellung in Fig. 2 bevorzugt außen am Unterrahmen eines Elements 2, 3, 4 befinden, und zwar vorzugsweise in der gleichen Ebene wie die Punkte 6 und 9, jedoch in Gießrichtung auf der anderen Seite.
Das Trägerelement 13 ist über nur sehr schematisch skizzierte und als Maschinenschuhe ausgebildete Verstellelemente 10, 11 und 12 auf der Aufnahme 19 angeordnet. Die Verstellung der Verstellelemente 10, 11 , 12 hat zur Folge, dass das Trägerelement 13 und damit das gesamte Rollenelement 2 relativ zur orts- festen Aufnahme 19 sowohl in translatorische Richtung als auch rotatorisch bewegt werden kann. In Fig. 3 sind von den jeweils drei möglichen Translationsrichtungen bzw. Drehrichtungen im Raum nur jeweils zwei eingetragen, nämlich die Raumrichtungen x und y sowie die Raumachsen α und ß. Die entsprechende Betätigung der einzelnen Verstellelemente - es können sehr viel mehr als die skizzierten drei vorhanden sein - führt zur präzisen Positionierung des Trägerelements 13 relativ zur Aufnahme in allen Raumrichtungen und Raumachsen.
Es sei angemerkt, dass in Fig. 3 lediglich schematisch die Verstellmöglichkeiten in die einzelnen Raumrichtungen und um die einzelnen Raumachsen dargestellt sind, wenngleich den verschiedenen Achsen und Richtungen unterschiedlich große Bedeutung zukommt. Namentlich ist die Verstellung mittels des Verstellelements 10 von untergeordneter Bedeutung, da hierdurch kein maßgeblicher Einfluss auf den Stranggießprozess ausgeübt wird. Die Verstellelemente 11 und 12 müssen einen auf der - in Gießrichtung gesehen - gegenüberliegenden Sei- te liegenden Partner haben, um den Winkel ß einstellbar zu machen.
In Fig. 3 ist schematisch die Lage des Trägerelements 13 vor der präzisen Ausrichtung mit gestrichelten Linien und die Lage nach der Ausrichtung mit ausgezogenen Linien dargestellt. Zur Justage des Trägerelements 13 werden mittels des Lasertrackers 5 die Abstände a6, a7) a8 und a9 sowie die zugehörigen Winkel α,6, α7, αβ und αg gemessen, d. h. die Abstände und Winkel zwischen dem Messgerät 5 und den Referenzpunkten 6, 7, 8 und 9 in Form von Messkugeln.
Der Abstand zwischen dem Messgerät 5 und dem Referenzpunkt 7 vor der Jus- tage ist in Fig. 3 - stellvertretend für die anderen Referenzpunkte - mit a7' angegeben. Das Messgerät 5 steht mit nicht dargestellten Rechenmitteln in Verbindung. Anhand des Anlagenplans sind im Rechenmittel die Soll-Positionen der Rollen 15, 16, 17 und 18 und damit des Trägerelements 13 hinterlegt. Da die Lage der Referenzpunkte 6, 7, 8 und 9 am Trägerelement 13 bekannt ist, ergeben sich sofort die Soll-Lagen und Soll-Abstände zwischen den Referenzpunkten 6, 7, 8, 9 und dem Messgerät 5. Hierzu muss vorher, z. B. in der Segmentwerkstatt, die Lage der Rollen auf die externen Referenzpunkte transferiert und abgespeichert worden sein.
