EP1758747A1 - Procede et dispositif pour reguler un circuit de fluide refrigerant d'un systeme de climatisation pour un vehicule - Google Patents

Procede et dispositif pour reguler un circuit de fluide refrigerant d'un systeme de climatisation pour un vehicule

Info

Publication number
EP1758747A1
EP1758747A1 EP05754447A EP05754447A EP1758747A1 EP 1758747 A1 EP1758747 A1 EP 1758747A1 EP 05754447 A EP05754447 A EP 05754447A EP 05754447 A EP05754447 A EP 05754447A EP 1758747 A1 EP1758747 A1 EP 1758747A1
Authority
EP
European Patent Office
Prior art keywords
function
load torque
evaporator temperature
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05754447A
Other languages
German (de)
English (en)
Inventor
Wilhelm Baruschke
Armin Britsch-Laudwein
Karl Lochmahr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1758747A1 publication Critical patent/EP1758747A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3208Vehicle drive related control of the compressor drive means, e.g. for fuel saving purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3238Cooling devices information from a variable is obtained related to the operation of the compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3239Cooling devices information from a variable is obtained related to flow
    • B60H2001/3241Cooling devices information from a variable is obtained related to flow of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3244Cooling devices information from a variable is obtained related to humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the invention relates to a method and a device for regulating a refrigerant circuit, for. B. an R744 refrigerant circuit (C02), an air conditioner for a vehicle.
  • a refrigerant circuit for. B. an R744 refrigerant circuit (C02), an air conditioner for a vehicle.
  • an air conditioning system (also called an air conditioning system) is generally used, which is formed at least from a heating and refrigerant circuit, an air conditioning unit and an air duct.
  • an air conditioning system also called an air conditioning system
  • the load torque of auxiliary units such as. B. the refrigerant compressor, detected and fed to an engine control unit and / or a transmission control unit.
  • the refrigerant compressor is activated by means of the engine control unit in the event of such limitations of the load torque caused by the driving situation or the gearbox control unit is switched off.
  • the refrigerant compressor it is known from DE 101 06243, for example, to use a function of variables to directly form a control signal for the refrigerant compressor based on a function of variables and the inverse function associated with the function as a function of the specified maximum limit torque.
  • the method for situation-related control of the refrigerant compressor preferably for an R134a refrigerant compressor, is determined as a function of the load torque specified by the engine control unit.
  • the object of the invention is to provide a method and a device for regulating a refrigerant circuit, in particular an R744 refrigerant circuit, which enables the best possible indoor air conditioning even when the load torque of a refrigerant compressor is limited due to the driving situation.
  • a refrigerant compressor arranged in the refrigerant circuit is regulated in accordance with an evaporator temperature control and a load torque limiting function integrated in the evaporator temperature control.
  • a setpoint for an evaporator temperature is expediently specified in a basic control loop, in particular a higher-level control of a climate control, which is fed to an evaporator temperature controller to form a manipulated variable from which an actuating signal for a refrigerant compressor is derived.
  • a high-pressure setpoint is determined on the basis of the manipulated variable, which controls lower-level high-pressure control.
  • the evaporator temperature is set via the high pressure control. In the case of limitation, d. H. If the load torque limiting function is to be taken into account, the evaporator temperature cannot be set as required, so that the air conditioning system is operated with reduced output. The deviation from the target value for the evaporator temperature is reduced to a minimum.
