EP1763630B1 - Soupape d'injection de carburant - Google Patents

Soupape d'injection de carburant Download PDF

Info

Publication number
EP1763630B1
EP1763630B1 EP05755639A EP05755639A EP1763630B1 EP 1763630 B1 EP1763630 B1 EP 1763630B1 EP 05755639 A EP05755639 A EP 05755639A EP 05755639 A EP05755639 A EP 05755639A EP 1763630 B1 EP1763630 B1 EP 1763630B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
arrangement
injection valve
yoke
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05755639A
Other languages
German (de)
English (en)
Other versions
EP1763630A1 (fr
Inventor
Andreas GRÜNDL
Bernhard Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compact Dynamics GmbH
Original Assignee
Compact Dynamics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compact Dynamics GmbH filed Critical Compact Dynamics GmbH
Publication of EP1763630A1 publication Critical patent/EP1763630A1/fr
Application granted granted Critical
Publication of EP1763630B1 publication Critical patent/EP1763630B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • F02M51/0617Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets
    • F02M51/0621Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets acting on one mobile armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1676Means for avoiding or reducing eddy currents in the magnetic circuit, e.g. radial slots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions

Definitions

  • the invention relates to a fuel injection valve for fuel injection systems of internal combustion engines, in particular for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • a fuel injection valve for fuel injection systems of internal combustion engines in particular for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • the fuel injector of the present invention has a fuel inlet adapted to allow fuel to flow into the fuel injector and an electrically controllable actuator cooperating with a valve assembly to direct fuel in a directly or indirectly controlled manner through a fuel outlet to flow into the combustion chamber.
  • the electromagnetic actuator to be energized solenoid coil assembly, cooperating with this substantially soft magnetic magnetic yoke assembly, and cooperating with this substantially soft magnetic magnetic armature arrangement.
  • a fuel injection valve of the above type is known in a variety of designs from several manufacturers (Robert Bosch, Siemens VDO Automotive).
  • these known arrangements have the disadvantage that the number of strokes per working cycle of the internal combustion engine is very limited. In particular, it is so it is not possible to provide the required number of high-speed internal combustion engines required for efficient engine management multiple injections per stroke.
  • the precise variation of the stroke of the valve needle is only very limited possible in these arrangements.
  • the conventional electromagnetic actuators have proven to be a limiting factor for the further development of efficient fuel injectors.
  • an electromagnetic injection valve for controlling an amount of fuel to be fed into an internal combustion engine with an actuatable by an electromagnetic coil system valve body, wherein the valve body cooperates with a magnet armature of the electromagnetic coil system.
  • the electromagnetic coil system has at least two symmetrical to the central longitudinal axis and concentrically arranged coils with identical characteristics that are integrated into a magnetic circuit such that between two adjacent coils each have a first pole body is disposed, and the inner and outer Coil is adjacent to a second polar body. These polar bodies are arranged on the same side of the magnet armature.
  • the pole bodies are dimensioned such that a radial sectional area of a middle first pole body corresponds to the sum of the sectional areas of the adjacent second pole bodies.
  • the function depends significantly on the symmetry of the spatial design of the electromagnetic coil system.
  • the time delay of the electrical and the magnetic Field construction depends primarily on the geometry of the magnetic circuit and in particular on the field diffusion and the eddy currents occurring.
  • a solenoid-operated fuel injection valve in which an opening area of a fuel passage, which is defined as a space between an inner surface of a container into which fuel is introduced and an outer surface of a needle member disposed in the container, is changed.
  • the needle element is displaced in the longitudinal direction by tightening or magnetic forces generated by an electromagnetic device.
  • the electromagnetic device is provided with a first and a second magnetic circuit, by which the tightening or magnetic forces are independently controllable.
  • Patent Abstracts of Japan vol. 199 no. 3, 31 March 1999 such as JP 10 335139 A (Denso Corp) relates to a fuel injector having a fuel inlet, an electrically actuatable actuator cooperating with a valve assembly, a magnet coil assembly to be energized, a soft magnet magnetic yoke assembly cooperating therewith, and a soft magnetic magnet cooperating therewith Anchor arrangement comprises.
  • the magnet yoke assembly is formed of three yoke discs. Each yoke disc has at least one of its end faces a pole web, which acts together with the solenoid coil assembly on the magnet armature assembly.
  • US 2004/118952 A1 (Nussio Randy ) relates to a yoke disc with a pole piece in an actuator of a fuel injection valve.
  • the yoke disc has several partial yokes.
  • the No. 6,065,684 A (Varble et al ) relates to a fuel injector having a housing defining a fuel flow passage having an inlet (20) and an outlet, means for communicating the inlet with a fuel supply source at a controlled increased fuel pressure.
  • An injector serves to selectively close and open the outlet for injecting the fuel through the outlet into a combustion chamber of an engine, the fuel pressure causing the valve to be urged in an opening direction.
  • a return means urges the valve in a closing direction with a force that slightly exceeds the force exerted by the fuel pressure on the valve.
  • An armature is connected to the valve and movable with it.
  • First and second electromagnets are closely spaced at opposite sides of the armature, and when energized, magnetically pull the armature toward the respective electromagnet.
  • first solenoid When the first solenoid is energized, it generates a force sufficient to attract the armature and open the valve against the excess closing force of the return means.
  • second solenoid When the second solenoid is energized, it generates a force sufficient to quickly close the valve with the assistance of the return means against the force of the fuel pressure when the first solenoid is de-energized.
  • the aim of the present invention is to provide fuel injection valves which can help to reduce the fuel consumption of internal combustion engines so as to increase the thermodynamic efficiency of the internal combustion engine.
  • the invention solves this problem in a valve assembly of the type mentioned above by the features specified in claim 1.
  • the inventive design of the components of the electromagnetic actuator can be achieved by the inventive design of the components of the electromagnetic actuator that the fuel injection valve Not only the opening / closing forces required for petrol engines, but even the opening / closing forces required for diesel direct injection with considerably more strokes per stroke (about twice as many as a piezo linear actuator Today's design) can provide with an electromagnetic actuator. Furthermore, the overall arrangement builds at a small diameter outside diameter very compact at quickly provided high ⁇ fFnungs- / closing forces. The inventive design also allows a very efficient mass production with tight tolerances and low reject rate.
