EP1763630B1 - Brennstoff-einspritzventil - Google Patents

Brennstoff-einspritzventil Download PDF

Info

Publication number
EP1763630B1
EP1763630B1 EP05755639A EP05755639A EP1763630B1 EP 1763630 B1 EP1763630 B1 EP 1763630B1 EP 05755639 A EP05755639 A EP 05755639A EP 05755639 A EP05755639 A EP 05755639A EP 1763630 B1 EP1763630 B1 EP 1763630B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
arrangement
injection valve
yoke
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05755639A
Other languages
English (en)
French (fr)
Other versions
EP1763630A1 (de
Inventor
Andreas GRÜNDL
Bernhard Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compact Dynamics GmbH
Original Assignee
Compact Dynamics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compact Dynamics GmbH filed Critical Compact Dynamics GmbH
Publication of EP1763630A1 publication Critical patent/EP1763630A1/de
Application granted granted Critical
Publication of EP1763630B1 publication Critical patent/EP1763630B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • F02M51/0617Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets
    • F02M51/0621Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets acting on one mobile armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1676Means for avoiding or reducing eddy currents in the magnetic circuit, e.g. radial slots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions

Definitions

  • the invention relates to a fuel injection valve for fuel injection systems of internal combustion engines, in particular for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • a fuel injection valve for fuel injection systems of internal combustion engines in particular for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • the fuel injector of the present invention has a fuel inlet adapted to allow fuel to flow into the fuel injector and an electrically controllable actuator cooperating with a valve assembly to direct fuel in a directly or indirectly controlled manner through a fuel outlet to flow into the combustion chamber.
  • the electromagnetic actuator to be energized solenoid coil assembly, cooperating with this substantially soft magnetic magnetic yoke assembly, and cooperating with this substantially soft magnetic magnetic armature arrangement.
  • a fuel injection valve of the above type is known in a variety of designs from several manufacturers (Robert Bosch, Siemens VDO Automotive).
  • these known arrangements have the disadvantage that the number of strokes per working cycle of the internal combustion engine is very limited. In particular, it is so it is not possible to provide the required number of high-speed internal combustion engines required for efficient engine management multiple injections per stroke.
  • the precise variation of the stroke of the valve needle is only very limited possible in these arrangements.
  • the conventional electromagnetic actuators have proven to be a limiting factor for the further development of efficient fuel injectors.
  • an electromagnetic injection valve for controlling an amount of fuel to be fed into an internal combustion engine with an actuatable by an electromagnetic coil system valve body, wherein the valve body cooperates with a magnet armature of the electromagnetic coil system.
  • the electromagnetic coil system has at least two symmetrical to the central longitudinal axis and concentrically arranged coils with identical characteristics that are integrated into a magnetic circuit such that between two adjacent coils each have a first pole body is disposed, and the inner and outer Coil is adjacent to a second polar body. These polar bodies are arranged on the same side of the magnet armature.
  • the pole bodies are dimensioned such that a radial sectional area of a middle first pole body corresponds to the sum of the sectional areas of the adjacent second pole bodies.
  • the function depends significantly on the symmetry of the spatial design of the electromagnetic coil system.
  • the time delay of the electrical and the magnetic Field construction depends primarily on the geometry of the magnetic circuit and in particular on the field diffusion and the eddy currents occurring.
  • a solenoid-operated fuel injection valve in which an opening area of a fuel passage, which is defined as a space between an inner surface of a container into which fuel is introduced and an outer surface of a needle member disposed in the container, is changed.
  • the needle element is displaced in the longitudinal direction by tightening or magnetic forces generated by an electromagnetic device.
  • the electromagnetic device is provided with a first and a second magnetic circuit, by which the tightening or magnetic forces are independently controllable.
  • Patent Abstracts of Japan vol. 199 no. 3, 31 March 1999 such as JP 10 335139 A (Denso Corp) relates to a fuel injector having a fuel inlet, an electrically actuatable actuator cooperating with a valve assembly, a magnet coil assembly to be energized, a soft magnet magnetic yoke assembly cooperating therewith, and a soft magnetic magnet cooperating therewith Anchor arrangement comprises.
  • the magnet yoke assembly is formed of three yoke discs. Each yoke disc has at least one of its end faces a pole web, which acts together with the solenoid coil assembly on the magnet armature assembly.
  • US 2004/118952 A1 (Nussio Randy ) relates to a yoke disc with a pole piece in an actuator of a fuel injection valve.
  • the yoke disc has several partial yokes.
  • the No. 6,065,684 A (Varble et al ) relates to a fuel injector having a housing defining a fuel flow passage having an inlet (20) and an outlet, means for communicating the inlet with a fuel supply source at a controlled increased fuel pressure.
  • An injector serves to selectively close and open the outlet for injecting the fuel through the outlet into a combustion chamber of an engine, the fuel pressure causing the valve to be urged in an opening direction.
  • a return means urges the valve in a closing direction with a force that slightly exceeds the force exerted by the fuel pressure on the valve.
  • An armature is connected to the valve and movable with it.
  • First and second electromagnets are closely spaced at opposite sides of the armature, and when energized, magnetically pull the armature toward the respective electromagnet.
  • first solenoid When the first solenoid is energized, it generates a force sufficient to attract the armature and open the valve against the excess closing force of the return means.
  • second solenoid When the second solenoid is energized, it generates a force sufficient to quickly close the valve with the assistance of the return means against the force of the fuel pressure when the first solenoid is de-energized.
  • the aim of the present invention is to provide fuel injection valves which can help to reduce the fuel consumption of internal combustion engines so as to increase the thermodynamic efficiency of the internal combustion engine.
  • the invention solves this problem in a valve assembly of the type mentioned above by the features specified in claim 1.
  • the inventive design of the components of the electromagnetic actuator can be achieved by the inventive design of the components of the electromagnetic actuator that the fuel injection valve Not only the opening / closing forces required for petrol engines, but even the opening / closing forces required for diesel direct injection with considerably more strokes per stroke (about twice as many as a piezo linear actuator Today's design) can provide with an electromagnetic actuator. Furthermore, the overall arrangement builds at a small diameter outside diameter very compact at quickly provided high ⁇ fFnungs- / closing forces. The inventive design also allows a very efficient mass production with tight tolerances and low reject rate.
  • the valve assembly according to the invention allows the realization of opening / closing cycles with about 40 - 50 microseconds and less. This enables multiple injection processes for efficient engine management both for gasoline engines and for diesel engines. Moreover, it is also possible to increase the fuel throughput through the fuel injection valve in that with the valve arrangement according to the invention the stroke of the valve member with comparable stroke time can be about 3 to 6 times greater than in a piezo-linear actuator of today's design. In addition, the arrangement of the invention allows a very precise control of the course of the stroke over time.
  • each partial yoke cooperates with at least one spacer which at least co-determines a dimension of a cavity between two yoke discs.
  • the spacer or spacers can either be arranged in the region of the outer lateral surface of the yoke disc or be supported between the end faces of two yoke discs.
  • the spacers are either (laser) welded or glued to the partial yokes or the yoke discs.
  • the spacers may also be made in one piece with the partial yokes or the yoke discs at least at one end.
  • electrical connecting pieces for the solenoid coil arrangement can be arranged or extend in the region of the outer circumferential surface of the yoke disc.
  • the individual windings of the solenoid coil assembly can be energized in a simple manner.
  • the same side of the magnet armature assemblies facing solenoid coil assemblies for in-phase electrical drive in series or parallel connection are connected.
  • Under Holding spring is understood here to be a spring with a high spring constant, which is able to hold the valve arrangement against the operating pressures (of the supplied fuel or in the combustion chamber) in one position. This is to be distinguished from a spring which is able to ensure that the valve member remains in a closed position, so that no fuel flows through the valve arrangement into the combustion chamber when the valve assembly is de-energized and there are no operating pressures.
  • the invention makes it possible to open the valve assembly both electrically actuated, and to close electrically actuated and to hold in two positions - but also in intermediate positions - in which the corresponding arranged on both end faces of the armature assembly coil assembly is energized. This can also be achieved a deceleration or acceleration of the valve member on the way between the two end positions. This has the consequence that the valve member can be conveyed considerably "softer" into the valve seat or the opposite end position. This leads to less mechanical stress on the valve member or the valve seat, so that these components do not wear out so quickly. This allows a less robust dimensioning and a smaller diameter of the nozzle needle and thus a reduction of the necessary closing / holding forces.
  • the pole webs have a pitch which is about 2 to about 30 times, preferably about 5 to about 20 times, and particularly preferably about 10 times larger than a between the magnet yoke assembly and the magnetic Anchor arrangement formed air gap in a rest position of the actuator.
  • the ratio between the pitch of the pole web, so a dimension which co-determines the magnetically active surface of the pole web, and the air gap is a function of the size of the valve significantly influencing size.
  • the invention assumes that the ratio should be in the range of between about 2 and about 30, where any ratio between these limits is within the scope of the invention and primarily on the design conditions or requirements (available installation diameter, length, required valve lift, Valve member dynamics, etc.).
  • pole webs having a substantially asymmetrical to the central longitudinal axis of the fuel injection valve shape is avoided that manufacturing inaccuracies or Variations in the magnetic field generation, or temperature fluctuations lead to undesirable operating conditions. Rather, the non-rotationally symmetrical to the central axis of the design of the magnetic yoke or the magnetic coil so far is much less sensitive.
  • the pole webs have a spiral shape to the central longitudinal axis of the fuel injection valve.
  • the pole webs have a substantially polygonal, preferably quadrangular or polygonal shape and are arranged side by side to form spaces for receiving the solenoid coil assemblies, wherein the pole webs are preferably arranged parallel to each other.
  • each partial yoke can be formed from cobalt-iron-containing material and in each case have at least one pole web which is at least partially surrounded by at least one electromagnet coil arrangement.
  • a feature of the invention is that at least one electromagnet coil arrangement can at least partially enclose non-circularly shaped pole webs.
  • This very efficient type of construction allows an embodiment; to arrange a current-conducting tape for forming the magnetic coil assembly and a soft iron-containing sheet metal strip to form a stator yoke back between the sheet containing soft iron between two layers.
  • the current-conducting band and the soft iron-containing sheet-metal strip adjoin one another in each case on one longitudinal edge-electrically insulated.
  • a cascading of several valve drives along the axis of movement of the valve assembly wherein the actuator more than one assembly formed by the magnet coil assembly, the magnet yoke assembly, and the Magnetic armature arrangement comprises. These assemblies act together on the valve assembly - either in the same direction or in opposite directions - to lift the valve member from the valve seat or possibly also braked, hineinzubefern.
  • the actuating device acts on a movable valve member to this against a cooperating with the valve member and arranged downstream of the fuel inlet fixed valve seat between an open position and a Move closed position.
  • the actuating device acts on a movable valve member to move it relative to a cooperating with the valve member fixed valve seat between an open position and a closed position.
  • the magnet yoke arrangement and / or the magnet armature arrangement can be arranged eccentrically or asymmetrically with respect to a center axis of the fuel injection valve.
  • the individual ring coils may have a thickness of about 20 to about 80% of the yoke iron.
  • the individual coils on one side of the magnetically soft magnet armature arrangement can be set up to be energized in opposite directions.
  • the yoke iron can be formed by iron sheets insulated against each other at least on one side of the magnetically soft magnet armature arrangement.
  • the invention is based on the principle to orient the solenoid coil assembly and the magnet armature assembly substantially at right angles to each other.
  • the magnet coil arrangement and the magnet armature arrangement can at least partially, preferably completely overlap in the radial direction to the central longitudinal axis. This realizes a particularly efficient magnetic circuit that allows very small valve opening / closing times.
  • the magnet yoke assembly may be a substantially cylindrical soft magnetic disk body be designed with radial or tangential to the central longitudinal axis oriented interruptions. These breaks may be simple slots or formed to increase the stability of the magnet yoke assembly by material having a higher magnetic resistance than the material of the soft magnetic disk body.
  • the magnet armature arrangement can be formed by two or more spaced-apart strip-shaped soft magnetic sections.
  • the spatial separations may be simple slots or formed to increase the stability by material having a higher magnetic resistance than the material of the strip-shaped soft magnetic sections.
  • the magnet armature assembly may be a soft magnetic disc with recesses, preferably radially oriented, reaching to the edge of the disc slots, or elongated holes designed. Again, the reaching to the edge of the disc slots or slots can be simple recesses or be formed to increase the stability of material having a higher magnetic resistance than the material of the soft magnetic disc.
  • the magnet armature arrangement can also be constructed in multiple layers, with a ceramic layer being arranged between two soft iron layers. This layer structure is attached to the valve rod. To further improve the stability, the two iron layers can also be connected together along the outer circumference.
  • the soft magnetic armature assembly and the valve member can be interconnected and biased by a spring assembly in the open position or the closed position and bring by energizing the solenoid coil assembly in the closed position or the open position.
  • two of the above-described actuators may be provided which act in opposite directions on the valve member and bring this at respective energization in the closed position or the open position.
  • the actuating rod forms together thereon, usually (laser) welded magnet armature assemblies, a subassembly comprising at least a composed of stacked and spaced partial yokes formed further subassembly is composed.
