EP0383063A1 - Magnetanker - Google Patents

Magnetanker Download PDF

Info

Publication number
EP0383063A1
EP0383063A1 EP19900101367 EP90101367A EP0383063A1 EP 0383063 A1 EP0383063 A1 EP 0383063A1 EP 19900101367 EP19900101367 EP 19900101367 EP 90101367 A EP90101367 A EP 90101367A EP 0383063 A1 EP0383063 A1 EP 0383063A1
Authority
EP
European Patent Office
Prior art keywords
magnet armature
armature
magnet
valve body
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19900101367
Other languages
English (en)
French (fr)
Other versions
EP0383063B1 (de
Inventor
Ferdinand Dipl.-Ing. Reiter (Ba)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0383063A1 publication Critical patent/EP0383063A1/de
Application granted granted Critical
Publication of EP0383063B1 publication Critical patent/EP0383063B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/90Electromagnetically actuated fuel injector having ball and seat type valve

Definitions

  • the invention is based on a magnetic armature according to the preamble of the main claim.
  • a magnet armature known (DE-OS 34 18 761 or US-PS 46 51 931), which is made of solid material by drilling and machining surface removal, the various manufacturing steps being very cost-intensive and burrs occurring in various places must be removed.
  • this known magnet armature has a relatively high weight, which results in an undesirable delay in the movement of the magnet armature when the electromagnet is excited or de-energized by the larger mass to be accelerated.
  • the magnetic armature according to the invention with the characterizing features of the main claim has the advantage that it can be manufactured inexpensively in a simple manner and at the same time has flow channels for the medium to be controlled with the lowest possible weight. Deburring processes are unnecessary due to non-cutting shaping and very short response times are achieved due to the low weight when energizing or de-energizing the electromagnet.
  • the magnet armature can advantageously be sawed off from a tube profiled in this way or produced by sintering.
  • FIG. 1 shows an electromagnetically actuated fuel injection valve with a first exemplary embodiment of a magnet armature designed according to the invention
  • FIG. 2 shows a section along the line II-II in FIG. 1
  • FIG. 3 shows a partial view of a second exemplary embodiment of a magnet armature designed according to the invention
  • FIG. 4 shows a section along the line IV-IV in Figure 3.
  • the electromagnetically actuated valve shown in FIG. 1, for example, in the form of an injection valve for fuel as an aggregate of a fuel injection system of a mixture-compressing spark-ignition internal combustion engine has a tubular metal connecting piece 1 made of ferromagnetic material, on the lower core end 2 of which a magnet coil 3 is arranged.
  • the connector 1 thus serves as the core.
  • an intermediate part 6 is connected concentrically to the longitudinal valve axis 4 tightly with the connecting piece 1, for example by soldering or welding.
  • the intermediate part 6 is made of non-magnetic sheet metal, which is deep-drawn and has a first connecting section 47 running coaxially with the valve longitudinal axis 4, with which it completely engages around the core end 2 and is tightly connected to it.
  • a collar 48 which extends radially outward from the first connecting section 47 leads to a second connecting section 49 of the intermediate part 6, which extends coaxially to the longitudinal valve axis 4 and partially projects beyond a connecting part 39 in the axial direction and is tightly connected thereto, for example by soldering or Welding.
  • the diameter of the second connecting section 49 is thus larger than the diameter of the first connecting section 47, so that in the assembled state the tubular connecting part 39 rests with an end face 50 on the collar 48.
  • the first connecting section 47 encompasses a holding shoulder 51 of the core end 2, which has a smaller diameter than the connecting piece 1, and the second connecting section 49 encompasses a holding shoulder 52 of the connecting part which is also of a smaller diameter than in the adjacent area 39.
  • the connecting part 39 made of ferromagnetic material has a holding bore 41 facing away from the end face 50, into which a valve seat body 8 is inserted in a sealed manner, for example by screwing, welding or soldering.
  • the holding bore 41 merges into a transition bore 53, to which a sliding bore 54 adjoins in the vicinity of the end face 50, into which a magnet armature 12 projects and through which the magnet armature 12 is guided.
  • the holding bore 41 and sliding bore 54 can be produced in one clamping during production, so that bores which are aligned exactly with one another result.
  • the magnet armature 12 is not by the intermediate part 6 still guided the transition bore 53 of the connecting part 39.
  • the axial extent of the sliding bore 54 is small compared to the axial length of the magnet armature 12, for example approximately 1/15 of the length of the magnet armature.
  • the metal valve seat body 8 has a fixed valve seat 9 facing the core end 2 of the connecting piece 1.
  • the series of connecting pieces 1, intermediate part 6, connecting part 39 and valve seat body 8 represents a rigid metal unit.
  • a valve body 10 projecting into the transition bore 53 is inserted and connected, which has a thin-walled round connecting pipe 36 and comprises a valve closing member 14, which is connected to the other end of the connecting tube 36 facing the valve seat 9 and may, for example, have the shape of a sphere, a hemisphere or some other shape.
  • the other end of the return spring 18 protrudes into a flow bore 21 of the connecting piece 1 and lies there against a tubular adjustment bushing 22 which is screwed or pressed into the flow bore 21, for example, for adjusting the spring tension.
  • At least a part of the connecting piece 1 and the magnetic coil 3 in their entire axial length are enclosed by a plastic jacket 24, which also encloses at least a part of the intermediate part 6 and the connecting tube 36.
  • the plastic jacket 24 can be achieved by pouring or extrusion coating with plastic.
  • an electrical connector 26 is formed on the plastic casing 24, via which the electrical contacting of the magnet coil 3 and thus its excitation takes place.
  • the magnet coil 3 is surrounded by at least one guide element 28 serving as a ferromagnetic element for guiding the magnetic field lines, which is made of ferromagnetic material and extends in the axial direction over the entire length of the magnet coil 3 and at least partially surrounds the magnet coil 3 in the circumferential direction.