  • the valve assembly according to the invention allows the realization of opening / closing cycles with about 40 - 50 microseconds and less. This enables multiple injection processes for efficient engine management both for gasoline engines and for diesel engines. Moreover, it is also possible to increase the fuel throughput through the fuel injection valve in that with the valve arrangement according to the invention the stroke of the valve member with comparable stroke time can be about 3 to 6 times greater than in a piezo-linear actuator of today's design. In addition, the arrangement of the invention allows a very precise control of the course of the stroke over time.
  • each partial yoke cooperates with at least one spacer which at least co-determines a dimension of a cavity between two yoke discs.
  • the spacer or spacers can either be arranged in the region of the outer lateral surface of the yoke disc or be supported between the end faces of two yoke discs.
  • the spacers are either (laser) welded or glued to the partial yokes or the yoke discs.
  • the spacers may also be made in one piece with the partial yokes or the yoke discs at least at one end.
  • electrical connecting pieces for the solenoid coil arrangement can be arranged or extend in the region of the outer circumferential surface of the yoke disc.
  • the individual windings of the solenoid coil assembly can be energized in a simple manner.
  • the same side of the magnet armature assemblies facing solenoid coil assemblies for in-phase electrical drive in series or parallel connection are connected.
  • Under Holding spring is understood here to be a spring with a high spring constant, which is able to hold the valve arrangement against the operating pressures (of the supplied fuel or in the combustion chamber) in one position. This is to be distinguished from a spring which is able to ensure that the valve member remains in a closed position, so that no fuel flows through the valve arrangement into the combustion chamber when the valve assembly is de-energized and there are no operating pressures.
  • the invention makes it possible to open the valve assembly both electrically actuated, and to close electrically actuated and to hold in two positions - but also in intermediate positions - in which the corresponding arranged on both end faces of the armature assembly coil assembly is energized. This can also be achieved a deceleration or acceleration of the valve member on the way between the two end positions. This has the consequence that the valve member can be conveyed considerably "softer" into the valve seat or the opposite end position. This leads to less mechanical stress on the valve member or the valve seat, so that these components do not wear out so quickly. This allows a less robust dimensioning and a smaller diameter of the nozzle needle and thus a reduction of the necessary closing / holding forces.
  • the pole webs have a pitch which is about 2 to about 30 times, preferably about 5 to about 20 times, and particularly preferably about 10 times larger than a between the magnet yoke assembly and the magnetic Anchor arrangement formed air gap in a rest position of the actuator.
  • the ratio between the pitch of the pole web, so a dimension which co-determines the magnetically active surface of the pole web, and the air gap is a function of the size of the valve significantly influencing size.
  • the invention assumes that the ratio should be in the range of between about 2 and about 30, where any ratio between these limits is within the scope of the invention and primarily on the design conditions or requirements (available installation diameter, length, required valve lift, Valve member dynamics, etc.).
  • pole webs having a substantially asymmetrical to the central longitudinal axis of the fuel injection valve shape is avoided that manufacturing inaccuracies or Variations in the magnetic field generation, or temperature fluctuations lead to undesirable operating conditions. Rather, the non-rotationally symmetrical to the central axis of the design of the magnetic yoke or the magnetic coil so far is much less sensitive.
  • the pole webs have a spiral shape to the central longitudinal axis of the fuel injection valve.
  • the pole webs have a substantially polygonal, preferably quadrangular or polygonal shape and are arranged side by side to form spaces for receiving the solenoid coil assemblies, wherein the pole webs are preferably arranged parallel to each other.
  • each partial yoke can be formed from cobalt-iron-containing material and in each case have at least one pole web which is at least partially surrounded by at least one electromagnet coil arrangement.
  • a feature of the invention is that at least one electromagnet coil arrangement can at least partially enclose non-circularly shaped pole webs.
  • This very efficient type of construction allows an embodiment; to arrange a current-conducting tape for forming the magnetic coil assembly and a soft iron-containing sheet metal strip to form a stator yoke back between the sheet containing soft iron between two layers.
  • the current-conducting band and the soft iron-containing sheet-metal strip adjoin one another in each case on one longitudinal edge-electrically insulated.
  • a cascading of several valve drives along the axis of movement of the valve assembly wherein the actuator more than one assembly formed by the magnet coil assembly, the magnet yoke assembly, and the Magnetic armature arrangement comprises. These assemblies act together on the valve assembly - either in the same direction or in opposite directions - to lift the valve member from the valve seat or possibly also braked, hineinzubefern.
  • the actuating device acts on a movable valve member to this against a cooperating with the valve member and arranged downstream of the fuel inlet fixed valve seat between an open position and a Move closed position.
  • the actuating device acts on a movable valve member to move it relative to a cooperating with the valve member fixed valve seat between an open position and a closed position.
  • the magnet yoke arrangement and / or the magnet armature arrangement can be arranged eccentrically or asymmetrically with respect to a center axis of the fuel injection valve.
  • the individual ring coils may have a thickness of about 20 to about 80% of the yoke iron.
  • the individual coils on one side of the magnetically soft magnet armature arrangement can be set up to be energized in opposite directions.
  • the yoke iron can be formed by iron sheets insulated against each other at least on one side of the magnetically soft magnet armature arrangement.
  • the invention is based on the principle to orient the solenoid coil assembly and the magnet armature assembly substantially at right angles to each other.
  • the magnet coil arrangement and the magnet armature arrangement can at least partially, preferably completely overlap in the radial direction to the central longitudinal axis. This realizes a particularly efficient magnetic circuit that allows very small valve opening / closing times.
  • the magnet yoke assembly may be a substantially cylindrical soft magnetic disk body be designed with radial or tangential to the central longitudinal axis oriented interruptions. These breaks may be simple slots or formed to increase the stability of the magnet yoke assembly by material having a higher magnetic resistance than the material of the soft magnetic disk body.
  • the magnet armature arrangement can be formed by two or more spaced-apart strip-shaped soft magnetic sections.
  • the spatial separations may be simple slots or formed to increase the stability by material having a higher magnetic resistance than the material of the strip-shaped soft magnetic sections.
  • the magnet armature assembly may be a soft magnetic disc with recesses, preferably radially oriented, reaching to the edge of the disc slots, or elongated holes designed. Again, the reaching to the edge of the disc slots or slots can be simple recesses or be formed to increase the stability of material having a higher magnetic resistance than the material of the soft magnetic disc.
  • the magnet armature arrangement can also be constructed in multiple layers, with a ceramic layer being arranged between two soft iron layers. This layer structure is attached to the valve rod. To further improve the stability, the two iron layers can also be connected together along the outer circumference.