  • a constant transition to normal mode is effected by means of the load torque limitation function, for example by keeping the integral part of the evaporator temperature controller constant. This means that the performance of the air conditioning system is reduced as little as possible, even in heavy-duty driving situations.
  • the high pressure setpoint is preferably linked to the load torque limiting function via a MIN function. I.e. the two values present - the high pressure setpoint and the output value of the load torque limiting function - are compared with each other, the lower value being the reference variable for the subordinate high pressure control serves.
  • a current limit value for the high-pressure setpoint is determined on the basis of the load torque limiting function and supplied to the MIN function. Based on the high-pressure setpoint and the current limit value for the high-pressure setpoint, the MIN function is then used to determine the minimum value which is fed to the high-pressure control.
  • a manipulated variable for regulating the high pressure is expediently determined on the basis of the minimum value for the high-pressure setpoint by means of the high-pressure controller, the manipulated variable of the high-pressure regulator being converted into an actuating signal for controlling the stroke volume of the compressor using a transmission characteristic and a pulse width modulator.
  • the current limit value for the high-pressure setpoint is determined from the maximum permissible load torque using the load torque limiting function via a reverse function from the known function dependency of the torque on high pressure, suction pressure, speed and other parameters of an R744 refrigerant circuit.
  • the reverse function can therefore also be referred to as a load torque limiting function.
  • the control signal is thus derived from the reverse function described above when the engine torque is high and the load torque of the refrigerant compressor is limited.
  • the load torque limitation function is given at least one parameter, in particular a maximum permissible load torque, a current value for the suction pressure and / or for the speed of the compressor Degree of pulse width modulation for controlling the compressor control valve, a current value for the air mass flow over the evaporator, for the air inlet temperature, for the air temperature after the evaporator and / or for the air inlet humidity.
  • a maximum permissible load torque a current value for the suction pressure and / or for the speed of the compressor Degree of pulse width modulation for controlling the compressor control valve
  • a current value for the air mass flow over the evaporator for the air inlet temperature, for the air temperature after the evaporator and / or for the air inlet humidity.
  • the current value for the suction pressure, for the air inlet temperature and for the air inlet humidity can be disregarded for simplified accuracy when calculating the limit value.
  • the refrigerant compressor arranged in the refrigerant circuit can be controlled as a function of an evaporator temperature control and a load torque limiting function integrated in the evaporator temperature control.
  • a higher-level basic control loop for determining a setpoint for an evaporator temperature and a downstream evaporator temperature controller are provided, on the basis of which a manipulated variable for the evaporator temperature control is determined.
  • a basic characteristic curve is optionally provided, optionally with a correction characteristic curve, the basic characteristic curve being followed by a limiting module for limiting the high-pressure setpoint value using the load torque limiting function.
  • the load torque limiting function Via the downstream limiting module, e.g. B. a MIN function, the load torque limiting function is connected in parallel to the evaporator temperature controller.
  • the load torque limiting function is set using various parameters, e.g. B. the compressor inlet side suction pressure, the compressor speed, the evaporator temperature, and other input variables or parameters.
  • the load torque limiting function with several. Provide entrances.
  • the limiting module is connected on the input side to an output of the load torque limiting function and the high pressure setpoint resulting from the rule.
  • a high-pressure controller is connected downstream of the limiting module.