  • at least one guide element 28 serving as a ferromagnetic element for guiding the magnetic field lines, which is made of ferromagnetic material and extends in the axial direction over the entire length of the magnet coil 3 and at least partially surrounds the magnet coil 3 in the circumferential direction.
  • the guide element 28 is designed in the form of a bracket with a curved central region 29 which is adapted to the contour of the magnetic coil and which only partially surrounds the magnetic coil 3 in the circumferential direction and has end sections 31 which extend inwards in the radial direction and which have the connecting piece 1 and the other Merging connecting part 39 partially encompassing one shell end 32 running in the axial direction.
  • 1 shows a valve with two guide elements 28, which can be arranged opposite one another. It may also be expedient for spatial reasons to let the electrical connector 26 run in a plane that is rotated by 90 °, that is to say perpendicular to a plane through the guide elements 28.
  • a radially penetrating slot 37 is provided, which extends over the entire length of the connecting tube 36 and through which the fuel flowing from the magnet armature 12 into an inner channel 38 of the connecting tube 36 into the transition bore 53 and from there to Can reach valve seat 9, downstream of which at least one spray opening 17 is formed in the valve seat body 8, through which the fuel is sprayed into an intake manifold or a cylinder of an internal combustion engine.
  • connection between the connecting tube 36 and the magnet armature 12 and the valve closing element 14 is advantageously carried out by welding or soldering.
  • the pipe wall from the inner channel 38 to In this exemplary embodiment, the penetrating slot 37 runs in a plane passing through the longitudinal axis 4 of the valve from one end to the other end of the connecting pipe 36.
  • the slot 37 represents a large-area hydraulic flow cross-section, through which the fuel flows very quickly from the inner channel 38 into the transition bore 53 and thus can get to the valve seat 9.
  • the thin-walled connecting tube 36 ensures maximum stability with the lowest weight.
  • connection tube 36 can be produced in such a way that sheet metal sections with a rectangular shape are produced from a metal sheet having the thickness of the tube wall, for example by stamping, the length of one side of which is the length of the connection tube 36 to be produced in the axial direction and the other side lengths of which correspond approximately to the circumference of the connection tube to be produced correspond. Then each sheet metal section is rolled or bent into the shape of the desired connecting tube 36, for example with the aid of a mandrel. The two longitudinal end faces of the sheet metal section forming the connecting tube 36 form the slot 37 in that they lie opposite one another at a distance.
  • the connecting pipe 36 with a plurality of flow openings 56, which distribute the pipe wall approximately symmetrically, also in the axial direction penetrate the connecting tube 36.
  • Either the flow openings 56 are obtained in that the sheet metal sections 55 are produced from already perforated sheets, or the flow openings 56 are produced at the same time as the sheet metal sections 55 are produced.
  • the flow openings 56 can run in such a way that the fuel emerging in the transition bore 53 exits radially or is given a swirl.
  • the flow openings 56 can also be inclined in the direction of the valve seat 9.
  • the hollow magnetic armature 12 has a circumference which is profiled in a wave shape over its entire length in such a way that so-called wave troughs 60 and wave peaks projecting beyond it alternate with the connecting tube 36, which is part of the valve body 10 61 are formed.
  • the wave crests 61 have an essentially circular outer surface 62, by means of which the magnet armature 12 is slidably mounted in the sliding bore 54.
  • the troughs 60 of the magnet armature 12 have inner surfaces 63, which form the fastening opening 13 and bear against the connecting tube 36 of the valve body 10 and are connected to the latter, for example, by laser welding.
  • the wave crests 61 have inner surfaces 64 facing the connecting tube 36, which are at a distance from the connecting tube 36 in the radial direction, so that flow cross sections 65 each running in the axial direction are formed between the inner surfaces 64 of the wave crests 61 of the magnet armature 12 and the connecting tube 36.
  • three wave troughs 60 and three wave crests 61 are provided on the magnet armature 12.
  • the number of wave troughs 60 and wave crests 61 and thus the shape of the profile of the circumference of the magnet armature 12 can be changed and adapted to the requirements of the respective electromagnetically actuated valve.
  • the magnet armature 12 according to the invention can be produced, for example, by sintering, by deforming an annular tube having the required length of the magnet armature 12, or by means of a profiled tube from which the magnet armature 12 is separated in the required length.
  • the wave-shaped profile of the armature 12 also enables creation of flow cross sections 65, over which and over the outer circumference of the troughs 60 fuel can flow freely past the magnet armature 12, even if the valve body 10 should be designed as a solid body instead of the connecting tube 36. In any case, the wall of the hollow armature 12 should have the smallest possible thickness in order to keep the weight of the magnet armature 12 as low as possible.
  • the parts that remain the same and have the same effect as in the first exemplary embodiment according to FIGS. 1 and 2 are identified by the same reference numerals.
  • the magnet armature 12 according to FIGS. 3 and 4 only has an area 70 surrounding the valve body 10 in the form of its connecting tube 36, which is profiled in an undulating manner and alternates in accordance with the exemplary embodiment according to FIGS. 1 and 2 has wave troughs 60 abutting the connecting tube 36 and wave crests 61 projecting beyond them in the radial direction.
  • the inner surfaces 63 of the wave troughs 60 also abut the periphery of the connecting tube 36 and are connected to it.
  • the remaining area 71 of the magnet armature, which extends in the direction of the core end 2, is tubular with an annular cross section and has a clear width 72 which is larger than the diameter of the fastening opening 13.
  • the region 71 preferably projects into the sliding bore 54.
  • the exemplary embodiment of the magnet armature 12 shown in FIGS. 3 and 4 likewise has a small wall thickness and can either be produced by sintering or by deforming a tube having the required length of the magnet armature 12 in the region 70 for producing the undulating circumferential region of the magnet armature 12 for attachment to the connecting pipe 36.