  • the soft magnetic armature assembly and the valve member can be interconnected and biased by a spring assembly in the open position or the closed position and bring by energizing the solenoid coil assembly in the closed position or the open position.
  • two of the above-described actuators may be provided which act in opposite directions on the valve member and bring this at respective energization in the closed position or the open position.
  • the actuating rod forms together thereon, usually (laser) welded magnet armature assemblies, a subassembly comprising at least a composed of stacked and spaced partial yokes formed further subassembly is composed.
  • a pressure-resistant housing surrounds the actuating device and the valve arrangement, out of which electrical connections for the solenoid coil arrangements are led out by means of glass feedthroughs.
  • the glass bushings ensure a safe, fuel-tight and large-series, fuel-tight and with respect to the operating pressures (up to about 2000 bar) pressure-resistant arrangement for the electrical connections to the fuel injector safely.
  • the solenoid coil assemblies are formed as copper-containing moldings which are electrically insulated by ceramic coating, aluminum oxide coating, electrophoretic paint coating or the like, are mounted around the pole webs, and after assembly of the subassembly formed from individual stacked and spaced partial yokes electrical connections are connected.
  • the solenoid coil arrangements are cast or glued to the partial yokes. This increases the steady-state durability of the fuel injection valve assembly.
  • the fuel injection valve according to the invention can be set up and dimensioned to protrude into the combustion chamber of a foreign-fired internal combustion engine, or into the combustion chamber of a self-igniting internal combustion engine.
  • the invention relates to a mounting device with a mounting block, which has a number of yoke disks of the fuel injector corresponding number of axially spaced receptacles which are dimensioned so that the yoke members of the yoke discs are substantially free of play and remove, the axial Distances of the recesses substantially correspond to the axial extent of the cavity between two adjacent yoke discs, and allows welding, soldering or bonding of spacers with the yoke parts.
  • Fuel injection valve is shown with a to a central longitudinal axis M substantially rotationally symmetrical valve housing 10 in a schematic longitudinal section in a half-open position.
  • a fuel injection valve is used for direct injection of fuel in the not further illustrated combustion chamber of an internal combustion engine.
  • the fuel injector 10 has a radially oriented, lateral fuel inlet 12 through which pressurized fuel can flow into the fuel injector by means of a pump or other pressure transducer not further illustrated.
  • the fuel inlet approximately at 14 indicated central in Fig. 1 Provide the upper portion of the fuel injection valve.
  • a central fuel passage 16 extends through a pipe 17 to a fuel outlet 18.
  • a valve assembly 20 is provided to guide the fuel in a controlled manner through the fuel outlet 18 in FIG to let out the combustion chamber of the internal combustion engine.
  • the valve assembly 20 is formed by a valve member 20a located in the central fuel passage 16 and tapering toward the fuel outlet 18 and a valve seat 20b cooperating with the valve member 20a and configured in accordance with the shape of the valve member 20a.
  • valve member 20a is connected via an actuating rod 22 with an electrically controllable actuator 24 to the valve member 20a between an open position and a closed position (in Fig. 1 move up and down).
  • actuating rod 22 with an electrically controllable actuator 24 to the valve member 20a between an open position and a closed position (in Fig. 1 move up and down).
  • the actuating device 24 is formed by a solenoid coil arrangement 24a, a soft-magnetic magnet yoke arrangement 24b cooperating therewith, and a soft-magnetic magnet armature arrangement 24c cooperating therewith.
  • the magnetically soft magnetic yoke arrangement 24b is formed from two shell halves 24b 'and 24b "which are joined approximately at the level of the section line II-II and have recesses 26a, 26b Fig. 1 in the plan view in the 4 and 5 shown longitudinal extent and are limited by also approximately trapezoidal or parallelogram-shaped pole webs 25a, 25b.
  • a solenoid coil assembly 24 a 'and 24 a was added, the flush with the respective end faces 27a, 27b of the shell halves 24b 'and 24b ".
  • the end surfaces 27a, 27b of the shell halves 24b 'and 24b "define a cavity 28 in which the magnet armature assembly 24c is movably received along the central axis M.
  • the pole webs 25a, 25b have a substantially quadrangular shape and are arranged side by side to form spaces for accommodating the electromagnetic coil arrangements 24a ', 24a "
  • the pole webs 25a, 25b are preferably arranged parallel to one another
  • Magnetic yoke arrangement can here be formed of one-piece soft iron, from which the pole web or the interspaces are formed.In such a one-piece soft iron molding interruptions in the form of slots or slots can be incorporated, which are filled with electrically insulating material possible to produce the Magnetjochanowski as a molded part of sintered iron powder or from several, possibly mutually insulated sections to assemble and, for example, to glue.
  • Fig. 2 shows the soft magnetic magnet armature assembly 24c. It has a soft magnetic armature disc 24c which is arranged around the central axis M around. In order to minimize the induced eddy currents in the armature disk 24c during operation of the fuel injection valve, the armature disk 24c is provided with radially oriented interruptions 36. These interruptions have the shape of reaching to the edge 30 of the armature disc 24c slots 36. This results in radially oriented strips 25 which are connected to each other in the center of the disc 24c.
  • Fig. 3 shows the soft magnetic magnet yoke 24b in cross section.
  • the magnet yoke arrangement 24b is provided with a plurality of radially oriented vertical interruptions 36 in the form of slots.
  • a material web 38 is provided between the slots 36 on the outer wall, which ensures a closed lateral surface.
  • the closed lateral surface may also be arranged at the radially inner ends of the slots 36. This also has the advantage of possibly improved heat dissipation from the yoke.
  • Both shell halves 24b 'and 24b "of the magnet yoke assembly 24b are provided with the slots 36.
  • the solenoid coil assembly 24a and the radially oriented tabs 25 of the soft magnetic armature disc 24c may be oriented substantially perpendicular to one another. It is understood that this can be realized either in the above-described form with radially oriented strips 25 of the armature arrangement 24b and a spiral-shaped solenoid coil arrangement 24a or magnetic yoke arrangement 24b, or vice versa. But it is also possible to realize the actuator 24 with concentric anchor parts and a star-shaped solenoid coil assembly.
  • Magnetic armature assembly 24c is a circular ferrous disk having a shape described in more detail below.
  • the solenoid coil assembly 24a and the magnet armature assembly 24c overlap in the radial direction with respect to the central axis (M).
  • M central axis
  • the solenoid coil assembly 24a has a smaller outer diameter than the armature disk 24c, so that the magnetic flux caused by the solenoid coil assembly 24a penetrates into the armature disk 24c with virtually no significant leakage losses. This results in a particularly efficient magnetic circuit that allows very low valve opening / closing times and high holding forces.
  • the armature disk 24c can also be a closed disk made of soft iron, provided that the above-described embodiment of the magnet yoke or magnet coil arrangement ensures that the leakage losses or eddy current losses are low enough are the respective purpose.