  • the refrigerant compressor is followed by a pulse width modulator for forming a pulse width modulated control signal for a control valve of the refrigerant compressor.
  • the advantages achieved by the invention consist in particular in that, without additional components in the case of heavy loads on the engine side, a need-based limitation of the cooling capacity and thus a sufficiently good interior air conditioning is ensured even under unfavorable conditions.
  • Such a solution brings advantages without additional space and weight requirement of the refrigerant circuit and a high degree of operational safety due to an automatic protective function on which the limiting function is based.
  • FIG. 1 shows a device 1 for regulating a refrigerant circuit 2 of an air conditioning system 4 (also called an air conditioning system) for a vehicle.
  • the air conditioning system 4 can also be used as a combined device for cooling or heating in an enclosed space, e.g. B. in the vehicle interior, to be carried air.
  • the air conditioning system 4 comprises a condenser 6 (hereinafter referred to as gas cooler 6) and an evaporator 8.
  • the refrigerant circuit 2 is a closed system in which a refrigerant KM, e.g. B. carbon dioxide, R744, from a compressor 10 to the gas cooler 6 and via an expansion valve 12 to the evaporator 8 in the circuit.
  • a refrigerant KM e.g. B. carbon dioxide, R744
  • the refrigerant circuit 2 shown in the figure also includes an internal heat exchanger 11.
  • the refrigerant KM takes heat from a flow into the vehicle. emits air and releases it back into the ambient air. For this it is necessary that the refrigerant KM has a sufficiently large temperature difference from the air.
  • the refrigerant KM is cooled by pressure loss at the expansion valve 12 arranged in the refrigerant circuit 2; the cooling of the air flowing into the vehicle interior takes place by heat absorption of the refrigerant KM in the evaporator 8.
  • the refrigerant circuit 2 comprises the compressor 10 with a variable stroke volume H for compressing the gaseous refrigerant KM, e.g. B. carbon dioxide.
  • the compressor 10 draws in the gaseous refrigerant KM.
  • the KM gaseous refrigerant drawn in has a low temperature and pressure.
  • the refrigerant KM is compressed by the compressor 10.
  • the gaseous and hot refrigerant KM is led to the gas cooler 6.
  • the refrigerant KM is cooled by the air flowing into the gas cooler 6.
  • the refrigerant KM cooled in the gas cooler 6 is fed to the subsequent suction pressure-side supply of the compressor 10 via the internal heat exchanger 11 and via the expansion valve 12, which works as a throttle.
  • the refrigerant KM relaxes, so that the refrigerant KM cools down considerably.
  • the expansion valve 12 the cooled refrigerant KM is injected into the evaporator 8, where the refrigerant KM of the incoming air, for. B. fresh air, the required heat of vaporization. This cools the air.
  • the cooled air is fed into the vehicle interior via a blower, not shown, and via air ducts.
  • a setpoint value SW (VT) for the evaporator temperature VT is predetermined by a higher-level control system, not shown here. B. sliding from 2 ° C to 10 ° C.
  • the actual value IW (VT) for the evaporator temperature VT on the evaporator 8 is determined by means of a temperature sensor 16.
  • a control deviation RW (VT) for the evaporator temperature VT is determined on the basis of the difference between the setpoint value SW (VT) and the actual value IW (VT) for the evaporator temperature VT.
  • the control "deviation-RW (VT) is an evaporator temperature controller 18, such as a PI controller, is supplied, the resulting forms a manipulated variable u. From the manipulated variable U of the vaporizer temperature regulator 18 by means of a basic characteristic curve 20, a desired value SW (HD) derived for the high pressure HD of the refrigerant KM in the refrigerant circuit 2 after the gas cooler 6.
  • an additional correction characteristic KK is required, with which the target value SW (HD) obtained from the basic characteristic 20 is modified for the high pressure HD in order to obtain a corrected or modified high pressure target value kSW (HD).
  • the input variables E1 to En for correcting the setpoint value SW (HD) for the high pressure HD using the correction characteristic curve 20 are, for example, the air inlet temperature, the air inlet humidity, the air volume and / or the speed of the compressor 10.