  • a pressure-resistant housing surrounds the actuating device and the valve arrangement, out of which electrical connections for the solenoid coil arrangements are led out by means of glass feedthroughs.
  • the glass bushings ensure a safe, fuel-tight and large-series, fuel-tight and with respect to the operating pressures (up to about 2000 bar) pressure-resistant arrangement for the electrical connections to the fuel injector safely.
  • the solenoid coil assemblies are formed as copper-containing moldings which are electrically insulated by ceramic coating, aluminum oxide coating, electrophoretic paint coating or the like, are mounted around the pole webs, and after assembly of the subassembly formed from individual stacked and spaced partial yokes electrical connections are connected.
  • the solenoid coil arrangements are cast or glued to the partial yokes. This increases the steady-state durability of the fuel injection valve assembly.
  • the fuel injection valve according to the invention can be set up and dimensioned to protrude into the combustion chamber of a foreign-fired internal combustion engine, or into the combustion chamber of a self-igniting internal combustion engine.
  • the invention relates to a mounting device with a mounting block, which has a number of yoke disks of the fuel injector corresponding number of axially spaced receptacles which are dimensioned so that the yoke members of the yoke discs are substantially free of play and remove, the axial Distances of the recesses substantially correspond to the axial extent of the cavity between two adjacent yoke discs, and allows welding, soldering or bonding of spacers with the yoke parts.
  • Fuel injection valve is shown with a to a central longitudinal axis M substantially rotationally symmetrical valve housing 10 in a schematic longitudinal section in a half-open position.
  • a fuel injection valve is used for direct injection of fuel in the not further illustrated combustion chamber of an internal combustion engine.
  • the fuel injector 10 has a radially oriented, lateral fuel inlet 12 through which pressurized fuel can flow into the fuel injector by means of a pump or other pressure transducer not further illustrated.
  • the fuel inlet approximately at 14 indicated central in Fig. 1 Provide the upper portion of the fuel injection valve.
  • a central fuel passage 16 extends through a pipe 17 to a fuel outlet 18.
  • a valve assembly 20 is provided to guide the fuel in a controlled manner through the fuel outlet 18 in FIG to let out the combustion chamber of the internal combustion engine.
  • the valve assembly 20 is formed by a valve member 20a located in the central fuel passage 16 and tapering toward the fuel outlet 18 and a valve seat 20b cooperating with the valve member 20a and configured in accordance with the shape of the valve member 20a.
  • valve member 20a is connected via an actuating rod 22 with an electrically controllable actuator 24 to the valve member 20a between an open position and a closed position (in Fig. 1 move up and down).
  • actuating rod 22 with an electrically controllable actuator 24 to the valve member 20a between an open position and a closed position (in Fig. 1 move up and down).
  • the actuating device 24 is formed by a solenoid coil arrangement 24a, a soft-magnetic magnet yoke arrangement 24b cooperating therewith, and a soft-magnetic magnet armature arrangement 24c cooperating therewith.
  • the magnetically soft magnetic yoke arrangement 24b is formed from two shell halves 24b 'and 24b "which are joined approximately at the level of the section line II-II and have recesses 26a, 26b Fig. 1 in the plan view in the 4 and 5 shown longitudinal extent and are limited by also approximately trapezoidal or parallelogram-shaped pole webs 25a, 25b.
  • a solenoid coil assembly 24 a 'and 24 a was added, the flush with the respective end faces 27a, 27b of the shell halves 24b 'and 24b ".
  • the end surfaces 27a, 27b of the shell halves 24b 'and 24b "define a cavity 28 in which the magnet armature assembly 24c is movably received along the central axis M.
  • the pole webs 25a, 25b have a substantially quadrangular shape and are arranged side by side to form spaces for accommodating the electromagnetic coil arrangements 24a ', 24a "
  • the pole webs 25a, 25b are preferably arranged parallel to one another
  • Magnetic yoke arrangement can here be formed of one-piece soft iron, from which the pole web or the interspaces are formed.In such a one-piece soft iron molding interruptions in the form of slots or slots can be incorporated, which are filled with electrically insulating material possible to produce the Magnetjochanowski as a molded part of sintered iron powder or from several, possibly mutually insulated sections to assemble and, for example, to glue.
  • Fig. 2 shows the soft magnetic magnet armature assembly 24c. It has a soft magnetic armature disc 24c which is arranged around the central axis M around. In order to minimize the induced eddy currents in the armature disk 24c during operation of the fuel injection valve, the armature disk 24c is provided with radially oriented interruptions 36. These interruptions have the shape of reaching to the edge 30 of the armature disc 24c slots 36. This results in radially oriented strips 25 which are connected to each other in the center of the disc 24c.
  • Fig. 3 shows the soft magnetic magnet yoke 24b in cross section.
  • the magnet yoke arrangement 24b is provided with a plurality of radially oriented vertical interruptions 36 in the form of slots.
  • a material web 38 is provided between the slots 36 on the outer wall, which ensures a closed lateral surface.
  • the closed lateral surface may also be arranged at the radially inner ends of the slots 36. This also has the advantage of possibly improved heat dissipation from the yoke.
  • Both shell halves 24b 'and 24b "of the magnet yoke assembly 24b are provided with the slots 36.
  • the solenoid coil assembly 24a and the radially oriented tabs 25 of the soft magnetic armature disc 24c may be oriented substantially perpendicular to one another. It is understood that this can be realized either in the above-described form with radially oriented strips 25 of the armature arrangement 24b and a spiral-shaped solenoid coil arrangement 24a or magnetic yoke arrangement 24b, or vice versa. But it is also possible to realize the actuator 24 with concentric anchor parts and a star-shaped solenoid coil assembly.
  • Magnetic armature assembly 24c is a circular ferrous disk having a shape described in more detail below.
  • the solenoid coil assembly 24a and the magnet armature assembly 24c overlap in the radial direction with respect to the central axis (M).
  • M central axis
  • the solenoid coil assembly 24a has a smaller outer diameter than the armature disk 24c, so that the magnetic flux caused by the solenoid coil assembly 24a penetrates into the armature disk 24c with virtually no significant leakage losses. This results in a particularly efficient magnetic circuit that allows very low valve opening / closing times and high holding forces.
  • the armature disk 24c can also be a closed disk made of soft iron, provided that the above-described embodiment of the magnet yoke or magnet coil arrangement ensures that the leakage losses or eddy current losses are low enough are the respective purpose.
  • the armature disk 24c is rigidly connected to the actuating rod 22 and is longitudinally movably received in the pipe 17 along the center axis M in the pipe 17, in an armature space 34 bounded by the shell halves 24b 'and 24b "of the magnetic yoke assembly 24b is loaded with the actuating rod 22 by a coil spring 40 arranged coaxially with respect to the central axis M, so that the valve member 20a located at the end of the actuating rod 22 is seated in a fluid-tight manner in the valve seat 20b, ie is urged into its closed position during energization of one of the coils (for example 24a ') of the solenoid coil assembly 24a induces a low-turbulence magnetic field in the magnet yoke assembly 24b, which pulls the armature disk 24c with the actuating rod 22 toward the respective shell half 24b' in which the energized coil is located Valve member 20a of the valve seat 20b away in
  • One embodiment of the invention is to couple via the actuating rod 22 with the valve member 20a a plurality of (two or more) armature discs 24c, each acting on one or both sides of a coil yoke assembly.
  • the coil arrangement 24a can be designed to be multi-part on both sides of the soft-magnetic magnet armature arrangement 24c.
  • two or more solenoid coil assemblies 24a ', 24a are provided which are substantially flush with the respective end faces 27a, 27b of the shell halves 24b' and 24b".
  • This embodiment can have an increased magnetic field density and thus an increased valve member holding force and valve member operating speed for the same volume.
  • the yoke iron between the individual coils 24a of one side can be formed here by mutually insulated iron sheets.
  • the two embodiments are shown with electrically controllable actuators 24 in which a central actuating rod 22 is moved by a disk-shaped magnetic armature assembly 24c. It is also possible to provide a tube instead of the central actuating rod 22, on the end face of the magnet armature is arranged.
  • the solenoid coil assembly in the in Fig. 5 shown configuration in which one (or more) windings meander in the recesses 26a, 26b between the pole webs 25a, 25b of the magnet yoke assembly is inserted (are).
  • the pole webs 25a, 25b (and also the recesses 26a, 26) have an electrical current directed in opposite directions to the middle longitudinal axis M of the fuel cell.
  • Injector substantially asymmetrical shape, wherein at least one electromagnet coil assembly 24a ', 24 a "non-annular shaped pole web at least partially encloses so that on the edges of oppositely directed electrical current is passed.
  • a solenoid coil assembly 24a is produced integrally with the cooperating with them soft magnetic yoke assembly 24b.
  • a soft iron-containing, elongated yoke plate 50 is surrounded on both sides with a conductor strip 52 by this to a - in the later, finished state inside - longitudinal edge 50 'of the yoke plate 50 is folded over.
  • a soft iron-containing sheet metal strip 54 is arranged, which is just as thick as the conductor strip 52 and also to the - in the finished state inside - longitudinal edge 50 'of the yoke plate 50 is folded over.
  • the metal strip 54 lying next to the conductor strip 52 serves, together with the section of the yoke plate 50 on which it rests flat, to form - in the finished state - the back of the magnetic yoke.
  • the conductor strip 52 projects beyond the lateral longitudinal edge 50 "of the yoke plate 50 at both ends for electrical contacting, in the finished state, after which a second layer of a soft iron-containing, elongated yoke plate 56 is placed, so that a layer structure consisting of the first yoke plate 50, the conductor strip 52 and the sheet metal strip 54, and the second yoke plate 56.
  • This layer structure is then in the in Fig. 6 shown spiraled together to obtain the existing of a coil and a yoke overall structure.
  • the first and second yoke laminations 50, 56 are close together and the overall structure is a cylindrical former. It is understood that the conductor strip 52 is electrically insulated from the soft iron parts 50, 54, 56.
  • the in Fig. 1 shown, to the central longitudinal axis M coaxial air gap between the magnet yoke assembly 24b and the magnet armature assembly 24c in the rest position of the actuator 24 formed air gap is about 10 times greater than the pitch of the pole webs.
  • the grid dimension in this embodiment is the transverse dimension of the pole webs. In the embodiment of the magnet yoke assembly 24b according to FIGS Fig. 6, 7 the grid dimension is the thickness of the yoke plate 40. Other geometries of the pole webs are also possible. Decisive for the pitch are the smallest structures of the pole webs, so their longitudinal dimensions, transverse dimensions, thickness, etc. which lead to a finely divided shape of the force acting on the magnet armature poles of the magnetic yoke. This small grid leads to high magnetic flux density and thus to high tightening or holding forces of the valve assembly and also to a low switching time, since the electrical and magnetic losses or the induced counter forces are very low.
  • Fig. 8 is shown a further alternative for an embodiment of the armature assembly.
  • the armature disk 24c is constructed in several layers.
  • a ceramic layer 24c is disposed between two relatively thin - and thus low-swirl - soft iron layers 24c 'to increase the mechanical stability and fastened to the valve rod 22. It is understood that the two soft iron layers 24c' either complete armature disks or recessed in the manner described above It is also possible for a plurality of such armature arrangements to be distributed along the valve rod 22.
  • Fig. 9 shows a partial view of a further embodiment according to the invention of the magnetic yoke assembly 24b, in which two substantially semicircular disc-shaped Operajoche 125a are joined together to form a yoke disc 125 of the magnet yoke assembly 24b.
  • a composite yoke disc 125 is a semicircular cylindrical recess 125 '(see Fig. 10 ), which receives a bearing bush 126 for the valve rod 22.
  • each yoke disc composed of at least two soft iron containing part yokes, which surrounds a magnet armature assembly carrying the actuating rod.
  • the respective partial yokes of a yoke disc are glued together.
  • Each yoke disc 125 of the magnet yoke assembly - except the yoke discs at the two ends of the Jochusionnstapels in Fig. 9 - Has at its two end faces 128, 130 each a Polsteg 25a, 25b, which acts together with the solenoid coil assembly 24a ', 24a' on the magnet-armature assembly 24c.
  • the magnet armature assembly 24c is characterized by a corresponding number of the valve actuating rod 22 formed welded soft iron discs, which are provided with a plurality of bores through which fuel can flow when the magnetic armature assembly 24 c moves between their end positions.
  • Each Sectionjoch 125a has formed in the region of its outer circumferential surface a spacer 130, which determines the dimension X of the cavity 28 between the two two yoke discs 125. Furthermore, 125 electrical connectors 132 for the solenoid coil assembly 24a ', 24 a "are arranged in the region of the outer circumferential surface of the yoke disc. Thus, in each case the same side of the magnet armature assemblies 24c facing solenoid coil assemblies 24a ', 24 a "connected for in-phase electrical control in series or parallel connection.
  • the arranged on the actuating rod 22 magnetic armature assemblies 24c thus form a subassembly which is to be assembled with the two formed from stacked and spaced partial yokes further subassemblies.
  • a pressure-resistant housing surrounds the actuator 24 and the valve assembly 20, are led out of the electrical connections from the electrical connectors 132 for the solenoid coil assemblies 24a ', 24 a "by means of glass ducts to the outside.
  • the solenoid coil assemblies 24a ', 24a are formed as copper-containing molded parts electrically insulated by means of alumina coating or the like, which are mounted around the pole lands 25a, 25b and, after joining, stacked and spaced apart Finally, the solenoid coil assemblies 24a ', 24a "are shed in the recesses of the sub-yokes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Eine Brennstoff-Einspritzventil für Brennstoff-Einspritzanlagen von Brennkraftmaschinen, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine mit einem Brennstoff-Einlass, (12) der dazu eingerichtet ist, Brennstoff in das Brennstoff-Einspritzventil einströmen zu lassen, einer elektrisch ansteuerbaren Betätigungseinrichtung (24) die mit einer Ventilanordnung (20) zusammenwirkt, um Brennstoff in direkt oder indirekt gesteuerter Weise durch einen Brennstoff-Auslass (18) in den Brennraum ausströmen zu lassen, wobei die Betätigungseinrichtung (24) eine zu bestromende Magnet-Spulenanordnung, (24a) eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Jochanordnung, (24b) sowie eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Ankeranordnung (24) aufweist. Die Magnet-Jochanordnung (24b) ist aus wenigstens zwei Jochscheiben (125) gebildet. Jede Jochscheibe (125) hat an wenigstens einer ihrer Stirnseiten (127,128) wenigstens einen Polsteg, (25a,25b) der mit der Elektromagnet-Spulenanordnung (24a1,24a2) zusammen auf die Magnet-Ankeranordnung (24c) wirkt. Jede Jochscheibe (125) ist aus wenigstens zwei Weicheisen enthaltenden Teiljochen (125a) zusammengesetzt die eine die Magnet-Ankeranordnung (24c) tragende Betätigungsstange (22) zumindest teilweise umgeben.