  • the armature disk 24c is rigidly connected to the actuating rod 22 and is longitudinally movably received in the pipe 17 along the center axis M in the pipe 17, in an armature space 34 bounded by the shell halves 24b 'and 24b "of the magnetic yoke assembly 24b is loaded with the actuating rod 22 by a coil spring 40 arranged coaxially with respect to the central axis M, so that the valve member 20a located at the end of the actuating rod 22 is seated in a fluid-tight manner in the valve seat 20b, ie is urged into its closed position during energization of one of the coils (for example 24a ') of the solenoid coil assembly 24a induces a low-turbulence magnetic field in the magnet yoke assembly 24b, which pulls the armature disk 24c with the actuating rod 22 toward the respective shell half 24b' in which the energized coil is located Valve member 20a of the valve seat 20b away in
  • One embodiment of the invention is to couple via the actuating rod 22 with the valve member 20a a plurality of (two or more) armature discs 24c, each acting on one or both sides of a coil yoke assembly.
  • the coil arrangement 24a can be designed to be multi-part on both sides of the soft-magnetic magnet armature arrangement 24c.
  • two or more solenoid coil assemblies 24a ', 24a are provided which are substantially flush with the respective end faces 27a, 27b of the shell halves 24b' and 24b".
  • This embodiment can have an increased magnetic field density and thus an increased valve member holding force and valve member operating speed for the same volume.
  • the yoke iron between the individual coils 24a of one side can be formed here by mutually insulated iron sheets.
  • the two embodiments are shown with electrically controllable actuators 24 in which a central actuating rod 22 is moved by a disk-shaped magnetic armature assembly 24c. It is also possible to provide a tube instead of the central actuating rod 22, on the end face of the magnet armature is arranged.
  • the solenoid coil assembly in the in Fig. 5 shown configuration in which one (or more) windings meander in the recesses 26a, 26b between the pole webs 25a, 25b of the magnet yoke assembly is inserted (are).
  • the pole webs 25a, 25b (and also the recesses 26a, 26) have an electrical current directed in opposite directions to the middle longitudinal axis M of the fuel cell.
  • Injector substantially asymmetrical shape, wherein at least one electromagnet coil assembly 24a ', 24 a "non-annular shaped pole web at least partially encloses so that on the edges of oppositely directed electrical current is passed.
  • a solenoid coil assembly 24a is produced integrally with the cooperating with them soft magnetic yoke assembly 24b.
  • a soft iron-containing, elongated yoke plate 50 is surrounded on both sides with a conductor strip 52 by this to a - in the later, finished state inside - longitudinal edge 50 'of the yoke plate 50 is folded over.
  • a soft iron-containing sheet metal strip 54 is arranged, which is just as thick as the conductor strip 52 and also to the - in the finished state inside - longitudinal edge 50 'of the yoke plate 50 is folded over.
  • the metal strip 54 lying next to the conductor strip 52 serves, together with the section of the yoke plate 50 on which it rests flat, to form - in the finished state - the back of the magnetic yoke.
  • the conductor strip 52 projects beyond the lateral longitudinal edge 50 "of the yoke plate 50 at both ends for electrical contacting, in the finished state, after which a second layer of a soft iron-containing, elongated yoke plate 56 is placed, so that a layer structure consisting of the first yoke plate 50, the conductor strip 52 and the sheet metal strip 54, and the second yoke plate 56.
  • This layer structure is then in the in Fig. 6 shown spiraled together to obtain the existing of a coil and a yoke overall structure.
  • the first and second yoke laminations 50, 56 are close together and the overall structure is a cylindrical former. It is understood that the conductor strip 52 is electrically insulated from the soft iron parts 50, 54, 56.
  • the in Fig. 1 shown, to the central longitudinal axis M coaxial air gap between the magnet yoke assembly 24b and the magnet armature assembly 24c in the rest position of the actuator 24 formed air gap is about 10 times greater than the pitch of the pole webs.
  • the grid dimension in this embodiment is the transverse dimension of the pole webs. In the embodiment of the magnet yoke assembly 24b according to FIGS Fig. 6, 7 the grid dimension is the thickness of the yoke plate 40. Other geometries of the pole webs are also possible. Decisive for the pitch are the smallest structures of the pole webs, so their longitudinal dimensions, transverse dimensions, thickness, etc. which lead to a finely divided shape of the force acting on the magnet armature poles of the magnetic yoke. This small grid leads to high magnetic flux density and thus to high tightening or holding forces of the valve assembly and also to a low switching time, since the electrical and magnetic losses or the induced counter forces are very low.
  • Fig. 8 is shown a further alternative for an embodiment of the armature assembly.
  • the armature disk 24c is constructed in several layers.
  • a ceramic layer 24c is disposed between two relatively thin - and thus low-swirl - soft iron layers 24c 'to increase the mechanical stability and fastened to the valve rod 22. It is understood that the two soft iron layers 24c' either complete armature disks or recessed in the manner described above It is also possible for a plurality of such armature arrangements to be distributed along the valve rod 22.
  • Fig. 9 shows a partial view of a further embodiment according to the invention of the magnetic yoke assembly 24b, in which two substantially semicircular disc-shaped Operajoche 125a are joined together to form a yoke disc 125 of the magnet yoke assembly 24b.
  • a composite yoke disc 125 is a semicircular cylindrical recess 125 '(see Fig. 10 ), which receives a bearing bush 126 for the valve rod 22.
  • each yoke disc composed of at least two soft iron containing part yokes, which surrounds a magnet armature assembly carrying the actuating rod.
  • the respective partial yokes of a yoke disc are glued together.
  • Each yoke disc 125 of the magnet yoke assembly - except the yoke discs at the two ends of the Jochusionnstapels in Fig. 9 - Has at its two end faces 128, 130 each a Polsteg 25a, 25b, which acts together with the solenoid coil assembly 24a ', 24a' on the magnet-armature assembly 24c.
  • the magnet armature assembly 24c is characterized by a corresponding number of the valve actuating rod 22 formed welded soft iron discs, which are provided with a plurality of bores through which fuel can flow when the magnetic armature assembly 24 c moves between their end positions.
  • Each Sectionjoch 125a has formed in the region of its outer circumferential surface a spacer 130, which determines the dimension X of the cavity 28 between the two two yoke discs 125. Furthermore, 125 electrical connectors 132 for the solenoid coil assembly 24a ', 24 a "are arranged in the region of the outer circumferential surface of the yoke disc. Thus, in each case the same side of the magnet armature assemblies 24c facing solenoid coil assemblies 24a ', 24 a "connected for in-phase electrical control in series or parallel connection.
  • the arranged on the actuating rod 22 magnetic armature assemblies 24c thus form a subassembly which is to be assembled with the two formed from stacked and spaced partial yokes further subassemblies.
  • a pressure-resistant housing surrounds the actuator 24 and the valve assembly 20, are led out of the electrical connections from the electrical connectors 132 for the solenoid coil assemblies 24a ', 24 a "by means of glass ducts to the outside.
  • the solenoid coil assemblies 24a ', 24a are formed as copper-containing molded parts electrically insulated by means of alumina coating or the like, which are mounted around the pole lands 25a, 25b and, after joining, stacked and spaced apart Finally, the solenoid coil assemblies 24a ', 24a "are shed in the recesses of the sub-yokes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