  • a load torque limiting function 22 is provided, which is connected in parallel to the evaporator temperature control VR and thus to the evaporator temperature controller 18.
  • the high-pressure setpoint SW (HD) in particular the corrected high-pressure setpoint kSW (HD)
  • the evaporator temperature VT is set on the basis of the high pressure setpoint SW (HD) or the corrected high pressure setpoint kSW (HD).
  • the evaporator temperature VT cannot be set as desired, so that the air conditioning system is operated with reduced power.
  • the deviation from the setpoint SW (VT) for the evaporator temperature VT is reduced to a minimum.
  • the integral portion of the evaporator temperature controller 18 is kept constant or frozen when limited. As a result, the air conditioning system is operated with reduced, but maximum possible output even in heavy-duty driving situations.
  • the high-pressure setpoint value SW (HD) is linked to the load torque limiting function 22 via a MIN function of a limiting module 24 in order to limit the power of the compressor 10.
  • the two applied values - the high pressure setpoint SW (HD) and the output value of the load torque limiting function 22, d. H. the limit value GW for the high-pressure setpoint SW (HD) are compared with one another, the lower value serving as a reference variable in the form of the minimum value MW for the high-pressure control HDR.
  • the instantaneous torque M of the compressor 10 is determined on the basis of various parameters P, which are fed to the load torque limiting function 22, by means of a torque calculation function f.
  • the following can be written for the functional dependence of the instantaneous torque M of the compressor 10:
  • parameter P e.g. B. the refrigerant suction pressure PRCE in front of the compressor, the air inlet temperature T Lucase ⁇ t ⁇ tt or the air inlet humidity ⁇ shipse ⁇ ntntt> can be disregarded.
  • the refrigerant suction pressure PRCE can also be determined via the air temperature TLVA after the evaporator 8.
  • the map of the torque calculation function f is converted into an inverse function f ", which has a limit value GW for the high pressure HD (also called high pressure limit value PRCA ,, m ) for a predetermined maximum allowable load torque M m (also called a torque limit value) ) specifies according to:
  • the resulting minimum value MW for the high-pressure setpoint SW (HD) is then as a rule determined and then fed to a high-pressure controller 26. Furthermore, a pressure sensor 32 is provided for determining the high pressure actual value IW (HD), which determines the high pressure HD in the refrigerant circuit 2 after or, if appropriate, upstream of the gas cooler 6. The difference between the minimum value MW for the high-pressure setpoint SW (HD) and the high-pressure actual value IW (HD) is fed to the high-pressure controller 26 as a pressure difference value ⁇ p.
  • the manipulated variable S for controlling the stroke volume H of the compressor 10 is determined by means of an associated control valve 30 by means of the high-pressure controller 26.
  • the manipulated variable S is converted by means of a pulse width modulator 28 into a pulse width modulated control signal SS for the control valve 30 via an upstream transmission characteristic.
  • the pulse-width-modulated control signal SS is then fed to the control valve 30 of the compressor 10 for controlling the stroke volume H.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un procédé servant à réguler un circuit de fluide réfrigérant (2) d'un système de climatisation (4) pour un véhicule. Selon l'invention, un compresseur (10) placé dans le circuit de fluide réfrigérant (2) est régulé en fonction d'une régulation de température d'évaporateur (VR) et d'une fonction de limitation de couple de charge (22) intégrée dans la régulation de température d'évaporateur (VR).
EP05754447A 2004-06-17 2005-06-01 Procede et dispositif pour reguler un circuit de fluide refrigerant d'un systeme de climatisation pour un vehicule Withdrawn EP1758747A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004029166A DE102004029166A1 (de) 2004-06-17 2004-06-17 Verfahren und Vorrichtung zur Regelung eines Kältemittelkreislaufs einer Klimaanlage für ein Fahrzeug
PCT/EP2005/005878 WO2005123428A1 (fr) 2004-06-17 2005-06-01 Procede et dispositif pour reguler un circuit de fluide refrigerant d'un systeme de climatisation pour un vehicule