Description

    Hintergrund der Erfindung
  • Die Erfindung betrifft ein Brennstoff-Einspritzventil für Brennstoff-Einspritzanlagen von Brennkraftmaschinen, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine. Grundsätzlich ist es möglich, die Erfindung sowohl bei direkt einspritzenden als auch bei konventionellen, in das Saugrohr einspritzenden Motoren zu verwenden.
  • Das erfindungsgemäße Brennstoff-Einspritzventil hat einen Brennstoff-Einlaß, der dazu eingerichtet ist, Brennstoff in das Brennstoff-Einspritzventil einströmen zu lassen, und eine elektrisch ansteuerbare Betätigungseinrichtung die mit einer Ventilanordnung zusammenwirkt, um Brennstoff in direkt oder indirekt gesteuerter Weise durch einen Brennstoff-Auslaß in den Brennraum ausströmen zu lassen. Dabei weist die elektromagnetische Betätigungseinrichtung eine zu bestromende Elektromagnet-Spulenanordnung, eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Jochanordnung, sowie eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Ankeranordnung auf.
  • Die KFZ-Verbrennungsmotoren-Industrie steht durch die stetig steigenden Anforderungen der Abgasgesetzgebung mit weiter sinkenden Grenzwerten vor der Herausforderung, durch eine Optimierung des Einspritzvorgangs von Kraftstoff in die Brennkammer die Entstehung von Schadstoffen am Ort ihrer Entstehung zu optimieren. Kritisch sind insbesondere NOx- und Ruß-Emissionen. Durch die Entwicklung von Einspritzsystemen mit immer höheren Einspritzdrücken und hochdynamischen Injektoren, sowie durch gekühlte Abgasrückführung und Oxidationskatalysatoren ist es zwar möglich gegenwärtige Grenzwerte einzuhalten. Allerdings scheint das Potenzial der bisherigen Maßnahmen zur Emissionsreduzierung erreicht zu sein. Damit rücken variable Einspritzverlaufformungen in den Vordergrund. Hierbei wird die Kraftstoff-Einspritzrate wahlweise durch Mehrfacheinspritzung oder durch gezieltes Modulieren des Hubes der Düsennadel variiert.
  • Stand der Technik
  • Ein Brennstoff-Einspritzventil der oben genannten Art ist in den unterschiedlichsten Ausgestaltungen von mehreren Herstellern (Robert Bosch, Siemens VDO Automotive) bekannt. Allerdings haftet diesen bekannten Anordnungen der Nachteil an, dass die Anzahl der Hübe pro Arbeitstakt der Brennkraftmaschine sehr eingeschränkt ist. Insbesondere ist es damit nicht möglich, bei hochtourigen Brennkraftmaschinen die für ein effizientes Motormanagement erforderlichen Mehrfacheinspritzungen pro Arbeitstakt in der erforderlichen Anzahl bereit zu stellen. Auch das präzise Variieren des Hubes der Ventilnadel ist bei diesen Anordnungen nur sehr eingeschränkt möglich. In beiderlei Hinsicht haben sich die konventionellen elektromagnetischen Betätigungseinrichtungen als ein begrenzender Faktor für die Weiterentwicklung effizienter Brennstoff-Einspritzventile herausgestellt.
  • Ein bekannter Ansatz zur Überwindung dieser Einschränkung besteht darin, anstelle der elektromagnetischen Betätigungseinrichtung einen Piezo-Linear-Aktor vorzusehen. Abgesehen von den hohen Kosten und dem relativ großen erforderlichen Bauraum des Piezo-Linear-Aktors ist auch deren temperaturabhängiges Verhalten in unmittelbarer Nähe zum Brennraum einer Brennkraftmaschine nachteilig. Auch erlauben Piezoantriebe heutiger Bauart nur etwa 3 bis 5 Einspritzvorgänge je Arbeitstakt des Verbrennungsmotors, wobei Öffnungs-/Schließ-Zyklen von etwa 100 µsec realisierbar sind. Insgesamt war bisher dieser Art von Brennstoff-Einspritzventilen im Einsatz von Serien-Fahrzeugen in größerem Stil versagt. Außerdem ist der Hub-Weg eines Piezo-Linear-Aktors bei vorgegebener Baulänge sehr beschränkt und wird derzeit mittels aufwendiger Hebelanordnungen auf ca. 100 bis 200 µm vergrößert. Schließlich gestaltet sich nach wie vor die präzise Modulation des. Hubes der Düsennadel mittels des Piezo-Linear-Aktors bei der hohen Dynamik und den zunehmend hohen Drücken in der Brennkammer, insbesondere bei der Diesel-Direkteinspritzung, als schwierig.
  • Aus der DE 100 05 182 A1 ist ein elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge mit einem durch ein Elektromagnetspulensystem betätigbaren Ventilkörper bekannt, wobei der Ventilkörper mit einem Magnetanker des Elektromagnetspulensystems zusammenwirkt. Das wesentliche Merkmal dieser Anordnung besteht darin, dass das Elektromagnetspulensystem wenigstens zwei zur Mittellängsachse symmetrische und konzentrisch angeordnete Spulen mit identischen Kenngrößen aufweist, die derart in einen Magnetkreis integriert sind, dass zwischen zwei benachbarten Spulen jeweils ein erster Polkörper angeordnet ist, und die innere und äußere Spule jeweils einem zweiten Polkörper benachbart ist. Diese Polkörper sind auf der gleichen Seite des Magnetankers angeordnet. Weiterhin ist es wesentlich, dass die Polkörper derart dimensioniert sind, dass eine radiale Schnittfläche eines mittleren ersten Polkörpers der Summe der Schnittflächen der benachbarten zweiten Polkörper entspricht. Insgesamt hängt bei dieser Anordnung die Funktion erheblich von der Symmetrie der räumlichen Gestaltung des Elektromagnetspulensystems ab. Die Zeitverzögerung des elektrischen und des magnetischen Feldaufbaus hängt dabei vornehmlich von der Geometrie des Magnetkreises und insbesondere von der Felddiffusion und den auftretenden Wirbelströmen ab.
  • Allerdings stellt die bei dieser Anordnung notwendige konstruktive und elektrische/ magnetische Symmetrie des Elektromagnetspulensystems wie zum Beispiel die Dimensionierung bzw. das Verhältnis der radialen Schnittflächen der Polkörper zueinander eine erhebliche Einschränkung dar. Außerdem sind auch bei dieser bekannten Anordnung die erzielbaren Ventilschaltzeiten, Ventilwege und Ventilschließkräfte angesichts der eingangs erläuterten Anforderungen allenfalls als unzureichend zu bezeichnen.
  • Aus der DE 102 60 825 A1 ist ein magnetbetätigtes Kraftstoffeinspritzventil bekannt, bei dem ein Öffnungsquerschnitt eines Kraftstoffkanals, der als Raum zwischen einer Innenfläche eines Behälters, in den Kraftstoff eingeführt wird, und einer Außenfläche eines in dem Behälter angeordneten Nadelelements begrenzt ist, geändert wird. Dazu wird das Nadelelement durch von einer elektromagnetischen Einrichtung erzeugte Anzugs- bzw. Magnetkräfte in Längsrichtung verschoben. Die elektromagnetische Einrichtung ist mit einem ersten und einem zweiten Magnetkreis versehen, durch welche die Anzugs- bzw. Magnetkräfte unabhängig voneinander steuerbar sind.
  • Weiterer Stand der Technik ist aus den Dokumenten, US 5,035,360 , US 4,156,506 US 5,207,410 , , DE 2237 746.4 , und US 2001/0019085 bekannt.
  • Patent Abstracts of Japan Bd. 199 Nr. 3, 31 März 1999 sowie JP 10 335139 A (Denso Corp) bezieht sich auf ein Brennstoff-Einspritzventil mit einem Brennstoff-Einlass, ein mit einer Ventilanordnung zusammenwirkenden elektrisch ansteuerbaren Betätigungseinrichtung, die eine zu bestromende Magnet-Spulenanordnung, eine mit dieser zusammenwirkende weichmagnetische Magnet-Jochanordnung, sowie eine mit dieser zusammenwirkende weichmagnetische Magnet-Ankeranordnung aufweist. Die Magnet-Jochanordnung ist aus drei Jochscheiben gebildet. Jede Jochscheibe hat an wenigstens einer ihrer Stirnseiten einen Polsteg, der mit der Elektromagnet-Spulenanordnung zusammen auf die Magnet-Ankeranordnung wirkt.
  • US 2004/118952 A1 (Nussio Randy ) bezieht sich auf auf eine Jochscheibe mit einem Polsteg in einer Betätigungseinrichtung eines Brennstoff-Einspritzventils. Die Jochscheibe hat mehrere Teiljoche.
  • Die US 6 065 684 A (Varble et al ) bezieht sich auf eine Kraftstoffeinspritzvorrichtung mit einem Gehäuse, das einen Kraftstoff-Strömungskanal mit einem Einlass (20) und einem Auslass definiert, einem Mittel zur Verbindung des Einlasses mit einer Kraftstoffversorgungsquelle bei einem gesteuerten erhöhten Kraftstoffdruck. Ein Einspritzventil dient dazu, den Auslass zum Einspritzen des Kraftstoffes durch den Auslass in eine Verbrennungskammer eines Motors selektiv zu schließen und zu öffnen, wobei der Kraftstoffdruck bewirkt, dass das Ventil in eine Öffnungsrichtung gedrängt wird. Ein Rückholmittel drängt das Ventil mit einer Kraft in eine Schließrichtung, die die Kraft, die durch den Kraftstoffdruck auf das Ventil ausgeübt wird, geringfügig übersteigt. Ein Anker ist an das Ventil angeschlossen und mit diesem beweglich. Erste und zweite Elektromagnete sind eng in einem Abstand an entgegengesetzten Seiten des Ankers angeordnet, und wenn sie erregt sind, ziehen sie den Anker magnetisch in Richtung zu dem jeweiligen Elektromagneten. Wenn der erste Elektromagnet erregt ist, erzeugt er eine Kraft, die ausreicht, um den Anker anzuziehen und das Ventil gegen die überschüssige Schließkraft des Rückholmittels zu öffnen. Wenn der zweite Elektromagnet erregt ist, erzeugt er eine Kraft, die ausreicht, um das Ventil rasch mit der Unterstützung des Rückholmittels gegen die Kraft des Kraftstoffdruckes zu schließen, wenn der erste Elektromagnet entregt ist.
  • Der Erfindung zugrunde liegendes Problem
  • Damit besteht bei bekannten Brennstoff-Einspritzventilen das Problem, eine kompakt bauende und kostengünstige Anordnung eines Brennstoff-Einspritzventils bereitzustellen, die langzeitstabil und tauglich für den Einsatz in Groß-Serien ist und eine ausreichend hohe Hubzahl pro Arbeitstakt der Brennkraftmaschine mit den erforderlichen Öffnungs-/Schließ-Kräften auszuführen in der Lage ist. Die vorliegende Erfindung hat zum Ziel, Brennstoff-Einspritzventile bereitzustellen, die dazu beitragen können, den Kraftstoffverbrauch von Verbrennungsmotoren zu senken um so den thermodynamischen Wirkungsgrad des Verbrennungsmotors zu steigern.
  • Erfindungsgemäße Lösung
  • Die Erfindung löst dieses Problem bei einer Ventilanordnung der oben genannten Art durch die im Patentanspruch 1 angegebenen Merkmale.
  • Überraschenderweise hat sich nämlich gezeigt, dass es nicht erforderlich ist, von einer elektromagnetischen Betätigungseinrichtung als Ventilantrieb auf einen Piezo-Linear-Aktor mit allen seinen ihm eigenen Nachteilen und Problemen umzustellen.
  • Vielmehr kann durch die erfindungsgemäße Ausgestaltung der Komponenten der elektromagnetischen Betätigungseinrichtung erreicht werden, dass das Brennstoff-Einspritzventil nicht nur die für Otto-Motoren erforderlichen Öffnungs-/Schließ-Kräfte, sondern sogar die für eine Diesel-Direkt-Einspritzung erforderlichen Öffnungs-/Schließ-Kräfte bei erheblich mehr Hüben pro Arbeitstakt (etwa doppelt so viele wie ein Piezo-Linear-Aktor heutiger Bauart) mit einer elektromagnetischen Betätigungseinrichtung bereitstellen kann. Weiterhin baut die Gesamtanordnung bei schnell bereitstellbaren hohen ÖfFnungs-/Schließkräften bei einem geringem Durchmesser Außendurchmesser sehr kompakt. Die erfindungsgemäße Ausgestaltung erlaubt außerdem eine sehr effiziente Massenfertigung mit engen Toleranzen und geringer Ausschussrate.