Wesentlich ist dabei, dass aufgrund der Wahl mindestens dreier Referenzpunkte die Lage des Rollenelements 2 im Raum bestimmbar ist. Es ist nach Durchführung der Abstandsmessung zwischen Messgerät 5 und Referenzpunkten 6, 7, 8, 9 aufgrund der gegebenen Geometrie des Rollenelements 2 in einfacher Weise möglich, Verstellbeträge für die Verstellelemente 10, 11 und 12 zu be- rechnen, was automatisch in den Rechenmitteln erfolgen kann. Durch entspre- chendes Betätigen der Verstellelemente 10, 11 , 12 kann in einfacher Weise, sehr präzise und vor allem sehr schnell die Justage eines Rollenelements 2 erfolgen.
Es ist noch anzumerken, dass in Fig. 3 wegen einer besseren Übersichtlichkeit das „ebene Problem" dargestellt ist. Tatsächlich kann mit den mindestens drei Referenzpunkten die translatorische und rotatorische Lage des Trägerelements 13 und damit des Rollenelements 2 im Raum bestimmt werden. Durch das Vorsehen entsprechend vieler Verstellelemente 10, 11 , 12 kann das Rollenelement im Raum ausgerichtet werden.
Man kann den Erfindungsvorschlag nochmals im wesentlichen wie folgt umschreiben: Die Messung der Strangführungsgeometrie erfolgt mittels eines Messgeräts 5 bevorzugt in Form eines Lasertrackers oder Präzisionstachyme- ter. Bei deren Einsatz kommen „Targets" in Form von Messkugeln zum Einsatz, so dass dreidimensional die Lage des Trägerelements 13 ermittelt werden kann (jede einzelne Messung liefert unmittelbar ein räumliches Koordinatentripel. Die Verarbeitung der Messdaten erfolgt online oder offline in einem Rechner.
Zur Erfassung der Positionen der einzelnen Segmente wird nicht die Position der Rollenbahn vermessen, sondern es werden die am feststehenden Teil des Trägerelements (Rahmens) angebrachten Referenzpunkte betrachtet. Die Lage der Referenzpunkte relativ zu den für den Prozess maßgeblichen Rollenbahnen wird vorab, z. B. in der Werkstatt, in einer sog. Transfermessung erfasst. Dabei ist keine Verwendung spezieller Ausrichtstände erforderlich, jedoch möglich.
Nach der Transfermessung kann für jeden Referenzpunkt ein Sollwert mit Bezug auf das Maßbezugssystem der Anlage (Rollenplan, Passlinie) bestimmt werden.
Das Ergebnis der Anlagenvermessung kann zur Auswertung mit dieser Sollto- pologie (Rollenplan, Passlinie) verglichen werden und die Abweichungen von- einander können in Nachrichtbeträge zur Lagekorrektur der Segmente umgerechnet werden.
Bevorzugt ist es dabei möglich, das Messergebnis durch Regression auf eine Mittelwertkurve der Messdaten zu beziehen und die Korrektur auf die Abwei- chungen von dieser korrelierten Kurve (Ausgleichskurve) zu beziehen. Dadurch entsteht eine vom ursprünglichen Plan geringfügig abweichende neue Sollgeometrie der Anlage. Maßstab für die Beurteilung dieser geänderten Sollgeometrie ist die Minimierung der Formänderungsarbeit an der Strangschale. Damit kann der Nachrichtaufwand ohne Nachteil für die Strangschalenbeanspruchung weiter reduziert werden. Insbesondere ist kein Bezug auf Referenzpunkte im Umfeld der Anlage erforderlich.
Die Regression aus den (redundanten) Messergebnissen kann nach einer linearen oder polynomischen Verteilungsfunktion erfolgen.