Publications (1)

Publication Number Publication Date
EP1758747A1 true EP1758747A1 (fr) 2007-03-07

Family

ID=35455081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05754447A Withdrawn EP1758747A1 (fr) 2004-06-17 2005-06-01 Procede et dispositif pour reguler un circuit de fluide refrigerant d'un systeme de climatisation pour un vehicule

Country Status (5)

Country Link
US (1) US20070261420A1 (fr)
EP (1) EP1758747A1 (fr)
JP (1) JP2008502523A (fr)
DE (1) DE102004029166A1 (fr)
WO (1) WO2005123428A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057159A1 (de) 2004-11-26 2006-06-01 Volkswagen Ag Klimaanlage für ein Kraftfahrzeug
JP4655893B2 (ja) 2005-11-07 2011-03-23 株式会社デンソー 車両用冷凍サイクル装置
DE102007005498A1 (de) * 2007-01-30 2008-07-31 Behr Gmbh & Co. Kg Klimaanlage, insbesondere Kraftfahrzeug-Klimaanlage, und Verfahren zum Regeln einer solchen
DE102007005500A1 (de) * 2007-01-30 2008-07-31 Behr Gmbh & Co. Kg Klimaanlage,insbesondere Kraftfahrzeug-Klimaanlage, und Verfahren zum Regeln einer solchen
BE1019299A3 (nl) * 2010-04-20 2012-05-08 Atlas Copco Airpower Nv Wekwijze voor het aansturen van een compressor.
DE102011007784A1 (de) 2011-04-20 2012-10-25 Behr Gmbh & Co. Kg Kondensator
US9272602B2 (en) * 2011-09-23 2016-03-01 Ford Global Technologies, Llc Method for controlling vehicle climate control system load
US8875529B2 (en) 2011-09-23 2014-11-04 Ford Global Technologies, Llc Method for transitioning between vehicle climate control system modes
US9688116B2 (en) 2011-09-23 2017-06-27 Ford Global Technologies, Llc Method for operating a vehicle climate control system
KR20170004813A (ko) 2015-07-03 2017-01-11 한온시스템 주식회사 압축기의 토크를 결정하기 위한 방법
DE102016001096B4 (de) 2016-02-01 2023-07-27 Audi Ag Verfahren zum Betreiben einer Fahrzeug-Kälteanlage, Fahrzeug-Kälteanlage zur Durchführung des Verfahrens und Fahrzeug mit einer solchen Fahrzeug-Kälteanlage

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120173A (en) * 1977-06-02 1978-10-17 Borg-Warner Corporation Head pressure control system for refrigeration apparatus
US4628700A (en) * 1979-07-31 1986-12-16 Alsenz Richard H Temperature optimizer control apparatus and method
US4667480A (en) * 1986-09-22 1987-05-26 General Electric Company Method and apparatus for controlling an electrically driven automotive air conditioner
JP3092248B2 (ja) * 1991-10-09 2000-09-25 株式会社デンソー 可変容量コンプレッサの駆動トルク検出装置
US5275012A (en) * 1993-01-07 1994-01-04 Ford Motor Company Climate control system for electric vehicle
DE4439780A1 (de) * 1994-11-07 1996-05-09 Sep Tech Studien Kompressor-Kältemaschine
DE19507667A1 (de) * 1995-03-04 1996-09-05 Behr Gmbh & Co Verfahren und Schaltungsanordnung zur Ein-/Ausschaltsteuerung des Kompressors einer Kraftfahrzeug-Klimaanlage
FR2755068B1 (fr) * 1996-10-31 1999-01-08 Valeo Electronique Installation de climatisation a capteur de temperature, notamment pour vehicule automobile
DE19846026A1 (de) * 1998-10-06 2000-04-13 Behr Gmbh & Co Regeleinrichtung für einen Klimaanlagen-Kältemittelkreislauf
US6038871A (en) * 1998-11-23 2000-03-21 General Motors Corporation Dual mode control of a variable displacement refrigerant compressor
DE19920093C1 (de) * 1999-05-03 2000-09-28 Bayerische Motoren Werke Ag Verfahren zur Regelung der Verdampfertemperatur bei einer Fahrzeug-Klimaanlage
JP2001124387A (ja) * 1999-10-26 2001-05-11 Sanden Corp 車両用空気調和装置
JP4221893B2 (ja) * 2000-02-28 2009-02-12 株式会社豊田自動織機 容量可変型圧縮機の容量制御装置及び圧縮機モジュール
DE10106243A1 (de) * 2001-01-31 2002-08-01 Behr Gmbh & Co Verfahren zur Regelung eines Kompressors
JP2002243246A (ja) * 2001-02-15 2002-08-28 Sanden Corp 空調装置
DE10130412A1 (de) * 2001-06-23 2003-03-27 Daimler Chrysler Ag Verfahren zur Regelung einer Kraftfahrzeugklimaanlage
DE10133208C1 (de) * 2001-06-29 2002-10-02 Visteon Global Tech Inc Verfahren und Vorrichtung zur Regelung des Motorlüfters eines Fahrzeuges mit Klimaanlage
DE10140311A1 (de) * 2001-08-16 2003-02-27 Behr Gmbh & Co Klimaanlage
BRPI0103786B1 (pt) * 2001-08-29 2015-06-16 Brasil Compressores Sa Sistema de controle de refrigeração de um ambiente refrigerado, método de controle de um sistema de refrigeração e refrigerador
DE10156250A1 (de) * 2001-11-09 2003-05-22 Behr Hella Thermocontrol Gmbh Verfahren und Vorrichtung zur Regelung einer Klimaanlage mit Saugdruckregelkreis
JP2004060644A (ja) * 2002-06-05 2004-02-26 Denso Corp 圧縮機装置およびその制御方法
JP2004106676A (ja) * 2002-09-18 2004-04-08 Denso Corp 車両用空調装置
ATE383259T1 (de) * 2002-10-02 2008-01-15 Behr Gmbh & Co Kg Verfahren zur regelung einer klimaanlage
JP4083561B2 (ja) * 2002-12-19 2008-04-30 カルソニックカンセイ株式会社 車両用空調装置
DE10300571A1 (de) * 2003-01-10 2004-07-22 Daimlerchrysler Ag Verfahren zum Betreiben eines Klimakompressors eines Kühlmittelkreislaufs eines Kraftfahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005123428A1 *