  • Die erfindungsgemäße Ventilanordnung erlaubt die Realisierung von Öffnungs-/Schließ-Zyklen mit etwa 40 - 50 µsec und weniger. Damit sind Mehrfach-Einspritzvorgänge für ein effizientes Motormanagement sowohl für Otto-Motoren, als auch für Dieselmotoren möglich. Außerdem ist es auch möglich, den Brennstoffdurchsatz durch das Brennstoff-Einspritzventil dadurch zu erhöhen, dass mit der erfindungsgemäßen Ventilanordnung der Hubweg des Ventilgliedes bei vergleichbarer Hubzeit etwa 3 bis 6 mal größer sein kann als bei einem Piezo-Linear-Aktor heutiger Bauart. Darüber hinaus erlaubt die erfindungsgemäße Anordnung eine sehr präzise Steuerung des Verlaufs des Hubweges über der Zeit.
  • Weiterbildungen und Ausgestaltungen der Erfindung
  • In einer bevorzugten Ausführungsform der Erfindung wirkt jedes Teiljoch mit wenigstens einem Abstandshalter zusammen, der eine Abmessung eines Hohlraumes zwischen zwei Jochscheiben zumindest mitbestimmt. Der oder die Abstandshalter können entweder im Bereich der äußeren Mantelfläche der Jochscheibe angeordnet sein oder sich zwischen den Stirnflächen zweier Jochscheiben abstützen. Die Abstandshalter sind entweder mit den Teiljochen bzw. den Jochscheiben (laser-)verschweißt oder verklebt. Alternativ dazu können die Abstandshalter auch zumindest an einem Ende mit den Teiljochen bzw. den Jochscheiben einstückig hergestellt sein.
  • Weiterhin können im Bereich der äußeren Mantelfläche der Jochscheibe elektrische Verbindungsstücke für die Elektromagnet-Spulenanordnung angeordnet sein bzw. verlaufen. Damit können die einzelnen Wicklungen der Elektromagnet-Spulenanordnung auf einfache Weise bestromt werden.
  • Vorzugsweise sind jeweils derselben Seite der Magnet-Ankeranordnungen zugewandte Elektromagnet-Spulenanordnungen für eine gleichphasige elektrische Ansteuerung in Reihen- oder Parallelschaltung verbunden. Damit ist es möglich, die Ventilanordnung elektrisch betätigt zu öffnen, zu schließen und zu halten, ohne dass eine Haltefeder erforderlich ist. Unter Haltefeder wird hierbei eine Feder mit einer hohen Federkonstante verstanden, die in der Lage ist die Ventilanordnung gegen die Betriebsdrücke (des zugeführten Brennstoffes bzw. in der Brennkammer) in einer Stellung zu halten. Davon zu unterscheiden ist eine Feder, die bei unbestromter Ventilanordnung und fehlenden Betriebsdrücken in der Lage ist, dafür zu sorgen, dass das Ventilglied in einer Schließstellung verharrt, so dass kein Brennstoff durch die Ventilanordnung in die Brennkammer strömt.
  • Die Erfindung erlaubt es, die Ventilanordnung sowohl elektrisch betätigt zu öffnen, als auch elektrisch betätigt zu schließen und in beiden Stellungen - aber auch in Zwischenstellungen - zu halten, in dem die entsprechende der zu beiden Stirnseiten der Ankeranordnung angeordnete Spulenanordnung bestromt wird. Damit kann auch ein Abbremsen oder Beschleunigen des Ventilglieds auf dem Weg zwischen den beiden Endstellungen erreicht werden. Dies hat zur Folge, dass das Ventilglied erheblich "weicher" in den Ventilsitz bzw. die entgegengesetzte Endstellung befördert werden kann. Dies führt zu geringerer mechanischer Belastung des Ventilgliedes bzw. des Ventilsitzes, so dass diese Komponenten nicht so schnell verschleißen. Das erlaubt eine weniger robuste Dimensionierung und einen geringeren Durchmesser der Düsennadel und damit eine Verringerung der notwendigen Schließ-/Haltekräfte. Dies hat zur Folge, dass eine präzisere Dosierung des Brennstoffes und wegen der geringeren bewegten Massen eine höhere Bewegungsrate mit mehr Öffnungs/Schließzyklen pro Arbeitstakt als bei Piezo-Aktoren möglich ist. Außerdem ist das Kraft-Weg-Verhalten eines Piezo-Aktors erheblich ungünstiger und weniger beeinflussbar als bei einer erfindungsgemäßen Betätigungseinrichtung.
  • Bei einer ersten Ausgestaltung des erfindungsgemäßen Brennstoff-Einspritzventils haben die Polstege ein Rastermaß, das etwa 2 bis etwa 30 mal, vorzugsweise etwa 5 bis etwa 20 mal, und besonders vorzugsweise etwa 10 mal größer ist als ein zwischen der Magnet-Jochanordnung und der Magnet-Ankeranordnung gebildeter Luftspalt in einer Ruhestellung der Betätigungseinrichtung. Das Verhältnis zwischen dem Rastermaß der Polstege, also einer Abmessung, die die magnetisch wirksame Fläche der Polstege mitbestimmt, und dem Luftspalt ist eine die Funktionalität des Ventils erheblich beeinflussende Größe. Die Erfindung geht davon aus, dass das Verhältnis im Bereich zwischen etwa 2 und etwa 30 liegen sollte, wobei jede Verhältniszahl zwischen diesen Grenzen im Bereich der Erfindung liegt und in erster Linie von den konstruktiven Gegebenheiten oder Anforderungen (verfügbarer Einbaudurchmesser, Länge, erforderlicher Ventilhub, Ventilglied-Dynamik, etc.) abhängt.
  • Indem die Polstege eine zur Mittellängsachse des Brennstoff-Einspritzventils im Wesentlichen asymmetrische Gestalt aufweisen wird vermieden, dass Fertigungsungenauigkeiten oder Schwankungen bei der Magnetfelderzeugung, oder Temperaturschwankungen zu unerwünschten Betriebszuständen führen. Vielmehr stellt sich die zur Mittellängsachse nicht rotations-symmetrische Gestaltung des Magnetjochs bzw. der Magnetspule insofern wesentlich unempfindlicher dar.
  • In einer Ausführungsform der Erfindung haben dazu die Polstege eine zur Mittellängsachse des Brennstoff-Einspritzventils spiralförmige Gestalt. In einer anderen Ausführungsform der Erfindung haben die Polstege eine im Wesentlichen mehreckige, vorzugsweise viereckige bzw. mehrkantige Gestalt und sind nebeneinander unter Bildung von Zwischenräumen zur Aufnahme der Elektromagnet-Spulenanordnungen angeordnet, wobei die Polstege vorzugsweise parallel zueinander angeordnet sind.
  • Im letzteren Fall können wenigstens zwei benachbarte Polstege von wenigstens einer Elektromagnet-Spulenanordnung zumindest teilweise mäanderförmig umgeben sein. Alternativ dazu kann auch jeweils jedes Teiljoch aus Kobalt-Eisen-haltigem Material gebildet sein und jeweils wenigstens einen Polsteg aufweisen, der von wenigstens einer Elektromagnet-Spulenanordnung zumindest teilweise umgeben ist.
  • Eine Eigenschaft der Erfindung besteht darin, dass zumindest eine Elektromagnet-Spulenanordnung nicht-kreisringförmig gestaltete Polstege zumindest teilweise einschließen kann. Diese, in der Herstellung sehr effiziente Bauart erlaubt eine Ausführungsform; bei der zwischen zwei Lagen aus Weicheisen enthaltendem Blech ein Strom leitendes Band zur Bildung der Magnet-Spulenanordnung und ein Weicheisen enthaltendes Blechband zur Bildung eines Stator-Jochrückens anzuordnen. Dabei grenzen das Strom leitende Band und das Weicheisen enthaltende Blechband an jeweils einer Längskante - elektrisch isoliert - aneinander an.
  • Um besonders schlanke oder langgezogene Bauformen mit großen Halte- oder Schließkräften zu realisieren ist eine Kaskadierung von mehreren Ventilantrieben entlang der Bewegungsachse der Ventilanordnung vorgesehen, bei der die Betätigungseinrichtung mehr als eine Baugruppe, gebildet durch die Magnet-Spulenanordnung, die Magnet-Jochanordnung, und die Magnet-Ankeranordnung aufweist. Diese Baugruppen wirken dabei gemeinsam auf die Ventilanordnung - entweder gleichsinnig oder gegensinnig - um das Ventilglied aus dem Ventilsitz zu heben oder ggf. auch abgebremst, hineinzubefördern.
  • Erfindungsgemäß wirkt die Betätigungseinrichtung auf ein bewegliches Ventilglied ein, um dieses gegenüber einem mit dem Ventilglied zusammenwirkenden und stromabwärts zu dem Brennstoff-Einlaß angeordneten ortsfesten Ventilsitz zwischen einer Offen-Stellung und einer Geschlossen-Stellung zu bewegen. Damit kann eine direkt schaltende Ventilanordnung realisiert werden.
  • Bei einer anderen Ausgestaltung des erfindungsgemäßen Brennstoff-Einspritzventils wirkt die Betätigungseinrichtung auf ein bewegliches Ventilglied ein, um dieses gegenüber einem mit dem Ventilglied zusammenwirkenden ortsfesten Ventilsitz zwischen einer Offen-Stellung und einer Geschlossen-Stellung zu bewegen. Damit ist ein gesteuertes Ablassen von Brennstoff in eine Rückführleitung ermöglicht, wenn ein zweites, federbelastetes Ventilglied zusammen mit einem zweiten Ventilsitz durch den im Brennraum herrschenden Druck nicht geöffnet wird, und ein gesteuertes Ablassen von Brennstoff in den Brennraum ermöglicht, wenn das zweite, federbelastete Ventilglied zusammen mit dem zweiten Ventilsitz durch den im Brennraum herrschenden Druck geöffnet wird. Damit kann eine indirekt schaltende Ventilanordnung realisiert werden.
  • Erfindungsgemäß können die Magnet-Jochanordnung und/oder die Magnet-Ankeranordnung exzentrisch oder asymmetrisch zu einer Mittelachse des Brennstoff-Einspritzventils angeordnet sein.
  • Die einzelnen Ring-Spulen können eine Dicke von etwa 20 bis etwa 80 % des Magnetjoch-Eisens haben. Außerdem können die einzelnen Spulen auf einer Seite der weichmagnetischen Magnet-Ankeranordnung dazu eingerichtet sein, gegensinnig bestromt zu werden.
  • Weiterhin kann zwischen den einzelnen Spulen wenigstens auf einer Seite der weichmagnetischen Magnet-Ankeranordnung das Joch-Eisen durch gegeneinander isolierte Eisenbleche gebildet sein.
  • Der Erfindung liegt das Prinzip zugrunde, die Elektromagnet-Spulenanordnung und die Magnet-Ankeranordnung im Wesentlichen rechtwinkelig zueinander zu orientieren.
  • Erfindungsgemäß können die die Magnet-Spulenanordnung und die Magnet-Ankeranordnung sich in radialer Richtung zur Mittellängsachse zumindest teilweise, vorzugsweise vollständig überlappen. Damit wird ein besonders effizienter Magnetkreis realisiert, der sehr geringe Ventil-Öffnungs-/Schließ-Zeiten erlaubt.
  • Bei einer Ausführungsform des erfindungsgemäßen Brennstoff-Einspritzventils kann die Magnet-Jochanordnung als ein im Wesentlichen zylindrischer weichmagnetischer Scheibenkörper mit radial oder tangential zur Mittellängsachse orientierten Unterbrechungen gestaltet sein. Diese Unterbrechungen können einfache Schlitze sein oder zur Erhöhung der Stabilität der Magnet-Jochanordnung durch Material gebildet sein, das einen höheren magnetischen Widerstand als das Material des weichmagnetischen Scheibenkörpers hat.
  • Bei einer anderen Ausführungsform des erfindungsgemäßen Brennstoff-Einspritzventils kann die Magnet-Ankeranordnung durch zwei oder mehr von einander räumlich getrennte streifenförmige weichmagnetische Abschnitte gebildet sein. Auch hier können die räumlichen Trennungen einfache Schlitze sein oder zur Erhöhung der Stabilität durch Material gebildet sein, das einen höheren magnetischen Widerstand als das Material der streifenförmigen weichmagnetischen Abschnitte hat.
  • Die Magnet-Ankeranordnung kann eine weichmagnetische Scheibe mit Ausnehmungen, vorzugsweise radial orientierten, zum Rand der Scheibe reichenden Schlitzen, oder Langlöchern gestaltet sein. Auch hier können die zum Rand der Scheibe reichenden Schlitzen oder Langlöcher einfache Ausnehmungen sein oder zur Erhöhung der Stabilität durch Material gebildet sein, das einen höheren magnetischen Widerstand als das Material der weichmagnetischen Scheibe hat.
  • Die Magnet-Ankeranordnung kann auch mehrlagig aufgebaut sein, wobei zwischen zwei Weicheisenlagen eine Keramiklage angeordnet ist. Dieser Schichtaufbau ist an der Ventilstange befestigt. Zur weiteren Verbesserung der Stabilität können die beiden Eisenlagen auch entlang des Außenumfangs noch miteinander verbunden sein.