Abstract

Bekannte Magnetanker für elektromagnetisch betätigbare Ventile werden aus dem vollen Material herausgearbeitet und weisen ein relativ hohes Gewicht auf, so daß sich nicht ausreichend kurze Schaltzeiten ergeben. Der neue Magnetanker soll einfach herstellbar sein und ein geringes Eigengewicht aufweisen. Um den Magnetanker (12) mit einer Wandung geringer Dicke versehen zu können, ist der Umfang des Magnetankers (12) in einem Bereich, zumindest in dem er den Ventilkörper (36) umgibt, wellenförmig derart profiliert, daß abwechselnd an dem Ventilkörper (36) anliegende sogenannte Wellentäler (60) und in radialer Richtung darüber hinausragende Wellenberge (61) gebildet werden. Die Wellentäler (60) sind mit dem Ventilkörper (36) verbunden, zwischen welchem und den Wellenbergen (61) Strömungsquerschnitte (65) gebildet sind. Der Magnetanker (12) kann durch Sintern, durch Trennen von einem profilierten Rohr oder durch Verformung eines Rohres hergestellt werden. Der Magnetanker findet Verwendung bei einem Kraftstoffeinspritzventil für Kraftstoffeinspritzanlagen von Brennkraftmaschinen.

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Magnetanker nach der Gattung des Hauptanspruchs. Es ist schon ein Magnetanker bekannt (DE-OS 34 18 761 bzw. US-PS 46 51 931), der aus massivem Material durch Bohren und spanendes Oberflächenabtragen hergestellt wird, wobei die verschiedenen Herstellungsschritte sehr kostenintensiv sind und da­bei an den verschiedensten Stellen entstandene Grate entfernt werden müssen. Zusätzlich weist dieser bekannte Magnetanker ein relativ ho­hes Gewicht auf, wodurch sich beim Erregen oder Entregen des Elek­tromagneten durch die zu beschleunigende größere Masse eine uner­wünschte Verzögerung in der Bewegung des Magnetankers ergibt.
  • Vorteile der Erfindung
  • Der erfindungsgemäße Magnetanker mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß er sich auf einfache Art und Weise kostengünstig herstellen läßt und bei ge­ringstmöglichem Eigengewicht zugleich Strömungskanäle für das zu steuernde Medium aufweist. Dabei werden durch spanlose Formgebung Entgratungsvorgänge unnötig und infolge des geringen Gewichtes beim Erregen bzw. Entregen des Elektromagneten sehr kurze Ansprechzeiten erreicht.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vor­teilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Magnetankers möglich.
  • Besonders vorteilhaft ist es, den Umfang des Magnetankers über seine gesamte axiale Länge wellenförmig profiliert auszubilden und die Wellenberge mit einer im wesentlichen kreisförmigen Außenfläche zu versehen. Hierdurch kann in vorteilhafter Weise der Magnetanker von einem in dieser Weise profilierten Rohr abgesägt werden oder durch Sintern hergestellt werden.
  • Vorteilhaft ist es auch, den Magnetanker durch Verformen aus einem kreisringförmigen Rohr herzustellen.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein elektromagnetisch betätigbares Kraftstoffein­spritzventil mit einem ersten Ausführungsbeispiel eines erfindungs­gemäß ausgebildeten Magnetankers, Figur 2 einen Schnitt entlang der Linie II-II in Figur 1, Figur 3 in Teilansicht ein zweites Ausfüh­rungsbeispiel eines erfindungsgemäß ausgebildeten Magnetankers, Fi­gur 4 einen Schnitt entlang der Linie IV-IV in Figur 3.
  • Beschreibung der Ausführungsbeispiele
  • Das in der Figur 1 beispielsweise dargestellte elektromagnetisch be­tätigbare Ventil in Form eines Einspritzventiles für Kraftstoff als Aggregat einer Kraftstoffeinspritzanlage einer gemischverdichtenden fremdgezündeten Brennkraftmaschine hat einen rohrförmigen metallenen Anschlußstutzen 1 aus ferromagnetischem Material, auf dessen unterem Kernende 2 eine Magnetspule 3 angeordnet ist. Der Anschlußstutzen 1 dient somit zugleich als Kern. Anschließend an das Kernende 2 des Anschlußstutzens 1 ist konzentrisch zur Ventillängsachse 4 dicht mit dem Anschlußstutzen 1 ein Zwischenteil 6 verbunden, beispielsweise durch Verlöten oder Verschweißen. Das