Bei den Messungen kann ein Referenzpunktefeld in der Umgebung der Anlage verwendet werden, um Ortswechsel des Messgeräts während des Messvorgangs zu erleichtern. Der dabei zu erwartende Fehler wird eingeschränkt, indem möglichst viele Punkte (eine Redundanz wirkt fehlerkompensierend) ver- wendet werden, die möglichst ortsfest und unabhängig vom zu vermessenden Objekt sind.
Zur Umrechnung der ausgewerteten Übergangsfehler in Höhenänderungen in den Auflageflächen des Segments kann ein Programm verwendet werden, das die Höhenkorrektur an den Ein- und Ausgangsrollen (nach dem Strahlensatz und gegebenenfalls unter Berücksichtigung elastischer Formänderungen) auf die Auflagepunkte umrechnet.
Zur Lagekorrektur der Segmente kommen vorzugsweise unter Last verstellbare und als solche bekannte Maschinenschuhe zum Einsatz. Damit können schnell und ohne Einsatz von Kränen oder Manipulatoren Lagekorrekturen an den Seg- mentauflagen entsprechend den festgestellten Fehlern bzw. Abweichungen vorgenommen werden.
Wie erläutert, sollte die Messung von einem Standort aus erfolgen, der einen möglichst guten „Einblick" in möglichst viele Segmente der Anlage gleichzeitig ermöglicht. Das ist in der Regel der Mittelpunkt des Gießbogenabschnitts. Bei eventuell erforderlichen Ortswechseln kann das unabhängige Referenzpunktesystem zur Synchronisation des Koordinatensystems aufeinander verwendet werden.
Bevorzugt sind mehr Referenzpunkte 6, 7, 8, 9 vorgesehen, als es für die eindeutige Definition der räumlichen Position eines Trägerelements 13 erforderlich ist; drei Punkte reichen an sich aus, um eine Ebene zu definieren. Diese Überbestimmung dient zum einen dafür, einen statistisch nie ganz auszuschließenden Messfehler durch redundante Kompensation zu verringern. Andererseits ist es damit möglich, durch Auswertung der Restklaffungen ein „Vertrauensmaß" für die Messung zu gewinnen.
Wie im Stand der Technik als solches bekannt, kann bei der erfindungsgemäßen Ausgestaltung auch vorgesehen werden, dass Segmentübergangsschab- Ionen eingesetzt werden, um gegebenenfalls das Ausrichtergebnis der einzelnen Walz- oder Rollenelementen überprüfen zu können.
Der erfindungsgemäße Vorschlag teilt also die gesamte Messaufgabe auf in eine Transfermessung einerseits, die in der Werkstatt bei der Herstellung der Walz- oder Rollenelemente erfolgen kann, und eine Anlagenvermessung mit der Rekonstruktion der Passlinie aus der Transfermessung andererseits, was vor Ort an der Stranggießanlage erfolgt. Daraus resultiert die erhebliche Reduzierung des Einstellaufwandes der Walz- oder Rollenelemente und damit der Betriebsausfallzeit, die den wirtschaftlichen Vorteil des Erfindungskonzepts ausmachen. Bezuqszeichenliste:
1 Walz- oder Gießvorrichtung
2 Walz- oder Rollenelement
3 Walz- oder Rollenelement
4 Walz- oder Rollenelement
5 Messgerät
6 Referenzpunkt
7 Referenzpunkt
8 Referenzpunkt
9 Referenzpunkt
10 Verstellelement
11 Verstellelement
12 Verstellelement
13 Trägerelement
14 Gießbogenabschnitt
15 Walze/Rolle
16 Walze/Rolle
17 Walze/Rolle
18 Walze/Rolle
19 Aufnahme
21 Kokille
a6 Abstand a7 Abstand a8 Abstand a9 Abstand α6 Winkel α7 Winkel αβ Winkel α9 Winkel
M Mittelpunkt des Gießbogenabschnitts
X Raumrichtung y Raumrichtung α Raumachse ß Raumachse