  • Weiterhin können die weichmagnetische Ankeranordnung und das Ventilglied miteinander verbunden und durch eine Federanordnung in die Offen-Stellung oder die Geschlossen-Stellung vorgespannt und durch Bestromen der Magnet-Spulenanordnung in die Geschlossen-Stellung oder die Offen-Stellung zu bringen sein.
  • Gemäß einer anderen Ausführungsform des erfindungsgemäßen Brennstoff-Einspritzventils können auch zwei der oben beschriebenen Betätigungseinrichtungen vorgesehen sein, die auf das Ventilglied gegensinnig wirken und dieses bei jeweiliger Bestromung in die Geschlossen-Stellung bzw. die Offen-Stellung bringen.
  • Erfindungsgemäß bildet die Betätigungsstange zusammen daran angeordneten, in der Regel (laser-)geschweißten Magnet-Ankeranordnungen eine Unterbaugruppe, die mit wenigstens einer aus gestapelten und auf Abstand gehaltenen Teiljochen gebildeten weiteren Unterbaugruppe zusammenzusetzen ist.
  • Weiterhin umgibt erfindungsgemäß ein druckfestes Gehäuse die Betätigungseinrichtung und die Ventilanordnung, aus dem elektrische Anschlüsse für die Elektromagnet-Spulenanordnungen mittels Glasdurchführungen nach außen herausgeführt sind. Die Glasdurchführungen stellen eine sichere und für die Groß-Serie geeignete, brennkraftstoffdichte und hinsichtlich der Betriebsdrücke (bis zu etwa 2000 bar) druckfeste Anordnung für die elektrischen Anschlüsse an dem Brennstoff-Einspritzventil sicher.
  • Weiterhin sind erfindungsgemäß die Elektromagnet-Spulenanordnungen als Kupfer enthaltende Formteile gebildet, die mittels Keramikbeschichtung, Aluminiumoxidbeschichtung, Elektrophoreselackbeschichtung oder dergl. elektrisch isoliert sind, um die Polstege herum montiert sind und nach dem Zusammenfügen der aus einzelnen gestapelten und auf Abstand gehaltenen Teiljochen gebildeten Unterbaugruppe mit den elektrischen Anschlüsse verbunden werden.
  • Weiterhin sind erfindungsgemäß die Elektromagnet-Spulenanordnungen mit den Teiljochen vergossen oder verklebt sind. Dies erhöht die Dauerbetriebsfestigkeit der Brennstoff-Einspritzventilanordnung.
  • Das erfindungsgemäße Brennstoff-Einspritzventil kann dazu eingerichtet und dimensioniert sein, in den Brennraum einer fremd gezündeten Brennkraftmaschine, oder in den Brennraum einer selbstzündenden Brennkraftmaschine zu ragen.
  • Schließlich betrifft die Erfindung eine Montagevorrichtung mit einem Montageblock, der eine der Anzahl der Jochscheiben des Brennstoff-Einspritzventils entsprechende Anzahl von axial beabstandeten Aufnahmen aufweist, die so dimensioniert sind, dass die Jochteile der Jochscheiben im Wesentlichen spielfrei einzubringen und zu entnehmen sind, wobei die axialen Abstände der Ausnehmungen im Wesentlichen der axialen Erstreckung des Hohlraums zwischen zwei benachbarten Jochscheiben entsprechen, und der ein Verschweißen, Verlöten oder Verkleben von Abstandshaltern mit den Jochteilen erlaubt.
  • Weitere Vorteile, Ausgestaltungen oder Variationsmöglichkeiten ergeben sich aus der nachfolgenden Beschreibung der Figuren in denen die Erfindung im Detail erläutert ist.
  • Kurzbeschreibung der Figuren
    • Fig. 1 zeigt eine schematische Darstellung im Längsschnitt durch ein Brennstoff-Einspritzventil gemäß einer ersten Ausführungsform der Erfindung.
    • Fig. 2 zeigt eine schematische Draufsicht auf einen Querschnitt einer Weichmagnet-Ankeranordnung aus Fig. 1, geschnitten entlang der Linie II - II.
    • Fig. 3 zeigt eine schematische Draufsicht auf einen Querschnitt einer Weichmagnet-Jochanordnung aus Fig. 1, geschnitten entlang der Linie III - III.
    • Fig. 4 zeigt eine schematische Draufsicht auf eine Weichmagnet-Jochanordnung mit einer Magnetspulenanordnung.
    • Fig. 5 zeigt eine schematische Draufsicht auf eine Weichmagnet-Jochanordnung und eine Magnetspulenanordnung gemäß einer zweiten Ausführungsform der Erfindung.
    • Fig. 6 zeigt eine schematische Draufsicht auf eine Weichmagnet-Jochanordnung und eine Magnetspulenanordnung gemäß einer dritten Ausführungsform der Erfindung.
    • Fig. 7 zeigt eine seitliche perspektivische Darstellung der Weichmagnet-Jochanordnung und der Magnetspulenanordnung gemäß Fig. 6.
    • Fig. 8 zeigt eine seitliche teilweise längsgeschnittene Darstellung der Ventilstange mit einer Ankeranordnung, die ein Kastenprofil aufweist.
    • Fig. 9 zeigt eine perspektivische Seitenansicht einer weiteren Ausführungsform einer erfindungsgemäßen Betätigungseinrichtung.
    • Fig. 10 zeigt ein Teiljoch einer Jochscheibe für eine erfindungsgemäße Betätigungseinrichtung nach Fig. 9 in einer vergrößerten perspektivischen Seitenansicht.
    Detaillierte Beschreibung derzeitig bevorzugter Ausführungsformen
  • In Fig. 1 ist Brennstoff-Einspritzventil mit einem zu einer Mittellängsachse M im wesentlichen rotationssymmetrischen Ventilgehäuse 10 im schematischen Längsschnitt in einer halb geöffneten Stellung gezeigt. Ein derartiges Brennstoff-Einspritzventil dient zum direkten Einspritzen von Brennstoff in den nicht weiter veranschaulichten Brennraum einer Brennkraftmaschine. Das Brennstoff-Einspritzventil 10 hat einen radial orientierten, seitlichen Brennstoff-Einlaß 12, durch den mittels einer nicht weiter veranschaulichten Pumpe oder sonstigen Druckgeber unter Druck gesetzter Brennstoff in das Brennstoff-Einspritzventil einströmen kann. Es ist jedoch auch möglich, den Brennstoff Einlaß etwa im mit 14 angedeuteten zentralen in Fig. 1 oberen Bereich des Brennstoff-Einspritzventils vorzusehen. Von dem Brennstoff-Einlaß 12 reicht ein zentraler Brennstoff-Kanal 16 durch ein Rohr 17 zu einem Brennstoff-Auslaß 18. An Ende des zentralen Brennstoff-Kanals 16 ist eine Ventilanordnung 20 vorgesehen, um den Brennstoff in gesteuerter Weise durch den Brennstoff Auslaß 18 in den Brennraum der Brennkraftmaschine ausströmen zu lassen.
  • Die Ventilanordnung 20 ist durch ein sich in dem zentralen Brennstoff-Kanal 16 befindliches und zum Brennstoff-Auslaß 18 hin konisch verjüngendes Ventilglied 20a und einen mit dem Ventilglied 20a zusammenwirkenden Ventilsitz 20b gebildet, der entsprechend der Form des Ventilgliedes 20a gestaltet ist.
  • Das Ventilglied 20a ist über eine Betätigungsstange 22 mit einer elektrisch ansteuerbaren Betätigungseinrichtung 24 verbunden, um das Ventilglied 20a zwischen einer Offen-Stellung und einer Geschlossen-Stellung (in Fig. 1 auf und ab) zu bewegen. Damit wird von dem Brennstoff-Einlaß 12 kommender und durch den zentralen Brennstoff-Kanal 16 strömender, unter Druck stehender Brennstoff in gesteuerter Weise durch den Brennstoff-Auslaß 18 in den Brennraum ausgestoßen.
  • Die Betätigungseinrichtung 24 ist gebildet durch eine Elektromagnet-Spulenanordnung 24a, eine mit dieser zusammenwirkende weichmagnetische Magnet-Jochanordnung 24b, sowie eine mit dieser zusammenwirkende weichmagnetische Magnet-Ankeranordnung 24c. Dabei ist die weichmagnetische Magnet-Jochanordnung 24b aus zwei etwa auf Höhe der Schnittlinie II - II zusammengefügten Schalen-Hälften 24b' und 24b" mit Ausnehmungen 26a, 26b gebildet. Die Ausnehmungen 26a, 26b haben bei der Ausführungsform nach Fig. 1 in der Draufsicht die in den Fig. 4 und 5 gezeigte Längserstreckung und sind durch ebenfalls etwa trapez- oder parallelogrammförmige Polstege 25a, 25b begrenzt. In den Ausnehmungen 26a, 26b ist jeweils eine Elektromagnet-Spulenanordnung 24a' und 24 a" aufgenommen, die bündig mit den jeweiligen Stirnflächen 27a, 27b der Schalen-Hälften 24b' und 24b" abschließen.
  • Die Stirnflächen 27a, 27b der Schalen-Hälften 24b' und 24b" begrenzen einen Hohlraum 28, in dem die Magnet-Ankeranordnung 24c längs der Mittelachse M beweglich aufgenommen ist.
  • In der in Fig. 1 gezeigten Anordnung haben die Elektromagnet-Spulenanordnungen bzw. die Magnetjochanordnung die in Fig. 4 gezeigte Konfiguration, bei der die Polstege 25a, 25b eine im Wesentlichen viereckige Gestalt haben und nebeneinander unter Bildung von Zwischenräumen zur Aufnahme der Elektromagnet-Spulenanordnungen 24a', 24 a" angeordnet sind. Dabei sind die Polstege 25a, 25b vorzugsweise parallel zueinander angeordnet. Die Magnetjochanordnung kann hier aus einstückigem Weicheisen gebildet sein, aus dem die Polstege bzw. die Zwischenräume ausgeformt sind. In ein derartiges einstückiges Weicheisen-Formteil können Unterbrechungen in Form von Schlitzen oder Langlöchern eingearbeitet sein, die mit elektrisch isolierendem Material gefüllt sind. Es ist aber auch möglich, die Magnetjochanordnung als Formteil aus gesintertem Eisenpulver herzustellen oder aus mehreren, ggf. gegeneinander isolierten Teilstücken zu montieren und zum Beispiel zu verkleben.
  • Fig. 2 zeigt die weichmagnetische Magnet-Ankeranordnung 24c. Sie hat eine weichmagnetische Ankerscheibe 24c, die um die Mittelachse M herum angeordnet ist. Um die in der Ankerscheibe 24c induzierten Wirbelströme beim Betrieb des Brennstoff-Einspritzventils möglichst gering zu halten, ist die Ankerscheibe 24c mit radial orientierten Unterbrechungen 36 versehen. Diese Unterbrechungen haben die Gestalt von zum Rand 30 der Ankerscheibe 24c reichenden Schlitzen 36. Dadurch entstehen radial orientierte Streifen 25, die im Zentrum der Scheibe 24c miteinander verbunden sind.
  • Fig. 3 zeigt die weichmagnetische Magnet-Jochanordnung 24b im Querschnitt. Um die in der Magnet-Jochanordnung 24b induzierten Wirbelströme beim Betrieb des Brennstoff-Einspritzventils möglichst gering zu halten, ist die Magnet-Jochanordnung 24b mit einer Vielzahl von radial orientierten senkrechten Unterbrechungen 36 in Form von Schlitzen versehen. Um das Brennstoff-Einspritzventil fluiddicht zu gestalten, ist zwischen den Schlitzen 36 an der Außenwand ein Materialsteg 38 vorgesehen, der für eine geschlossene Mantelfläche sorgt. Alternativ dazu kann die geschlossene Mantelfläche auch an den radial inneren Enden der Schlitze 36 angeordnet sein. Dies hat außerdem den Vorteil einer ggf. verbesserten Wärmeableitung aus dem Magnetjoch. Dabei sind beide Schalen-Hälften 24b' und 24b" der Magnet-Jochanordnung 24b mit den Schlitzen 36 versehen.
  • Aus dem Vorstehenden wird deutlich, dass die Elektromagnet-Spulenanordnung 24a und die radial orientierten Streifen 25 der weichmagnetischen Ankerscheibe 24c im Wesentlichen rechtwinkelig zueinander orientiert sein können. Es versteht sich, dass dies entweder in der vorstehend beschriebenen Form mit radial orientierten Streifen 25 der Anker-Anordnung 24b und einer spiralförmigen Elektromagnet-Spulenanordnung 24a bzw. Magnet-Jochanordnung 24b realisiert werden kann, oder umgekehrt. Es ist aber auch möglich, mit konzentrischen Ankerteilen und einer sternförmig gestalteten Elektromagnet-Spulenanordnung die Betätigungseinrichtung 24 zu realisieren.
  • Die Magnet-Ankeranordnung 24c ist eine kreisrunde eisenhaltige Scheibe mit einer weiter unten im Detail beschriebenen Gestalt. Die Elektromagnet-Spulenanordnung 24a und die Magnet-Ankeranordnung 24c überlappen sich in radialer Richtung bezogen auf die Mittelachse (M). Wie in der Fig. 1 gezeigt ist, hat die Elektromagnet-Spulenanordnung 24a einen geringeren Außendurchmesser als die Ankerscheibe 24c, so dass der aus der Elektromagnet-Spulenanordnung 24a hervorgerufene magnetische Fluss praktisch ohne nennenswerte Streu-Verluste in die Ankerscheibe 24c eindringt. Damit wird ein besonders effizienter Magnetkreis realisiert, der sehr geringe Ventil-Öffnungs-/Schließ-Zeiten sowie hohe Haltekräfte erlaubt.