Zwischenteil 6 ist aus nicht­magnetischem Blech gefertigt, das tiefgezogen ist und koaxial zur Ventillängsachse 4 verlaufend einen ersten Verbindungsabschnitt 47 hat, mit dem es vollständig das Kernende 2 umgreift und mit diesem dicht verbunden ist. Ein sich vom ersten Verbindungsabschnitt 47 ra­dial nach außen erstreckender Kragen 48 führt zu einem zweiten Ver­bindungsabschnitt 49 des Zwischenteiles 6, der sich koaxial zur Ven­tillängsachse 4 verlaufend erstreckt und in axialer Richtung ein Verbindungsteil 39 teilweise überragt und mit diesem dicht verbunden ist, beispielsweise durch Verlöten oder Verschweißen. Der Durchmes­ser des zweiten Verbindungsabschnittes 49 ist somit größer als der Durchmesser des ersten Verbindungsabschnittes 47, so daß im montier­ten Zustand das rohrförmige Verbindungsteil 39 mit einer Stirnfläche 50 am Kragen 48 anliegt. Um kleine Außenmaße des Ventiles zu ermög­lichen, umgreift der erste Verbindungsabschnitt 47 einen Halteabsatz 51 des Kernendes 2, der einen geringeren Durchmesser als der An­schlußstutzen 1 hat, und der zweite Verbindungsabschnitt 49 umgreift einen ebenfalls mit geringerem Durchmesser als im angrenzenden Be­reich ausgebildeten Halteabsatz 52 des Verbindungsteiles 39.
  • Das aus ferromagnetischem Material gefertigte Verbindungsteil 39 hat der Stirnfläche 50 abgewandt eine Haltebohrung 41, in die ein Ven­tilsitzkörper 8 dicht eingesetzt ist, beispielsweise durch eine Ver­schraubung, Verschweißung oder Verlötung. Die Haltebohrung 41 geht in eine Übergangsbohrung 53 über, an die sich in der Nähe der Stirn­fläche 50 eine Gleitbohrung 54 anschließt, in die ein Magnetanker 12 ragt und durch die der Magnetanker 12 geführt wird. Somit können Haltebohrung 41 und Gleitbohrung 54 in einer Aufspannung bei der Fertigung hergestellt werden, so daß sich sehr genau zueinander fluchtende Bohrungen ergeben. Der Magnetanker 12 wird weder durch das Zwischenteil 6 noch die Übergangsbohrung 53 des Verbindungstei­les 39 geführt. Die axiale Erstreckung der Gleitbohrung 54 ist im Vergleich zur axialen Länge des Magnetankers 12 gering, beispiels­weise etwa 1/15 der Länge des Magnetankers.
  • Dem Anschlußstutzen 1 abgewandt weist der metallene Ventilsitzkörper 8 dem Kernende 2 des Anschlußstutzens 1 zugewandt einen festen Ven­tilsitz 9 auf. Die Aneinanderreihung von Anschlußstutzen 1, Zwi­schenteil 6, Verbindungsteil 39 und Ventilsitzkörper 8 stellt eine starre metallene Einheit dar. In eine Befestigungsöffnung 13 des Magnetankers 12 ist ein Ende eines in die Übergangsbohrung 53 ragen­den Ventilkörpers 10 eingesetzt und verbunden, der ein dünnwandiges rundes Verbindungsrohr 36 sowie ein Ventilschließglied 14 umfaßt, das mit dem dem Ventilsitz 9 zugewandten anderen Ende des Ver­bindungsrohres 36 verbunden ist und beispielsweise die Form einer Kugel, einer Halbkugel oder eine andere Form haben kann.
  • Dem Ventilschließglied 14 abgewandt ragt in die Befestigungsöffnung 13 des Magnetankers 12 eine Rückstellfeder 18, die sich mit ihrem einen Ende an einer Stirnfläche des Verbindungsrohres 36 abstützt. Das andere Ende der Rückstellfeder 18 ragt in eine Strömungsbohrung 21 des Anschlußstutzens 1 und liegt dort an einer rohrförmigen Ver­stellbuchse 22 an, die zur Einstellung der Federspannung beispiels­weise in die Strömungsbohrung 21 eingeschraubt oder eingepreßt ist. Mindestens ein Teil des Anschlußstutzens 1 und die Magnetspule 3 in ihrer gesamten axialen Länge sind durch eine Kunststoffummantelung 24 umschlossen, die auch wenigstens noch einen Teil des Zwischen­teils 6 und des Verbindungsrohres 36 umschließt. Die Kunststoffum­mantelung 24 kann durch Ausgießen oder Umspritzen mit Kunststoff er­zielt werden. An der Kunststoffummantelung 24 ist zugleich ein elektrischer Anschlußstecker 26 angeformt, über den die elektrische Kontaktierung der Magnetspule 3 und damit deren Erregung erfolgt.