L'invention concerne une soupape d'injection de carburant de systèmes d'injection de carburant de moteurs à combustion interne permettant notamment l'injection directe de carburant dans un compartiment de combustion d'un moteur à combustion interne. Cette soupape d'injection comprend une entrée de carburant (12) qui laisse entrer le carburant dans la soupape d'injection de carburant ; un dispositif d'actionnement (24) à commande électrique qui coopère avec un système de soupape (20), pour laisser s'écouler du carburant par commande directe ou indirecte par la sortie carburant (18) du compartiment de combustion. Le dispositif d'actionnement (24) présente un dispositif à bobine magnétique (24a) à alimenter en courant, un dispositif étrier magnétique (24b) à magnétisme sensiblement doux qui coopère avec ce dernier et un dispositif d'ancrage magnétique (24) à magnétisme sensiblement doux qui coopère avec ce dernier. Le dispositif étrier magnétique (24b) est constitué d'au moins deux disques étriers (125). Chaque disque étrier (125) a, sur au moins un de ses côtés frontaux (127,128), au moins un segment polaire (25a, 25b) qui agit avec le dispositif à bobine électromagnétique (24a1, 24a2) sur le dispositif d'ancrage magnétique (24c). Chaque disque étrier (125) est composé d'au moins deux étriers partiels (125a) qui contiennent des fers doux et entourent au moins partiellement une tige de commande (22) portant le dispositif d'ancrage magnétique (24c).