  • Die Ankerscheibe 24c kann - unabhängig von der Gestaltung des Magnetjoches bzw. der Magnet-Spulenanordnung - auch eine geschlossene Kreisscheibe aus Weicheisen sein, sofern die oben beschriebene Ausgestaltung des Magnetjoches bzw. der Magnet-Spulenanordnung sicherstellt, dass die Streuverluste bzw. Wirbelstromverluste gering genug für den jeweiligen Einsatzzweck sind.
  • Wie in Fig. 1 veranschaulicht, ist die Ankerscheibe 24c mit der Betätigungsstange 22 starr verbunden und in einem durch die Schalen-Hälften 24b' und 24b" der Magnet-Jochanordnung 24b begrenzten Ankerraum 34 längs der Mittelachse M in dem Rohr 17 geführt längsbeweglich aufgenommen. Dabei ist die Ankerscheibe 24c mit der Betätigungsstange 22 durch eine zur Mittelachse M koaxial angeordnete Schraubenfeder 40 belastet, so dass das am Ende der Betätigungsstange 22 befindliche Ventilglied 20a in dem Ventilsitz 20b fluiddicht sitzt, also in seine Geschlossen-Stellung gedrängt ist. Beim Bestromen einer der Spulen (zum Beispiel 24a') der Elektromagnet-Spulenanordnung 24a wird in der Magnet-Jochanordnung 24b ein wirbelstromarmes Magnetfeld induziert, das die Ankerscheibe 24c mit der Betätigungsstange 22 in Richtung der jeweiligen Schalen-Hälfte 24b' zieht in der sich die bestromte Spule befindet. Damit bewegt sich das Ventilglied 20a von dem Ventilsitz 20b weg in seine Offen-Stellung. Beim Bestromen der anderen Spule (zum Beispiel 24a") der Elektromagnet-Spulenanordnung 24a bewegt sich das Ventilglied 20a in die jeweils andere Stellung zu dem Ventilsitz 20b hin in seine Geschlossen-Stellung. Eine am von dem Ventilglied 20a abliegenden Ende der Betätigungsstange 22 auf diese wirkende Schraubenfeder 40 hält das Ventilglied 20a bei unbestromter Elektromagnet-Spulenanordnung 24a in seiner Geschlossen-Stellung.
  • Eine Ausgestaltung der Erfindung besteht darin, über die Betätigungsstange 22 mit dem Ventilglied 20a mehrere (zwei oder mehr) Ankerscheiben 24c zu koppeln, auf die jeweils von einer oder von beiden Seiten eine Spulen-Jochanordnung wirkt. Außerdem kann die Spulenanordnung 24a zu beiden Seiten der weichmagnetischen Magnet-Ankeranordnung 24c jeweils mehrteilig ausgestaltet sein. Dabei sind jeweils zwei oder mehr Elektromagnet-Spulenanordnungen 24a', 24a" vorgesehen, die im Wesentlichen bündig mit den jeweiligen Stirnflächen 27a, 27b der Schalen-Hälften 24b' und 24b" abschließen. Diese Ausführungsform kann bei gleichem Bauvolumen eine erhöhte Magnetfeld-Dichte und damit auch eine gesteigert Ventilglied-Haltekraft und Ventilglied-Betätigungsgeschwindigkeit haben. Durch die einzelnen Spulen einer auf Seite (oberhalb bzw. unterhalb) der jeweiligen Magnet-Ankeranordnung 24c fließt dabei abwechselnd gegensinnig gerichteter Strom. Das Joch-Eisen zwischen den einzelnen Spulen 24a einer Seite kann hier durch gegeneinander isolierte Eisenbleche gebildet sein.
  • Die beiden Ausführungsformen sind mit elektrisch ansteuerbaren Betätigungseinrichtungen 24 gezeigt, bei denen eine zentrale Betätigungsstange 22 von einer scheibenförmigen Magnet-Ankeranordnung 24c bewegt wird. Es ist auch möglich, anstelle der zentralen Betätigungsstange 22 ein Rohr vorzusehen, an dessen Stirnfläche der Magnet-Anker angeordnet ist.
  • Bei der Ausführungsform des Magnet-Joches bzw. der Magnetspulen gemäß Fig. 4 ist jeder einzelne Polsteg von einer separaten Wicklung umgeben. Der besseren Übersicht wegen sind in Fig. 4 nicht alle Polstege mit Elektromagnet-Spulenanordnungen versehen dargestellt. Dabei sind alle Elektromagnet-Spulenanordnungen 24a' und 24 a" entweder gegensinnig gewickelt und gleichsinnig bestromt oder bei gleichsinniger Wicklung gegensinnig bestromt um an gegenüberliegenden Flanken 25a', 25a" der Polstege 25a, 25b jeweils gegensinnig gerichteten elektrischen Strom vorbeiführen.
  • Alternativ dazu ist es auch möglich, die Elektromagnet-Spulenanordnung in der in Fig. 5 gezeigten Konfiguration auszuführen, bei der eine (oder mehrere) Wicklungen mäanderförmig in die Ausnehmungen 26a, 26b zwischen die Polstege 25a, 25b der Magnet-Jochanordnung eingelegt ist (sind). Auch hier wird an gegenüberliegenden Flanken 25a', 25a" jedes der Polstege 25a, 25b jeweils gegensinnig gerichteter elektrischer Strom vorbeigeführt. Ersichtlich haben bei allen Ausführungsformen die Polstege 25a, 25b (und auch die Ausnehmungen 26a, 26) eine zur Mittellängsachse M des Brennstoff-Einspritzventils im Wesentlichen asymmetrische Gestalt, wobei zumindest eine Elektromagnet-Spulenanordnung 24a', 24 a" nicht-kreisringförmig gestaltete Polstege zumindest teilweise so einschließt, dass an deren Flanken gegensinnig gerichteter elektrischer Strom vorbeigeführt wird.
  • Die in den Fig. 6 und 7 gezeigte Ausführungsform einer Elektromagnet-Spulenanordnung 24a wird mit der mit ihr zusammenwirkenden weichmagnetischen Magnet-Jochanordnung 24b integriert hergestellt. Dazu wird ein Weicheisen enthaltendes, lang gestrecktes Jochblech 50 beidseitig mit einem Leiterstreifen 52 umgeben, indem dieser um eine - im späteren, fertigen Zustand innen liegende - Längskante 50' des Jochblechs 50 umgeknickt wird. Neben dem Leiterstreifen 52 wird ein Weicheisen enthaltendes Blechband 54 angeordnet, das genauso dick ist wie der Leiterstreifen 52 und ebenfalls um die - im fertigen Zustand innen liegende - Längskante 50' des Jochblechs 50 umgeknickt wird. Das neben dem Leiterstreifen 52 liegende Blechband 54 dient dazu, zusammen mit dem Abschnitt des Jochbleches 50, an dem es flächig anliegt, - im fertigen Zustand - den Rücken des Magnetjoches zu bilden. Der Leiterstreifen 52 überragt die - im fertigen Zustand außen liegende - seitliche Längskante 50" des Jochblechs 50 an beiden Enden zur elektrischen Kontaktierung. Anschließend wird eine zweite Lage eines ein Weicheisen enthaltenden, lang gezogenen Jochbleches 56 dagegen gelegt, so dass ein Schichtaufbau bestehend aus dem erstem Jochblech 50, den Leiterstreifen 52 und dem Blechband 54, sowie dem zweiten Jochblech 56 entsteht. Dieser Schichtaufbau wird anschließend in der in Fig. 6 gezeigten Weise spiralförmig zusammengerollt, um das aus einer Spule und einem Joch bestehende Gesamtgebilde zu erhalten. Nach dem spiralförmigen Zusammenrollen liegen die ersten und zweiten Jochbleche 50, 56 dicht aneinander an und das Gesamtgebilde ist ein zylindrischer Wickelkörper. Es versteht sich, dass der Leiterstreifen 52 gegen die Weicheisen-Teile 50, 54, 56 elektrisch isoliert ist.
  • Der in Fig. 1 gezeigte, zur Mittellängsachse M koaxiale Luftspalt zwischen der Magnet-Jochanordnung 24b und der Magnet-Ankeranordnung 24c in der Ruhestellung der Betätigungseinrichtung 24 gebildete Luftspalt ist etwa 10 mal größer als das Rastermaß der Polstege. Dabei ist das Rastermaß bei dieser Ausführungsform die Querabmessung der Polstege. Bei der Ausführungsform der Magnet-Jochanordnung 24b nach den Fig. 6, 7 ist das Rastermaß die Dicke des Jochbleches 40. Es sind auch andere Geometrien der Polstege möglich. Bestimmend für das Rastermaß sind die kleinsten Strukturen der Polstege, also deren Längsabmessungen, Querabmessungen, Dicke, etc. welche zu einer feinteiligen Gestalt der auf den Magnet-Anker wirkenden Pole des Magnetjoches führen. Dieses kleine Rastermaß führt zu hoher magnetischer Flussdichte und damit zu hohen Anzugs- bzw. Haltekräften der Ventilanordnung bzw. auch zu einer niedrigen Schaltzeit, da die elektrischen und magnetischen Verluste bzw. die induzierten Gegenkräfte sehr gering sind.
  • In Fig. 8 ist eine weitere Alternative für eine Ausgestaltung der Ankeranordnung gezeigt. Dabei ist die Ankerscheibe 24c mehrlagig aufgebaut. Zwischen zwei relativ dünnen - und damit wirbelstromarmen - Weicheisenlagen 24c' ist zur Erhöhung der mechanischen Stabilität eine Keramiklage 24c" angeordnet und a der Ventilstange 22 befestigt. Es versteht sich, dass die beiden Weicheisenlagen 24c' entweder vollständige Ankerscheiben oder in der oben beschriebenen Art ausgenommene Scheiben sein können. Auch können mehrere derartige Ankeranordnungen entlang der Ventilstange 22 verteilt angeordnet sein.
  • Fig. 9 zeigt Teilansicht einer weiteren erfindungsgemäßen Ausgestaltung der Magnet-Jochanordnung 24b, bei der jeweils zwei im Wesentlichen halbkreis-scheibenförmige Teiljoche 125a zu einer Jochscheibe 125 der Magnet-Jochanordnung 24b zusammengefügt sind. Im Zentrum jeder aus zwei halbkreis-scheibenförmige Teiljochen 125a zusammengesetzten Jochscheibe 125 ist ein halbkreiszylindrische Aussparung 125' (siehe Fig. 10), die eine Lagerbuchse 126 für die Ventilstange 22 aufnimmt. Damit ist jede Jochscheibe aus wenigstens zwei Weicheisen enthaltenden Teiljochen zusammengesetzt, die eine die Magnet-Ankeranordnung tragende Betätigungsstange umgeben. Die jeweiligen Teiljoche einer Jochscheibe werden miteinander verklebt.
  • Jede Jochscheibe 125 der Magnet-Jochanordnung - außer den Jochscheiben an den beiden Enden des Jochscheibenstapels in Fig. 9 - hat an ihren beiden Stirnseiten 128, 130 jeweils einen Polsteg 25a, 25b, der mit der Elektromagnet-Spulenanordnung 24a', 24 a" zusammen auf die Magnet-Ankeranordnung 24c wirkt. Die Magnet-Ankeranordnung 24c ist dabei durch eine entsprechende Anzahl von an der Ventil-Betätigungsstange 22 angeschweißte Weicheisenscheiben gebildet, die mit einer Vielzahl von Bohrungen versehen sind, durch die Brennkraftstoff strömen kann, wenn sich die Magnet-Ankeranordnung 24c zwischen ihren End-stellungen bewegt.
  • Jedes Teiljoch 125a hat an im Bereich seiner äußeren Mantelfläche einen Abstandshalter 130 angeformt, der die Abmessung X des Hohlraumes 28 zwischen den beiden zwei Jochscheiben 125 mitbestimmt. Weiterhin sind im Bereich der äußeren Mantelfläche der Jochscheibe 125 elektrische Verbindungsstücke 132 für die Elektromagnet-Spulenanordnung 24a', 24 a" angeordnet. Damit sind jeweils derselben Seite der Magnet-Ankeranordnungen 24c zugewandte Elektromagnet-Spulenanordnungen 24a', 24 a" für eine gleichphasige elektrische Ansteuerung in Reihen- oder Parallelschaltung verbunden.
  • Die an der Betätigungsstange 22 angeordneten Magnet-Ankeranordnungen 24c bilden somit eine Unterbaugruppe, die mit den beiden aus gestapelten und auf Abstand gehaltenen Teiljochen gebildeten weiteren Unterbaugruppen zusammenzusetzen ist.
  • Ein druckfestes Gehäuse umgibt die Betätigungseinrichtung 24und die Ventilanordnung 20, aus dem elektrische Anschlüsse von den elektrischen Verbindungsstücken 132 für die Elektromagnet-Spulenanordnungen 24a', 24 a" mittels Glasdurchführungen nach außen herausgeführt sind.
  • Die Elektromagnet-Spulenanordnungen 24a', 24 a" sind als Kupfer enthaltende Formteile gebildet, die mittels Aluminiumoxidbeschichtung oder dergl. elektrisch isoliert sind. Diese Formteile werden um die Polstege 25a, 25b herum montiert und nach dem Zusammenfügen der aus einzelnen gestapelten und auf Abstand gehaltenen Teiljochen gebildeten Unterbaugruppe mit den elektrischen Anschlüssen verbunden. Schließlich werden die Elektromagnet-Spulenanordnungen 24a', 24 a" in den Ausnehmungen der Teiljoche vergossen.