  • Die Magnetspule 3 ist von wenigstens einem als ferromagnetisches Element zur Führung der Magnetfeldlinien dienenden Leitelement 28 umgeben, das aus ferromagnetischem Material hergestellt ist und sich in axialer Richtung über die gesamte Länge der Magnetspule 3 er­streckt und die Magnetspule 3 in Umfangsrichtung wenigstens teil­weise umgibt.
  • Das Leitelement 28 ist in Form eines Bügels ausgebildet, mit einem an die Kontur der Magnetspule angepaßten gewölbten Mittelbereich 29, der nur teilweise in Umfangsrichtung die Magnetspule 3 umgibt und sich in radialer Richtung nach innen erstreckende Endabschnitte 31 hat, die den Anschlußstutzen 1 und andererseits das Verbindungsteil 39 teilweise umgreifend in jeweils ein in axialer Richtung verlau­fendes Schalenende 32 übergehen. In Figur 1 ist ein Ventil mit zwei Leitelementen 28 dargestellt, die einander gegenüberliegend angeord­net sein können. Es kann auch aus räumlichen Gründen zweckmäßig sein, den elektrischen Anschlußstecker 26 in einer Ebene verlaufen zu lassen, die um 90° verdreht ist, also senkrecht auf einer Ebene durch die Leitelemente 28 steht.
  • In der Rohrwand des Verbindungsrohres 36 ist ein die Rohrwand radial durchdringender Schlitz 37 vorgesehen, der sich über die gesamte Länge des Verbindungsrohres 36 erstreckt und durch den der vom Mag­netanker 12 in einen Innenkanal 38 des Verbindungsrohres 36 zuströ­mende Kraftstoff in die Übergangsbohrung 53 und von dort zum Ventil­sitz 9 gelangen kann, stromabwärts dessen im Ventilsitzkörper 8 we­nigstens eine Abspritzöffnung 17 ausgebildet ist, über die der Kraftstoff in ein Saugrohr oder einen Zylinder einer Brennkraft­maschine abgespritzt wird.
  • Die Verbindung zwischen Verbindungsrohr 36 und Magnetanker 12 sowie Ventilschließglied l4 erfolgt in vorteilhafter Weise durch Ver­schweißen bzw. Verlöten. Der die Rohrwand vom Innenkanal 38 nach außen durchdringende Schlitz 37 verläuft bei diesem Ausführungsbei­spiel in einer durch die Ventillängsachse 4 gehenden Ebene von einem zum anderen Ende des Verbindungsrohres 36. Der Schlitz 37 stellt da­bei einen großflächigen hydraulischen Strömungsquerschnitt dar, über den der Kraftstoff sehr schnell aus dem Innenkanal 38 in die Über­gangsbohrung 53 und damit zum Ventilsitz 9 gelangen kann. Das dünn­wandige Verbindungsrohr 36 gewährleistet bei geringstem Gewicht größte Stabilität.
  • Die Herstellung des Verbindungsrohres 36 kann derart erfolgen, daß aus einem die Dicke der Rohrwandung aufweisenden Metallblech Blech­abschnitte mit rechteckiger Form beispielsweise durch Stanzen herge­stellt werden, deren eine Seitenlängen der Länge des herzustellenden Verbindungsrohres 36 in axialer Richtung und deren andere Seitenlän­gen etwa dem Umfang des herzustellenden Verbindungsrohres entspre­chen. Danach wird jeder Blechabschnitt etwa unter Zuhilfenahme eines Dornes in die Form des gewünschten Verbindungsrohres 36 gerollt bzw. gebogen. Dabei bilden die beiden in Längsrichtung verlaufenden Stirnflächen des das Verbindungsrohr 36 bildenden Blechabschnittes den Schlitz 37, indem sie mit Abstand einander gegenüberliegen. Um eine unerwünschte Beeinflussung der Strahlform des aus der Abspritz­öffnung 17 abgespritzten Kraftstoffes durch den zum Ventilsitz 9 eventuell unsymmetrisch strömenden Kraftstoff zu vermeiden ist es vorteilhaft, das Verbindungsrohr 36 mit mehreren Strömungsöffnungen 56 zu versehen, die etwa symmetrisch, auch in axialer Richtung, ver­teilt die Rohrwand des Verbindungsrohres 36 durchdringen.
  • Entweder werden die Strömungsöffnungen 56 dadurch erhalten, daß die Blechabschnitte 55 aus bereits perforierten Blechen hergestellt wer­den, oder die Strömungsöffnungen 56 werden zugleich mit der Herstel­lung der Blechabschnitte 55 erzeugt. Die Strömungsöffnungen 56 kön­nen so verlaufen, daß der in die Übergangsbohrung 53 austretende Kraftstoff radial austritt oder einen Drall aufgeprägt erhält. Dabei können die Strömungsöffnungen 56 auch in Richtung zum Ventilsitz 9 hin geneigt verlaufen.