Claims (24)

  1. Soupape d'injection de carburant pour systèmes d'injection de carburant pour moteurs à combustion interne, servant en particulier à injecter directement du carburant dans une chambre de combustion d'un moteur à combustion interne, comprenant
    - une admission de carburant (12) conçue pour faire affluer le carburant dans la soupape d'injection de carburant,
    - un dispositif d'actionnement (24) à commande électrique qui coopère avec un système de soupape (20) pour faire sortir, par commande directe ou indirecte, le carburant par une sortie de carburant (18) et l'injecter dans la chambre de combustion,
    -- le dispositif d'actionnement (24) présentant un dispositif à enroulement magnétique (24a) à alimenter en courant électrique, un dispositif de culasse (24b) à magnétisme pour l'essentiel doux qui coopère avec ledit dispositif à enroulement magnétique, et un dispositif à induit magnétique (24c) à magnétisme pour l'essentiel doux qui coopère avec ledit dispositif à enroulement magnétique,
    caractérisée en ce que le dispositif à culasse magnétique (24b) est constitué d'au moins deux disques de culasse (125),
    -- chaque disque de culasse (125) présente à au moins une de ses faces frontales (127, 129) au moins un segment polaire (25a, 25b) qui agit conjointement avec le dispositif à enroulement électromagnétique (24a', 24a") sur le dispositif à induit magnétique (24c), et
    - chaque disque de culasse (125) est constitué d'au moins deux culasses partielles (125a) contenant du fer doux qui entourent au moins partiellement une tige d'actionnement (22) portant le dispositif à induit magnétique (24c), - le dispositif à culasse magnétique (24b) à magnétisme doux présente au moins deux parties de coque (24b', 24b") assemblées et comportant des évidements (26a, 26b) dans lesquels est logé le dispositif à enroulement électromagnétique (24a', 24a") qui se termine pour l'essentiel en affleurement avec la face frontale (27a, 27b) correspondante d'une des parties de la coque (24b', 24b"), les faces frontales (27a, 27b) délimitant la cavité (28) dans laquelle le dispositif à induit magnétique (24c) est logé de manière mobile le long de l'axe longitudinal médian (M), et
    - en ce que le dispositif à enroulement électromagnétique (24a', 24a") est formé sur au moins un côté du dispositif à induit magnétique à magnétisme doux (24c) par plusieurs dispositifs à enroulement électromagnétique.
  2. Soupape d'injection de carburant selon la revendication 1, caractérisée en ce que
    - chaque culasse partielle (125a) coopère avec au moins un support d'espacement (130) qui détermine pour le moins une dimension d'une cavité (28) comprise entre deux disques de culasse (125).
  3. Soupape d'injection de carburant selon la revendication 2, caractérisée en ce que
    - le ou chaque support d'espacement (130) est disposé dans la zone de la surface circonférentielle extérieure du disque de culasse (125).
  4. Soupape d'injection de carburant selon l'une des revendications 1 à 3, caractérisée en ce que
    - des éléments de connexion électrique (132) pour le dispositif à enroulement électromagnétique (24a', 24a") sont disposés dans la zone de la surface circonférentielle extérieure du disque de culasse (125).
  5. Soupape d'injection de carburant selon la revendication 4, caractérisée en ce que
    - des dispositifs à enroulement électromagnétique (24a', 24a") tournés respectivement vers le même côté des dispositifs à induit magnétique (24c) sont reliés en série ou en parallèle pour une commande électrique en phase.
  6. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - les segments polaires (25a, 25b) présentent une forme pour l'essentiel asymétrique vers l'axe longitudinal médian (M) de la soupape d'injection de carburant.
  7. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - les segments polaires (25a, 25b) présentent une forme pour l'essentiel polygonale, de préférence rectangulaire, et sont disposés les uns à côté des autres de manière à former des espaces intermédiaires destinés à recevoir les dispositifs à enroulement électromagnétique (24a', 24a"), les segments polaires (25a, 25b) étant disposés préférentiellement parallèlement les uns par rapport aux autres.
  8. Soupape d'injection de carburant selon l'une des revendications 1 à 7, caractérisée en ce que
    - chaque culasse partielle (125a) est constituée d'une matière contenant du fer et du cobalt et présente respectivement au moins un segment polaire (25a, 25b), lequel est entouré pour le moins partiellement par au moins un dispositif à enroulement électromagnétique (24a', 24a").
  9. Soupape d'injection de carburant selon l'une des revendications 1 à 8, caractérisée en ce que
    - au moins un dispositif à enroulement électromagnétique (24a', 24a") entoure pour le moins partiellement des segments polaires (25a, 25b) non conçus en forme d'anneau de cercle.
  10. Soupape d'injection de carburant selon l'une des revendications 1 à 9, caractérisée en ce que
    - le dispositif d'actionnement (24) présente plus d'un ensemble constitué par le dispositif à enroulement électromagnétique (24a), le dispositif à culasse magnétique (24b) et le dispositif à induit magnétique (24), les ensembles agissant conjointement dans le même sens ou en sens contraire sur le système de soupape (20).
  11. Soupape d'injection de carburant selon l'une des revendications 1 à 10, caractérisée en ce que
    - le dispositif d'actionnement (24) agit sur un obturateur mobile (20a) du système de soupape (20) pour faire se déplacer ledit obturateur entre une position ouverte et une position fermée par rapport à un siège de soupape (20b) fixe coopérant avec l'obturateur de soupape (20a) et disposé en aval de l'admission de carburant (12).
  12. Soupape d'injection de carburant selon la revendication 1, caractérisée en ce que
    - les enroulements ont chacun une épaisseur comprise entre environ 20 et environ 80% du fer de la culasse magnétique logé entre deux enroulements.
  13. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    -- les différents enroulements disposés sur un côté du dispositif à induit magnétique à magnétisme doux (24c) sont conçus pour être alimentés en courant de sens contraire.
  14. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - le dispositif à induit magnétique (24c) se présente sous la forme d'un disque à magnétisme doux comportant des évidements (38), préférentiellement des fentes, des trous ronds ou des trous oblongs orientés radialement et allant jusqu'au bord (30) du disque.
  15. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - le dispositif à induit magnétique (24c) est réalisé à partir de couches multiples, une couche céramique (24c") étant disposée entre deux couches de fer doux (24c') et fixée à la tige d'actionnement (22).
  16. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - le dispositif à induit magnétique (24c) et l'obturateur (20a) sont reliés entre eux par la tige d'actionnement (22) et précontraints par un ensemble ressort (40) en position ouverte ou en position fermée, et sont amenés en position fermée ou en position ouverte par alimentation en courant du dispositif à enroulement magnétique (24a).
  17. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - les dispositifs à induit magnétique (24c) sont soudés sur la tige d'actionnement (22).
  18. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - les dispositifs à induit magnétique (24c) disposés sur la tige d'actionnement (22) forment un sous-ensemble qui doit être assemblé à au moins un autre sous-ensemble formé à partir de culasses partielles (125a) empilées et maintenues à distance.
  19. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - un carter résistant à la pression, d'où sortent par des traversées de verre des connexions électriques pour les dispositifs à enroulement magnétique (24a', 24a"), entoure le dispositif d'actionnement (24) et le système de soupape (20).
  20. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - les dispositifs à enroulement électromagnétique (24a', 24a") sont réalisés sous forme de pièces moulées contenant du cuivre qui, montées autour des segments polaires (25a, 25b), sont électriquement isolées au moyen d'un revêtement céramique, d'un revêtement d'oxyde d'aluminium, d'une couche de peinture déposée par électrophorèse ou autre et seront reliés aux connexions électriques après qu'a été monté le sous-ensemble formé à partir des différentes culasses partielles empilées et maintenues à distance.
  21. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - les dispositifs à enroulement électromagnétique (24a', 24a") sont coulés ou collés aux culasses partielles (125a).
  22. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - la soupape d'injection de carburant est conçue et dimensionnée pour faire saillie dans la chambre à combustion d'un moteur à combustion interne à allumage commandé.
  23. Soupape d'injection de carburant selon l'une des revendications précédentes,
    caractérisée en ce que
    - la soupape d'injection de carburant est conçue et dimensionnée pour faire saillie dans la chambre à combustion d'un moteur à combustion interne à allumage automatique.
  24. Dispositif de montage pour la fabrication d'une soupape d'injection de carburant selon l'une des revendications précédentes, comprenant un bloc de montage qui présente un nombre de logements axialement espacés identique au nombre de disques de culasse (125) de la soupape d'injection de carburant, lesquels logements sont dimensionnés de telle sorte que les parties (125a) des disques de culasse (125) peuvent y être logées et délogées pour l'essentiel sans jeu, les écarts axiaux (X) des évidements correspondant pour l'essentiel à l'étendue axiale de la cavité (28) entre deux disques de culasse (125) voisins, et qui autorise un soudage, un brasage ou un collage des supports d'espacement (130) aux parties de la culasse.
EP05755639A 2004-07-02 2005-07-01 Soupape d'injection de carburant Expired - Fee Related EP1763630B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004032229A DE102004032229B3 (de) 2004-07-02 2004-07-02 Brennstoff-Einspritzventil
PCT/EP2005/007130 WO2006002953A1 (fr) 2004-07-02 2005-07-01 Soupape d'injection de carburant