Claims

Patentansprüche:
1. Verfahren zum präzisen Positionieren einer Anzahl zusammenwirkender Walz- oder Rollenelemente (2, 3, 4) einer Walz- oder Gießvorrichtung (1 ) relativ zueinander, dadurch gekennzeichnet, dass mittels eines Messgeräts (5) der Abstand (a6, a7, a8, ag) zwischen mindestens drei direkt oder indirekt an jedem der Walz- oder Rollenelemente (2, 3, 4) angeordneten Referenzpunkten (6, 7, 8, 9) und dem Messgerät (5) gemessen wird und dass in Abhängigkeit des Messergebnisses Verstellelemente (10, 11 , 12) an jedem Walz- oder Rollenelement (2, 3, 4) so betätigt werden, dass die Abstände (a6, a7, a8, a9) zwischen den Referenzpunkten (6, 7, 8, 9) und dem Messgerät (5) bestmöglich mit vorgegebenen Werten übereinstimmen, wobei die Messpunkte (6, 7, 8, 9) eines jeden Walz- oder Rollenelements (2, 3, 4) direkt oder indirekt an einem Trägerelement (13) des Walz- oder Rollenelements (2, 3, 4) angeordnet sind.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es zur präzisen Ausrichtung der Segmente (2, 3, 4) einer Strang- gießanlage eingesetzt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Messgerät (5) im Wesentlichen etwa im Mittelpunkt (M) des
Gießbogenabschnitts (14) der Stranggießanlage angeordnet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mehr Referenzpunkte (6, 7, 8, 9) mit dem Messgerät (5) vermessen werden, als es für eine eindeutige Positionierung der Walz- oder Rollenelemente (2, 3, 4) erforderlich ist, und dass die Betätigung zumindest eines TeIs der Verstellelemente (10, 11 , 12) gemäß einer aus allen Messpunkten gebildeten Ausgleichsfunktion erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Ausgleichsfunktion eine Regressionsfunktion ist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Regressionsfunktion linear ist.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Regressionsfunktion quadratisch ist.
8. Walz- oder Gießvorrichtung (1 ) mit einer Anzahl zusammenwirkender Walz- oder Rollenelemente (2, 3, 4), insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass jedes Walz- oder Rollenelement (2, 3, 4) ein Trägerelement (13) aufweist, an dem direkt oder indirekt mindestens drei Referenzpunkte (6, 7, 8, 9) angeordnet sind, wobei in die Walz- oder Gießvorrichtung (1 ) weiterhin ein Messgerät (5) einbringbar ist, das zur Vornahme von Abstands- und/oder Winkelmessungen (a6, a7, a8, a9; α6, α7, α8, α9) zwischen sich bzw. einer vorgegebenen Richtung und den Referenzpunkten (6, 7, 8, 9) geeignet ist.
9. Walz- oder Gießvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Walz- oder Rollenelemente (2, 3, 4) Segmente einer Stranggieß- anläge sind.
10. Walz- oder Gießvorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass jedes Walz- oder Rollenelement (2, 3, 4) mindestens zwei Walzen oder Rollen (15, 16, 17, 18) aufweist.
11. Walz- oder Gießvorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Messgerät (5) als Lasertracker ausgebildet ist.
12. Walz- oder Gießvorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Messgerät (5) als Tachymeter ausgebildet ist.
13. Walz- oder Gießvorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Referenzpunkte (6, 7, 8, 9) als Messkugeln ausgebildet sind, die direkt oder indirekt am Trägerelement (13) angeordnet sind.
14. Walz- oder Gießvorrichtung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass an jedem Trägerelement (13) Verstellelemente (10, 11 , 12) angeordnet sind, mit denen das Trägerelement (13) relativ zu seiner Aufnahme (19) positioniert werden kann.
15. Walz- oder Gießvorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Verstellelemente (10, 11 , 12) eine translatorische Verschiebung des Trägerelements (13) relativ zu seiner Aufnahme (19) in mindestens einer, vorzugsweise radialen, Raumrichtung (x, y) erlauben.
16. Walz- oder Gießvorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die Verstellelemente (10, 11 , 12) eine Drehung des Trägerelements
(13) relativ zu seiner Aufnahme (19) um mindestens eine Raumachse (α, ß), vorzugsweise um die Querachse, erlauben.
17. Walz- oder Gießvorrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Verstellelemente (10, 11 , 12) Maschinenschuhe sind, die mindestens ein Keilelement aufweisen.
EP06776173A 2005-08-06 2006-07-11 Verfahren und vorrichtung zum präzisen positionieren einer anzahl zusammenwirkender walz- oder rollenelemente Active EP1768798B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005037138A DE102005037138A1 (de) 2005-08-06 2005-08-06 Verfahren und Vorrichtung zum präzisen Positionieren einer Anzahl zusammenwirkender Walz- oder Rollenelemente
PCT/EP2006/006741 WO2007017030A1 (de) 2005-08-06 2006-07-11 Verfahren und vorrichtung zum präzisen positionieren einer anzahl zusammenwirkender walz-oder rollenelemente

Publications (2)

Publication Number Publication Date
EP1768798A1 true EP1768798A1 (de) 2007-04-04
EP1768798B1 EP1768798B1 (de) 2010-03-31

Family

ID=37054237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06776173A Active EP1768798B1 (de) 2005-08-06 2006-07-11 Verfahren und vorrichtung zum präzisen positionieren einer anzahl zusammenwirkender walz- oder rollenelemente

Country Status (14)