  • Bei dem Ausführungsbeispiel nach Figur 1 und Figur 2 hat der erfin­dungsgemäße hohle Magnetanker 12 einen Umfang, der wellenförmig über seine gesamte Länge derart profiliert ist, daß abwechselnd an dem Verbindungsrohr 36, das Teil des Ventilkörpers 10 ist, anliegende sogenannte Wellentäler 60 und darüber hinausragende Wellenberge 61 gebildet werden. Die Wellenberge 61 haben dabei eine im wesentlichen kreisförmige Außenfläche 62, mittels welcher der Magnetanker 12 in der Gleitbohrung 54 gleitbar gelagert ist. Die Wellentäler 60 des Magnetankers 12 weisen Innenflächen 63 auf, die die Befestigungsöff­nung 13 bilden und an dem Verbindungsrohr 36 des Ventilkörpers 10 anliegen und mit diesem beispielsweise durch Laserschweißen verbun­den sind. Die Wellenberge 61 haben dem Verbindungsrohr 36 zugewandte Innenflächen 64, die gegenüber dem Verbindungsrohr 36 in radialer Richtung einen Abstand haben, so daß zwischen den Innenflächen 64 der Wellenberge 61 des Magnetankers 12 und dem Verbindungsrohr 36 jeweils in axialer Richtung verlaufende Strömungsquerschnitte 65 ge­bildet werden.
  • Bei dem in den Figuren 1 und 2 dargestellten Ausführungsbeispiel sind an dem Magnetanker 12 jeweils drei Wellentäler 60 und drei Wel­lenberge 61 vorgesehen. Die Anzahl der Wellentäler 60 und der Wel­lenberge 61 und damit die Form der Profilierung des Umfanges des Magnetankers 12 kann geändert und an die Erfordernisse des jeweili­gen elektromagnetisch betätigten Ventiles angepaßt werden. Der er­findungsgemäße Magnetanker 12 kann beispielsweise durch Sintern, durch Verformung eines die erforderliche Länge des Magnetankers 12 aufweisenden kreisringförmigen Rohres oder mittels eines profilier­ten Rohres hergestellt werden, von dem in der erforderlichen Länge der Magnetanker 12 abgetrennt wird. Bei allen diesen Herstellungs­verfahren ist die zerspanende Bearbeitung auf ein Mindestmaß ver­ringert oder ganz vermieden, so daß ein Entgraten nur in einem ge­ringen Umfang oder gar nicht erfolgen braucht. Die wellenförmige Profilierung des Magnetankers 12 ermöglicht zugleich die Schaffung von Strömungsquerschnitten 65, über die und über den Außenumfang der Wellentäler 60 Kraftstoff ungehindert am Magnetanker 12 vorbeiströ­men kann, auch wenn anstelle des Verbindungsrohres 36 der Ventilkör­per 10 als Vollkörper ausgebildet sein sollte. In jedem Falle soll die Wandung des hohlen Magnetankers 12 eine möglichst geringe Dicke aufweisen, um das Gewicht des Magnetankers 12 möglichst gering zu halten.
  • Bei dem zweiten Ausführungsbeispiel eines erfindungsgemäßen Magnet­ankers sind die gegenüber dem ersten Ausführungsbeispiel nach den Figuren 1 und 2 gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Abweichend von dem Ausfüh­rungsbeispiel nach den Figuren 1 und 2 weist der Magnetanker 12 nach den Figuren 3 und 4 lediglich einen den Ventilkörper 10 in Form seines Verbindungsrohres 36 umgebenden Bereich 70 auf, der wellen­förmig profiliert ist und entsprechend dem Ausführungsbeispiel nach den Figuren 1 und 2 abwechselnd an dem Verbindungsrohr 36 anliegende Wellentäler 60 und in radialer Richtung darüber hinausragende Wel­lenberge 61 aufweist. In diesem Bereich 70 des Magnetankers 12 lie­gen ebenfalls die Innenflächen 63 der Wellentäler 60 am Umfang des Verbindungsrohres 36 an und sind mit diesem verbunden. Der sich in Richtung zum Kernende 2 erstreckende verbleibende Bereich 71 des Magnetankers ist rohrförmig mit kreisringförmigem Querschnitt ausge­bildet und hat eine Lichte Weite 72, die größer als der Durchmesser der Befestigungsöffnung 13 ist. Vorzugsweise ragt der Bereich 71 in die Gleitbohrung 54.
  • Das in den Figuren 3 und 4 dargestellte Ausführungsbeispiel des Mag­netankers 12 weist ebenfalls eine geringe Wanddicke auf und kann entweder durch Sintern hergestellt werden, oder durch Verformung ei­nes die erforderliche Länge des Magnetankers 12 aufweisenden Rohres in dem Bereich 70 zur Herstellung des wellenförmigen Umfangsberei­ches des Magnetankers 12 zur Befestigung an dem Verbindungsrohr 36.