Claims (24)

  1. Brennstoff-Einspritzventil für Brennstoff-Einspritzanlagen von Brennkraftmaschinen, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine mit
    - einem Brennstoff-Einlaß (12) , der dazu eingerichtet ist, Brennstoff in das Brennstoff-Einspritzventil einströmen zu lassen,
    - einer elektrisch ansteuerbaren Betätigungseinrichtung (24) die mit einer Ventilanordnung (20) zusammenwirkt, um Brennstoff in direkt oder indirekt gesteuerter Weise durch einen Brennstoff-Auslaß (18) in den Brennraum ausströmen zu lassen, wobei
    -- die Betätigungseinrichtung (24) eine zu bestromende Magnet-Spulenanordnung (24a), eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Jochanordnung (24b), sowie eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Ankeranordnung (24c) aufweist,
    dadurch gekennzeichnet, dass die Magnet-Jochanordnung (24b) aus wenigstens zwei Jochscheiben (125) gebildet ist,
    -- jede Jochscheibe (125) an wenigstens einer ihrer Stirnseiten (127, 129) wenigstens einen Polsteg (25a, 25b) aufweist, der mit der Elektromagnet-Spulenanordnung (24a', 24 a") zusammen auf die Magnet-Ankeranordnung (24c) wirkt, und
    - jede Jochscheibe (125) aus wenigstens zwei Weicheisen enthaltenden Teiljochen (125a) zusammengesetzt ist, die eine die Magnet-Ankeranordnung (24c) tragende Betätigungsstange (22) zumindest teilweise umgeben,- die weichmagnetische Magnet-Jochanordnung (24b) wenigstens zwei zusammengefügte Schalen-Teile (24b', 24b") mit Ausnehmungen (26a, 26b) aufweist, in denen die Elektromagnet-Spulenanordnung (24a', 24 a") aufgenommen ist, die im Wesentlichen bündig mit der jeweiligen Stirnfläche (27a, 27b) eines der Schalen-Teile (24b', 24b") abschließt, wobei die Stirnflächen (27a, 27b) den Hohlraum (28) begrenzen, in dem die Magnet-Ankeranordnung (24c) längs der Mittellängsachse (M) beweglich aufgenommen ist, und
    - dass die Elektromagnet-Spulenanordnung (24a', 24 a") auf wenigstens einer Seite der weichmagnetischen Magnet-Ankeranordnung (24c) durch mehrere Elektromagnet-SpulenAnordnungen gebildet ist.
  2. Brennstoff-Einspritzventil nach Anspruch 1, dadurch gekennzeichnet dass
    - jedes Teiljoch (125a) mit wenigstens einem Abstandshalter (130) zusammenwirkt, der eine Abmessung eines Hohlraumes (28) zwischen zwei Jochscheiben (125) zumindest mitbestimmt.
  3. Brennstoff-Einspritzventil nach Anspruch 2, dadurch gekennzeichnet dass
    - der oder jeder Abstandshalter (130) im Bereich der äußeren Mantelfläche der Jochscheibe (125) angeordnet ist.
  4. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet dass
    - im Bereich der äußeren Mantelfläche der Jochscheibe (125) elektrische Verbindungsstücke (132) für die Elektromagnet-Spulenanordnung (24a', 24 a") angeordnet sind.
  5. Brennstoff-Einspritzventil nach Anspruch 4, dadurch gekennzeichnet dass
    - jeweils derselben Seite der Magnet-Ankeranordnungen (24c) zugewandte Elektromagnet-Spulenanordnungen (24a', 24 a") für eine gleichphasige elektrische Ansteuerung in Reihen-oder Parallelschaltung verbunden sind.
  6. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Polstege (25a, 25b) eine zur Mittellängsachse (M) des Brennstoff-Einspritzventils im Wesentlichen asymmetrische Gestalt aufweisen.
  7. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Polstege (25a, 25b) eine im Wesentlichen mehreckige, vorzugsweise viereckige Gestalt haben und nebeneinander unter Bildung von Zwischenräumen zur Aufnahme der Elektromagnet-Spulenanordnungen (24a', 24 a") angeordnet sind, wobei die Polstege (25a, 25b) vorzugsweise parallel zueinander angeordnet sind.
  8. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet dass
    - jedes Teiljoch () aus Kobalt-Eisen-haltigem Material gebildet ist und jeweils wenigstens einen Polsteg (25a, 25b) aufweist, der von wenigstens einer Elektromagnet-Spulenanordnung (24a', 24 a") zumindest teilweise umgeben ist.
  9. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet dass
    - zumindest eine Elektromagnet-Spulenanordnung (24a', 24 a") nicht-kreisringförmig gestaltete Polstege (25a, 25b) zumindest teilweise einschließt.
  10. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet dass
    - die Betätigungseinrichtung (24) mehr als eine Baugruppe, gebildet durch die Magnet-Spulenanordnung (24a), die Magnet-Jochanordnung (24b), und die Magnet-Ankeranordnung (24c) aufweist, wobei diese Baugruppen gemeinsam gleichsinnig oder gegensinnig auf die Ventilanordnung (20) wirken.
  11. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet dass
    - die Betätigungseinrichtung (24) auf ein bewegliches Ventilglied (20a) der Ventilanordnung (20) einwirkt, um dieses gegenüber einem mit dem Ventilglied (20a) zusammenwirkenden und stromabwärts zu dem Brennstoff-Einlaß (12) angeordneten ortsfesten Ventilsitz (20b) zwischen einer Offen-Stellung und einer Geschlossen-Stellung zu bewegen.
  12. Brennstoff-Einspritzventil nach Anspruch 1, dadurch gekennzeichnet dass
    - die einzelnen Spulen eine Dicke von etwa 20 bis etwa 80 % des zwischen zwei Spulen vorhandenen Magnetjoch-Eisens haben.
  13. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die einzelnen Spulen auf einer Seite der weichmagnetischen Magnet-Ankeranordnung (24c) dazu eingerichtet sind, gegensinnig bestromt zu werden.
  14. Brennstoff Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Magnet-Ankeranordnung (24c) eine weichmagnetische Scheibe mit Ausnehmungen (38), vorzugsweise radial orientierten, zum Rand (30) der Scheibe reichenden Schlitzen, Rund- oder Langlöchern gestaltet ist.
  15. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Magnet-Ankeranordnung (24c) mehrlagig aufgebaut ist, wobei zwischen zwei Weicheisenlagen (24c') eine Keramiklage (24c") angeordnet und an der Betätigungsstange (22) befestigt ist.
  16. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Magnet-Ankeranordnung (24c) und das Ventilglied (20a) über die Betätigungsstange (22) miteinander verbunden sind und durch eine Federanordnung (40) in die Offen-Stellung oder die Geschlossen-Stellung vorgespannt sind und durch Bestromen der Magnet-Spulenanordnung (24a) in die Geschlossen-Stellung oder die Offen-Stellung zu bringen sind.
  17. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Magnet-Ankeranordnungen (24c) an der Betätigungsstange (22) angeschweißt sind.
  18. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die an der Betätigungsstange (22) angeordneten Magnet-Ankeranordnungen (24c) eine Unterbaugruppe bilden, die mit wenigstens einer aus gestapelten und auf Abstand gehaltenen Teiljochen (125a) gebildeten weiteren Unterbaugruppe zusammenzusetzen ist.
  19. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - ein druckfestes Gehäuse die Betätigungseinrichtung (24) und die Ventilanordnung (20) umgibt, aus dem elektrische Anschlüsse für die Elektromagnet-Spulenanordnungen (24a', 24 a") mittels Glasdurchführungen nach außen herausgeführt sind.
  20. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Elektromagnet-Spulenanordnungen (24a', 24 a") als Kupfer enthaltende Formteile gebildet sind, die mittels Keramikbeschichtung, Aluminiumoxidbeschichtung, Elektrophoreselackbeschichtung oder dergl. elektrisch isoliert sind, um die Polstege (25a, 25b) herum montiert sind und nach dem Zusammenfügen der aus einzelnen gestapelten und auf Abstand gehaltenen Teiljochen gebildeten Unterbaugruppe mit den elektrischen Anschlüssen verbunden werden.
  21. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
    - die Elektromagnet-Spulenanordnungen (24a', 24 a") mit den Teiljochen (125a) vergossen oder verklebt sind.
  22. Brennstoff-Einspritzventilanordnung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet dass
    - das Brennstoff-Einspritzventil dazu eingerichtet und dimensioniert ist, in den Brennraum einer fremdgezündeten Brennkraftmaschine zu ragen.
  23. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    - das Brennstoff-Einspritzventil dazu eingerichtet und dimensioniert ist, in den Brennraum einer selbstzündenden Brennkraftmaschine zu ragen.
  24. Montagevorrichtung zur Fertigung eines Brennstoff-Einspritzventils nach einem der vorhergehenden Ansprüche, mit einem Montageblock, der eine der Anzahl der Jochscheiben (125) des Brennstoff-Einspritzventils entsprechende Anzahl von axial beabstandeten Aufnahmen aufweist, die so dimensioniert sind, dass die Jochteile (125a) der Jochscheiben (125) im Wesentlichen spielfrei einzubringen und zu entnehmen sind, wobei die axialen Abstände (X) der Ausnehmungen im Wesentlichen der axialen Erstreckung des Hohlraums (28) zwischen zwei benachbarten Jochscheiben (125) entsprechen, und der ein Verschweißen, Verlöten oder Verkleben von Abstandshaltern (130) mit den Jochteilen erlaubt.
EP05755639A 2004-07-02 2005-07-01 Brennstoff-einspritzventil Expired - Fee Related EP1763630B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004032229A DE102004032229B3 (de) 2004-07-02 2004-07-02 Brennstoff-Einspritzventil
PCT/EP2005/007130 WO2006002953A1 (de) 2004-07-02 2005-07-01 Brennstoff-einspritzventil