Publications (2)

Publication Number Publication Date
EP1763630A1 EP1763630A1 (fr) 2007-03-21
EP1763630B1 true EP1763630B1 (fr) 2009-10-14

Family

ID=34971307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05755639A Expired - Fee Related EP1763630B1 (fr) 2004-07-02 2005-07-01 Soupape d'injection de carburant

Country Status (5)

Country Link
US (1) US8028937B2 (fr)
EP (1) EP1763630B1 (fr)
CN (1) CN1981129B (fr)
DE (2) DE102004032229B3 (fr)
WO (1) WO2006002953A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012184A1 (de) * 2006-08-02 2008-02-07 Continental Teves Ag & Co. Ohg Elektromagnet
DE102006055088B4 (de) * 2006-11-21 2008-12-04 Vacuumschmelze Gmbh & Co. Kg Elektromagnetisches Einspritzventil und Verfahren zu seiner Herstellung sowie Verwendung eines Magnetkerns für ein elektromagnetisches Einspritzventil
DE102007028315A1 (de) 2007-02-07 2008-08-14 Continental Teves Ag & Co. Ohg Elektromagnet
FR2916103B1 (fr) * 2007-05-11 2009-06-26 Cnes Epic Actionneur electromagnetique a reluctance variable
DE102007049974A1 (de) * 2007-10-18 2009-04-23 Robert Bosch Gmbh Streuflussreduzierter Anker
DE102008001822A1 (de) * 2008-05-16 2009-11-19 Robert Bosch Gmbh Magnetventil mit Ankerschlitzung
DE102009038730B4 (de) 2009-08-27 2014-03-13 Vacuumschmelze Gmbh & Co. Kg Blechpaket aus weichmagnetischen Einzelblechen, elektromagnetischer Aktor und Verfahren zu deren Herstellung sowie Verwendung eines weichmagnetischen Blechpakets
KR20110029443A (ko) * 2009-09-15 2011-03-23 현대자동차주식회사 연료 분사량 편차 감소를 위한 콘트롤 밸브 및 이를 포함한 인젝터
DE102010003334A1 (de) 2010-03-26 2011-09-29 Robert Bosch Gmbh Kraftstoffinjektor
DE102012218325A1 (de) * 2012-10-09 2014-04-10 Continental Automotive Gmbh Aktuatoreinheit, insbesondere für die Einspritzung eines Kraftstoffs in einen Brennraum einer Verbrennungskraftmaschine
DE102014225359B4 (de) * 2014-12-10 2021-10-28 Vitesco Technologies GmbH Ventilanordnung für ein Kraftstoffeinspritzsystem und Kraftstoffeinspritzsystem
AT516619B1 (de) 2015-02-27 2016-07-15 Ge Jenbacher Gmbh & Co Og Zylinderkopf und Brennkraftmaschine
DE102015218421A1 (de) 2015-09-24 2017-03-30 Continental Automotive Gmbh Geblechter Magnetanker für eine elektromagnetische Betätigungsvorrichtung sowie Einspritzventil zum Zumessen eines Fluids