Claims (7)

1. Magnetanker für ein elektromagnetisch betätigbares Ventil, insbe­sondere Kraftstoffeinspritzventil für Kraftstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen, das wenig­stens einen von einer Magnetspule umgebenen Kern hat, dem der hohle Magnetanker zugewandt ist, der mit einem sich in Richtung zu einem Ventilsitz erstreckenden Ventilkörper verbunden ist, dadurch gekenn­zeichnet, daß der Umfang des Magnetankers (12) zumindest in einem Bereich (70), in dem er den Ventilkörper (36, 14) umgibt, wellenför­mig derart profiliert ist, daß abwechselnd an dem Ventilkörper (36, 14) anliegende sogenannte Wellentäler (60) und in radialer Richtung darüber hinausragende Wellenberge (61) gebildet werden.
2. Magnetanker nach Anspruch 1, dadurch gekennzeichnet, daß der Um­fang des Magnetankers (12) über seine gesamte axiale Länge wellen­förmig profiliert ausgebildet ist.
3. Magnetanker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wellenberge (61) eine im wesentlichen kreisförmige Außenfläche (62) haben.
4. Magnetanker nach Anspruch 1, dadurch gekennzeichnet, daß der Mag­netanker (12) durch Sintern hergestellt ist.
5. Magnetanker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Magnetanker (12) durch Verformung eines kreisringförmigen Rohres hergestellt ist.
6. Magnetanker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Magnetanker (12) aus einem profilierten Rohr hergestellt ist.
7. Magnetanker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wellentäler (60) des Magnetankers (12) mit einer Innenfläche (63) am Ventilkörper (36, 14) anliegen und eine dem Ventilkörper (36, 14) zugewandte Innenfläche (64) der Wellenberge (61) in radia­ler Richtung einen Abstand zum Ventilkörper (36, 14) hat
EP90101367A 1989-02-15 1990-01-24 Magnetanker Expired - Lifetime EP0383063B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3904447A DE3904447A1 (de) 1989-02-15 1989-02-15 Magnetanker
DE3904447 1989-02-15