Publications (2)

Publication Number Publication Date
EP1763630A1 EP1763630A1 (de) 2007-03-21
EP1763630B1 true EP1763630B1 (de) 2009-10-14

Family

ID=34971307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05755639A Expired - Fee Related EP1763630B1 (de) 2004-07-02 2005-07-01 Brennstoff-einspritzventil

Country Status (5)

Country Link
US (1) US8028937B2 (de)
EP (1) EP1763630B1 (de)
CN (1) CN1981129B (de)
DE (2) DE102004032229B3 (de)
WO (1) WO2006002953A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012184A1 (de) * 2006-08-02 2008-02-07 Continental Teves Ag & Co. Ohg Elektromagnet
DE102006055088B4 (de) * 2006-11-21 2008-12-04 Vacuumschmelze Gmbh & Co. Kg Elektromagnetisches Einspritzventil und Verfahren zu seiner Herstellung sowie Verwendung eines Magnetkerns für ein elektromagnetisches Einspritzventil
DE102007028315A1 (de) 2007-02-07 2008-08-14 Continental Teves Ag & Co. Ohg Elektromagnet
FR2916103B1 (fr) * 2007-05-11 2009-06-26 Cnes Epic Actionneur electromagnetique a reluctance variable
DE102007049974A1 (de) * 2007-10-18 2009-04-23 Robert Bosch Gmbh Streuflussreduzierter Anker
DE102008001822A1 (de) * 2008-05-16 2009-11-19 Robert Bosch Gmbh Magnetventil mit Ankerschlitzung
DE102009038730B4 (de) 2009-08-27 2014-03-13 Vacuumschmelze Gmbh & Co. Kg Blechpaket aus weichmagnetischen Einzelblechen, elektromagnetischer Aktor und Verfahren zu deren Herstellung sowie Verwendung eines weichmagnetischen Blechpakets
KR20110029443A (ko) * 2009-09-15 2011-03-23 현대자동차주식회사 연료 분사량 편차 감소를 위한 콘트롤 밸브 및 이를 포함한 인젝터
DE102010003334A1 (de) 2010-03-26 2011-09-29 Robert Bosch Gmbh Kraftstoffinjektor
DE102012218325A1 (de) * 2012-10-09 2014-04-10 Continental Automotive Gmbh Aktuatoreinheit, insbesondere für die Einspritzung eines Kraftstoffs in einen Brennraum einer Verbrennungskraftmaschine
DE102014225359B4 (de) * 2014-12-10 2021-10-28 Vitesco Technologies GmbH Ventilanordnung für ein Kraftstoffeinspritzsystem und Kraftstoffeinspritzsystem
AT516619B1 (de) 2015-02-27 2016-07-15 Ge Jenbacher Gmbh & Co Og Zylinderkopf und Brennkraftmaschine
DE102015218421A1 (de) 2015-09-24 2017-03-30 Continental Automotive Gmbh Geblechter Magnetanker für eine elektromagnetische Betätigungsvorrichtung sowie Einspritzventil zum Zumessen eines Fluids

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2237746A1 (de) * 1972-08-01 1974-02-07 Bosch Gmbh Robert Einspritzventil fuer dieselbrennkraftmaschinen
GB1599525A (en) * 1977-03-26 1981-10-07 Lucas Industries Ltd Fuel injection nozzle units
US4390856A (en) * 1981-07-31 1983-06-28 Ford Motor Company Multipole solenoids
JPS61142708A (ja) * 1984-12-15 1986-06-30 Diesel Kiki Co Ltd 電磁アクチュエ−タ
US5035360A (en) * 1990-07-02 1991-07-30 The University Of Toronto Innovations Foundation Electrically actuated gaseous fuel timing and metering device
US5207410A (en) * 1992-06-03 1993-05-04 Siemens Automotive L.P. Means for improving the opening response of a solenoid operated fuel valve
JPH10335139A (ja) * 1997-05-28 1998-12-18 Denso Corp ソレノイド
US6036120A (en) * 1998-03-27 2000-03-14 General Motors Corporation Fuel injector and method
US6155503A (en) * 1998-05-26 2000-12-05 Cummins Engine Company, Inc. Solenoid actuator assembly
US6412713B2 (en) * 1999-12-07 2002-07-02 Denso Corporation Fuel injection apparatus
DE10005180C1 (de) * 2000-02-05 2001-08-23 Mannesmann Sachs Ag Dämpfventil, insbesondere für einen Schwingungsdämpfer
DE10005182A1 (de) * 2000-02-05 2001-08-09 Bosch Gmbh Robert Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge
DE10059682A1 (de) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Zerstäuberscheibe und Brennstoffeinspritzventil mit einer Zerstäuberscheibe
DE10136808A1 (de) * 2001-07-27 2003-02-13 Bosch Gmbh Robert Brennstoffeinspritzventil
US6910644B2 (en) * 2001-12-26 2005-06-28 Toyota Jidosha Kabushiki Kaisha Solenoid-operated fuel injection valve
JP3757261B2 (ja) * 2002-08-05 2006-03-22 ボッシュ株式会社 燃料噴射弁
US6892970B2 (en) * 2002-12-18 2005-05-17 Robert Bosch Gmbh Fuel injector having segmented metal core
DE10319285B3 (de) * 2003-04-29 2004-09-23 Compact Dynamics Gmbh Brennstoff-Einspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
DE502005008333D1 (de) 2009-11-26
DE102004032229B3 (de) 2006-01-05
CN1981129A (zh) 2007-06-13
US20080092854A1 (en) 2008-04-24
CN1981129B (zh) 2010-06-02
EP1763630A1 (de) 2007-03-21
WO2006002953A1 (de) 2006-01-12
US8028937B2 (en) 2011-10-04

Similar Documents

Publication Publication Date Title
EP1763630B1 (de) Brennstoff-einspritzventil
DE102007044877A1 (de) Fluid-Einspritzventil
DE3943005C2 (de)
DE60214770T2 (de) Brennstoffeinspritzventil mit einem ferromagnetischen spulenträger
DE19638201A1 (de) Brennstoffeinspritzventil
EP1336048A1 (de) Brennstoffeinspritzventil
WO2000012891A1 (de) Brennstoffeinspritzventil
WO1998013837A1 (de) Brennstoffeinspritzventil
DE19815789A1 (de) Brennstoffeinspritzventil
EP1062421B1 (de) Brennstoffeinspritzventil
WO1999010648A1 (de) Brennstoffeinspritzventil
EP2005448A2 (de) Hubmagnet sowie verfahren zu seiner herstellung
WO2010007153A2 (de) Metallisches verbundbauteil, insbesondere für ein elektromagnetisches ventil
EP1618298B1 (de) Brennstoff-einspritzventil für brennkraftmaschinen
EP0383063A1 (de) Magnetanker
DE102006055088B4 (de) Elektromagnetisches Einspritzventil und Verfahren zu seiner Herstellung sowie Verwendung eines Magnetkerns für ein elektromagnetisches Einspritzventil
EP0937200B1 (de) Elektromagnetisch betätigbares ventil
EP2073223A1 (de) Schaltbare Magnetanordnung als Bestätigungselement für ein Ventil oder andere Funktionselemente
WO2014026922A2 (de) Polrohr für eine aktoreinrichtung
DE3704579A1 (de) Magnetventil fuer kraftstoffeinspritzpumpen von brennkraftmaschinen
WO2014033002A1 (de) Injektor zur krafteinspritzung in eine brennkraftmaschine
DE10360713A1 (de) Elektromagnetischer Linearaktuator
WO1991006109A1 (de) Elektromagnet
WO2001057389A2 (de) Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
EP0925441A1 (de) Elektromagnetisch betätigbares ventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRUENDL, ANDREAS

Inventor name: HOFFMANN, BERNHARD

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20080110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 502005008333

Country of ref document: DE

Date of ref document: 20091126

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100715

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180727

Year of fee payment: 14

Ref country code: FR

Payment date: 20180730

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008333

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522