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2237746A1 (de) * 1972-08-01 1974-02-07 Bosch Gmbh Robert Einspritzventil fuer dieselbrennkraftmaschinen
GB1599525A (en) * 1977-03-26 1981-10-07 Lucas Industries Ltd Fuel injection nozzle units
US4390856A (en) * 1981-07-31 1983-06-28 Ford Motor Company Multipole solenoids
JPS61142708A (ja) * 1984-12-15 1986-06-30 Diesel Kiki Co Ltd 電磁アクチュエ−タ
US5035360A (en) * 1990-07-02 1991-07-30 The University Of Toronto Innovations Foundation Electrically actuated gaseous fuel timing and metering device
US5207410A (en) * 1992-06-03 1993-05-04 Siemens Automotive L.P. Means for improving the opening response of a solenoid operated fuel valve
JPH10335139A (ja) * 1997-05-28 1998-12-18 Denso Corp ソレノイド
US6036120A (en) * 1998-03-27 2000-03-14 General Motors Corporation Fuel injector and method
US6155503A (en) * 1998-05-26 2000-12-05 Cummins Engine Company, Inc. Solenoid actuator assembly
DE10060657A1 (de) * 1999-12-07 2001-06-13 Denso Corp Kraftstoffeinspritzgerät
DE10005180C1 (de) * 2000-02-05 2001-08-23 Mannesmann Sachs Ag Dämpfventil, insbesondere für einen Schwingungsdämpfer
DE10005182A1 (de) * 2000-02-05 2001-08-09 Bosch Gmbh Robert Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge
DE10059682A1 (de) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Zerstäuberscheibe und Brennstoffeinspritzventil mit einer Zerstäuberscheibe
DE10136808A1 (de) * 2001-07-27 2003-02-13 Bosch Gmbh Robert Brennstoffeinspritzventil
US6910644B2 (en) * 2001-12-26 2005-06-28 Toyota Jidosha Kabushiki Kaisha Solenoid-operated fuel injection valve
JP3757261B2 (ja) * 2002-08-05 2006-03-22 ボッシュ株式会社 燃料噴射弁
US6892970B2 (en) * 2002-12-18 2005-05-17 Robert Bosch Gmbh Fuel injector having segmented metal core
DE10319285B3 (de) * 2003-04-29 2004-09-23 Compact Dynamics Gmbh Brennstoff-Einspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
CN1981129B (zh) 2010-06-02
CN1981129A (zh) 2007-06-13
WO2006002953A1 (fr) 2006-01-12
DE102004032229B3 (de) 2006-01-05
US8028937B2 (en) 2011-10-04
EP1763630A1 (fr) 2007-03-21
DE502005008333D1 (de) 2009-11-26
US20080092854A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
EP1763630B1 (fr) Soupape d'injection de carburant
DE102007044877A1 (de) Fluid-Einspritzventil
DE3943005C2 (fr)
DE60214770T2 (de) Brennstoffeinspritzventil mit einem ferromagnetischen spulenträger
DE19638201A1 (de) Brennstoffeinspritzventil
WO2002038949A1 (fr) Soupape d'injection de carburant
WO1998005861A1 (fr) Soupape d'injection de carburant et son procede de fabrication
EP1049871A1 (fr) Soupape d'injection de carburant
WO1998013837A1 (fr) Soupape d'injection de carburant
DE19815789A1 (de) Brennstoffeinspritzventil
EP0935707A1 (fr) Injecteur de carburant
EP1062421B1 (fr) Soupape d'injection de carburant
EP2005448A2 (fr) Électro-aimant de levage ainsi que procédé de fabrication dudit électro-aimant
WO2010007153A2 (fr) Élément composite métallique, en particulier pour une vanne électromagnétique
EP1618298B1 (fr) Soupape d'injection de carburant pour moteurs a combustion interne
EP0383063A1 (fr) Armature d'aimant
DE102006055088B4 (de) Elektromagnetisches Einspritzventil und Verfahren zu seiner Herstellung sowie Verwendung eines Magnetkerns für ein elektromagnetisches Einspritzventil
EP0937200B1 (fr) Soupape a commande electromagnetique
EP2073223A1 (fr) Agencement d'aimant commutable comme élément de fixation pour une soupape ou d'autres éléments de fonction
WO2014026922A2 (fr) Tube polaire pour un dispositif actionneur
DE3704579A1 (de) Magnetventil fuer kraftstoffeinspritzpumpen von brennkraftmaschinen
DE10360713A1 (de) Elektromagnetischer Linearaktuator
WO1991006109A1 (fr) Electro-aimant
WO2001057389A2 (fr) Soupape d'injection electromagnetique pour reguler une quantite de carburant destinee a alimenter un moteur a combustion interne
EP0925441A1 (fr) Soupape a commande electromagnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRUENDL, ANDREAS

Inventor name: HOFFMANN, BERNHARD

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20080110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 502005008333

Country of ref document: DE

Date of ref document: 20091126

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100715

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180727

Year of fee payment: 14

Ref country code: FR

Payment date: 20180730

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008333

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522