Publications (2)

Publication Number Publication Date
EP0383063A1 true EP0383063A1 (de) 1990-08-22
EP0383063B1 EP0383063B1 (de) 1992-04-22

Family

ID=6374077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90101367A Expired - Lifetime EP0383063B1 (de) 1989-02-15 1990-01-24 Magnetanker

Country Status (6)

Country Link
US (1) US4946132A (de)
EP (1) EP0383063B1 (de)
JP (1) JP3112080B2 (de)
KR (2) KR970009536B1 (de)
BR (1) BR9000661A (de)
DE (2) DE3904447A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925212C2 (de) * 1989-07-29 1997-03-27 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE4008675A1 (de) * 1990-03-17 1991-09-19 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
US5199648A (en) * 1991-03-20 1993-04-06 Zexel Corporation Fuel injection valve
DE4111987C2 (de) * 1991-04-12 1995-01-12 Bosch Gmbh Robert Elektromagnetventil
US5544816A (en) * 1994-08-18 1996-08-13 Siemens Automotive L.P. Housing for coil of solenoid-operated fuel injector
DE19629589B4 (de) * 1996-07-23 2007-08-30 Robert Bosch Gmbh Brennstoffeinspritzventil
JPH1047209A (ja) * 1996-07-29 1998-02-17 Mitsubishi Electric Corp 筒内噴射用燃料噴射弁
JP3913841B2 (ja) * 1997-07-02 2007-05-09 本田技研工業株式会社 噴射弁
DE19730202A1 (de) * 1997-07-15 1999-01-21 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
US5957161A (en) * 1998-11-05 1999-09-28 Borg-Warner Automotive, Inc. Long stroke balanced solenoid
US6283384B1 (en) * 1999-11-23 2001-09-04 Siemens Automotive Corporation Fuel injector with weld integrity arrangement
US6422486B1 (en) 2000-03-31 2002-07-23 Siemens Automotive Corporation Armature/needle assembly for a fuel injector and method of manufacturing same
WO2002018828A1 (fr) * 2000-08-28 2002-03-07 Nok Corporation Vanne electromagnetique
JP2002074000A (ja) 2000-08-28 2002-03-12 Sanwa Bank Ltd 情報通信ネットワークを介した資金決済処理支援システム
DE10143500A1 (de) * 2001-09-05 2003-03-20 Bosch Gmbh Robert Brennstoffeinspritzventil
US7458530B2 (en) * 2001-10-05 2008-12-02 Continental Automotive Systems Us, Inc. Fuel injector sleeve armature
US6644568B1 (en) * 2002-10-24 2003-11-11 Visteon Global Technologies, Inc. Fuel injector with spiral-wound spring adjustment tube
EP2354528B1 (de) * 2010-01-15 2012-08-29 Continental Automotive GmbH Ventilanordnung und Einspritzventil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1543001A (en) * 1923-09-05 1925-06-23 Edwin G Gaynor Magnetic core
DE3046890A1 (de) * 1980-12-12 1982-07-15 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil, insbesondere kraftstoffeinspritzventil fuer kraftstoffeinspritzanlagen
GB2116255A (en) * 1982-03-05 1983-09-21 Bosch Gmbh Robert Electromagnetically actuable fuel injection valve
EP0231754A1 (de) * 1986-01-09 1987-08-12 Schramme GmbH Hubmagnet
GB2203193A (en) * 1987-04-08 1988-10-12 Bosch Gmbh Robert Electromagnetic valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735570U (de) * 1980-08-07 1982-02-24
US4342421A (en) * 1981-02-23 1982-08-03 General Motors Corporation Thermostatic expansion valve for a refrigeration system
DE3418761A1 (de) * 1984-05-19 1985-11-21 Robert Bosch Gmbh, 7000 Stuttgart Einspritzventil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1543001A (en) * 1923-09-05 1925-06-23 Edwin G Gaynor Magnetic core
DE3046890A1 (de) * 1980-12-12 1982-07-15 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil, insbesondere kraftstoffeinspritzventil fuer kraftstoffeinspritzanlagen
GB2116255A (en) * 1982-03-05 1983-09-21 Bosch Gmbh Robert Electromagnetically actuable fuel injection valve
EP0231754A1 (de) * 1986-01-09 1987-08-12 Schramme GmbH Hubmagnet
GB2203193A (en) * 1987-04-08 1988-10-12 Bosch Gmbh Robert Electromagnetic valve

Also Published As

Publication number Publication date
JPH02240476A (ja) 1990-09-25
DE3904447A1 (de) 1990-08-16
US4946132A (en) 1990-08-07
BR9000661A (pt) 1991-01-15
DE59000095D1 (de) 1992-05-27
KR900013197A (ko) 1990-09-05
EP0383063B1 (de) 1992-04-22
KR900013196A (ko) 1990-09-05
KR970009536B1 (en) 1997-06-14
JP3112080B2 (ja) 2000-11-27
KR0130464B1 (ko) 1998-04-09

Similar Documents

Publication Publication Date Title
EP0358922B1 (de) Elektromagnetisch betätigbares Ventil
EP0383063B1 (de) Magnetanker
EP0937201B1 (de) Elektromagnetisch betätigbares ventil
DE19641785C2 (de) Ventilnadel für ein Einspritzventil
EP0720691B1 (de) Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung
EP1208298B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung von austrittsöffnungen an ventilen
DE4109868A1 (de) Einstellbuchse fuer ein elektromagnetisch betaetigbares ventil und verfahren zur herstellung
DE3925212C2 (de) Elektromagnetisch betätigbares Ventil
EP0717816B1 (de) Elektromagnetisch betätigbares ventil
DE19636396A1 (de) Brennstoffeinspritzventil
EP1062421A1 (de) Brennstoffeinspritzventil
EP0383064A1 (de) Magnetanker
DE19860631A1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung eines Magnetmantels für ein Ventil
EP0937200B1 (de) Elektromagnetisch betätigbares ventil
EP0525377A1 (de) Ventil
EP0925441B1 (de) Elektromagnetisch betätigbares ventil
DE4108665C2 (de) Einstellbuchse für ein elektromagnetisch betätigbares Ventil
WO1998055763A1 (de) Brennstoffeinspritzventil
DE10118273A1 (de) Brennstoffeinspritzventil
EP1034369A1 (de) Brennstoffeinspritzventil
DE19751847A1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstofeinspritzventils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19901217

17Q First examination report despatched

Effective date: 19910926

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59000095

Country of ref document: DE

Date of ref document: 19920527

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001228

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010111

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010328

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050124