Country Link
US (1) US7537045B2 (de)
EP (1) EP1768798B1 (de)
JP (1) JP4518430B2 (de)
KR (1) KR100864610B1 (de)
CN (1) CN100540182C (de)
AT (1) ATE462513T1 (de)
CA (1) CA2577765C (de)
DE (2) DE102005037138A1 (de)
ES (1) ES2342108T3 (de)
RU (1) RU2354472C2 (de)
TW (1) TWI344876B (de)
UA (1) UA89203C2 (de)
WO (1) WO2007017030A1 (de)
ZA (1) ZA200701373B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2655398C2 (ru) * 2016-08-26 2018-05-28 Антон Владимирович Шмаков Способ производства проката

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910473B1 (ko) * 2007-11-13 2009-08-04 주식회사 포스코 롤 정렬 장치
KR101053973B1 (ko) * 2008-12-30 2011-08-04 주식회사 포스코 세그먼트 거더의 정렬편차 측정장치 및 정렬불량 보정방법
DE102009060638A1 (de) 2009-03-13 2010-09-16 Sms Siemag Aktiengesellschaft Werkstatteinrichtung eines Hütten- oder Walzwerks
CN101736373B (zh) * 2009-12-04 2011-04-06 北京中冶设备研究设计总院有限公司 水平式电镀槽导电辊精确定位方法
DE102010032917A1 (de) * 2010-07-30 2012-04-19 Brötje-Automation GmbH Verfahren zur Offline-Programmierung eines NC-gesteuerten Manipulators
DE102014205900A1 (de) * 2014-03-28 2015-10-01 Sms Group Gmbh Verfahren zum Anstellen einer Richtwalze einer Richtwalzanlage
EP2944398B1 (de) * 2014-04-18 2019-01-30 DANIELI & C. OFFICINE MECCANICHE S.p.A. Vorrichtung und verfahren zum ausrichten von rollen von strangführungssegmenten
CN108927500B (zh) * 2017-05-27 2020-03-06 宝山钢铁股份有限公司 用于连铸机的结晶器与弯曲段之间的对弧装置及对弧方法
DE102018218910A1 (de) 2018-05-14 2019-11-14 Sms Group Gmbh Ermittlung einer Ausrichtung von wenigstens einem Objekt und Verfahren zum relativen Ausrichten von Rollen
CN113059133B (zh) * 2021-03-19 2022-07-05 中国二十二冶集团有限公司 连铸机香蕉梁安装精度的控制方法
CN114160767B (zh) * 2021-11-19 2023-08-22 上海二十冶建设有限公司 一种采用遍历法确认连铸设备的安装基准线的布置方法
CN115090842B (zh) * 2022-06-06 2024-06-07 首钢京唐钢铁联合有限责任公司 一种连铸机基座定位方法及相关设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598890A5 (de) 1976-05-07 1978-05-12 Concast Ag
JPS6046643B2 (ja) 1978-10-17 1985-10-17 住友金属工業株式会社 連続鋳造機のロ−ルアライメント計測方法及びその実施に使用する測定器
JPS58159954A (ja) * 1982-03-18 1983-09-22 Hitachi Zosen Corp 連続鋳造設備におけるロ−ルセグメントの取付位置調整方法
JPS6295412A (ja) * 1985-10-22 1987-05-01 Oyo Chishitsu Kk クラックゲ−ジ
JP3135043B2 (ja) * 1996-02-19 2001-02-13 住友重機械工業株式会社 連続鋳造機のロールアライメント調整装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007017030A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2655398C2 (ru) * 2016-08-26 2018-05-28 Антон Владимирович Шмаков Способ производства проката

Also Published As

Publication number Publication date
CN100540182C (zh) 2009-09-16
JP2008519276A (ja) 2008-06-05
US20080006386A1 (en) 2008-01-10
WO2007017030A1 (de) 2007-02-15
KR100864610B1 (ko) 2008-10-22
ES2342108T3 (es) 2010-07-01
RU2007110487A (ru) 2008-09-27
RU2354472C2 (ru) 2009-05-10
TW200722199A (en) 2007-06-16
EP1768798B1 (de) 2010-03-31
DE102005037138A1 (de) 2007-02-08
KR20070057162A (ko) 2007-06-04
US7537045B2 (en) 2009-05-26
CA2577765A1 (en) 2007-02-15
ATE462513T1 (de) 2010-04-15
CN101018629A (zh) 2007-08-15
DE502006006560D1 (de) 2010-05-12
TWI344876B (en) 2011-07-11
CA2577765C (en) 2012-04-17
UA89203C2 (ru) 2010-01-11
ZA200701373B (en) 2008-04-30
JP4518430B2 (ja) 2010-08-04

Similar Documents

Publication Publication Date Title
EP1768798B1 (de) Verfahren und vorrichtung zum präzisen positionieren einer anzahl zusammenwirkender walz- oder rollenelemente
EP2640565B1 (de) Verfahren und fertigungseinheit zur herstellung von faserverbundmaterial-bauteilen
WO2010054642A1 (de) Verfahren und laserbearbeitungsmaschine mit mitteln zum ermitteln einer dejustage einer pulverzufuhrdüse der laserbearbeitungsmaschine
WO2003095125A2 (de) Fertigungseinrichtung, insbesondere biegepresse, und verfahren zum betrieb der fertigungseinrichtung
DE602004010293T2 (de) Verfahren zur erhöhung der steuergenauigkeit des weges eines produkts in einer richtmaschine mit ineinandergreifenden walzen und zur durchführung desselben verwendete richtanlage
DE102006002093A1 (de) Vorrichtung zur Erfassung von Konturabweichungen eines flexiblen Bauteils unter Berücksichtigung des Bauteileigengewichts sowie Verfahren
EP2933600B1 (de) Verfahren zum ermitteln der ausrichtung einer ersten riemenscheibe eines riemenantriebs in bezug auf eine zweite riemenscheibe des riemenantriebs
EP2361758B1 (de) Verfahren zur Pressparameteranpassung einer Keramik- oder Metallpulverpresse und Keramik-oder Metallpulverpresse zum Durchführen des Verfahrens
AT508857B1 (de) Verfahren zur bestimmung der dicke eines werkstückes mit einer biegemaschine
EP0399296A2 (de) Automatisches Einrichten eines Universalwalzgerüstes nach dessen Umbau auf neue Profilformate
DE2705200C2 (de) Einrichtung zum selbsttätigen Ausrichten eines auf einer Plattform gespannten Werkstückes
DE102010006504B4 (de) Verfahren zur Bestimmung der Position eines Werkzeuges
EP0908698B1 (de) Verfahren zum Messen von Langprodukten
DE102018218910A1 (de) Ermittlung einer Ausrichtung von wenigstens einem Objekt und Verfahren zum relativen Ausrichten von Rollen
EP3253507B1 (de) Biegevorrichtung mit messeinrichtung
DE19711500C2 (de) Meßsystem zur automatischen Feststellung und Korrektur von Positionsabweichungen von Bauteilen von Maschinen und/oder Geräten
WO2017178224A1 (de) Positionsmessanordnung und verfahren zum betrieb einer positionsmessanordnung
EP4082764B1 (de) Verfahren und vorrichtung zur prüfung eines spänekuchens
EP3784423B1 (de) Schrägwalzwerk mit hydraulischer walzenanstellung
DE102023106655B3 (de) Verfahren zur automatisierten Fertigung von konstruktiv mit Steifen, insbesondere Vollsteifen zu versehenden Walzprofilen
EP1454685B1 (de) Verfahren zum Umformen eines Werkstücks
EP3515615B1 (de) Walzenbearbeitung im laufenden prozess
EP1448321A1 (de) Schräglagenregelung
DE102006000945A1 (de) Verfahren zum Positionieren einer Anzahl zusammenwirkender Walz- oder Rollenelemente und Stranggießanlage
EP4134182A1 (de) Rollprofilierverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080401

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOENSTERS, FRANK

Inventor name: ZENZ, ULRICH

Inventor name: VON WYL, HORST

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS SIEMAG AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006006560

Country of ref document: DE

Date of ref document: 20100512

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2342108

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

BERE Be: lapsed

Owner name: SMS SIEMAG AG

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20110104

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101001

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006006560

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006006560

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200727

Year of fee payment: 15

Ref country code: ES

Payment date: 20200922

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210711

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210712

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 18

Ref country code: AT

Payment date: 20230720

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 18