Also Published As

Publication number Publication date
WO2005123428A1 (fr) 2005-12-29
DE102004029166A1 (de) 2005-12-29
JP2008502523A (ja) 2008-01-31
US20070261420A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
WO2005123428A1 (fr) Procede et dispositif pour reguler un circuit de fluide refrigerant d'un systeme de climatisation pour un vehicule
DE19719792B4 (de) Verfahren und Vorrichtung zur Regulierung der Temperatur eines Mediums
DE60314052T2 (de) Steuerungssysteme für Fahrzeuge
DE112008001709B4 (de) Verdrängungssteuerungssystem für einen Kompressor mit variabler Verdrängung
DE102009018106A1 (de) Klimaanlage mit thermischer Kältespeicherung und Verdampfertemperatursteuerung
DE19826730A1 (de) Kraftfahrzeug-Klimaanlage
DE10106243A1 (de) Verfahren zur Regelung eines Kompressors
DE102010000713A1 (de) Verfahren und Vorrichtung zur Regulierung eines Kühlluftstroms eines Kraftfahrzeugs
DE10051582C2 (de) Fahrzeugklimaanlage
DE102010060777A1 (de) Vorrichtung und Verfahren zum Steuern eines Fahrzeugkompressors
DE102005000846A1 (de) Steuereinrichtung
DE60220091T2 (de) Mit einer elektronischen steuervorrichtung ausgestattete kraftfahrzeug-klimaanlage
DE3829096A1 (de) Vorrichtung zur steuerung von foerderleistungsverstelleinrichtungen eines kaeltemittelkompressors
DE19743828A1 (de) Verfahren zum Betrieb einer Klimaanlage mit Kompressor und Kondensatorgebläse
DE102005017904A1 (de) Verfahren und Vorrichtung zur Regelung eines Kältemittelkreislaufs einer Klimaanlage für ein Fahrzeug
DE19706663B4 (de) Verfahren zur Regelung einer Klimaanlage in einem Kraftfahrzeug
EP1407905B1 (fr) Climatisation pour véhicule et procédé correspondant
DE3816500A1 (de) Verfahren zur regelung des betriebes eines kaeltemittelkompressors
DE60306155T2 (de) Fahrzeugklimaanlageneinheit mit elektronischer steuervorrichtung
DE10052898A1 (de) Fahrzeugklimaanlage
DE102007005498A1 (de) Klimaanlage, insbesondere Kraftfahrzeug-Klimaanlage, und Verfahren zum Regeln einer solchen
EP1740401B1 (fr) Procede et dispositif pour reguler le fonctionnement du circuit d'agent de refroidissement du systeme de climatisation d'un vehicule
DE10133208C1 (de) Verfahren und Vorrichtung zur Regelung des Motorlüfters eines Fahrzeuges mit Klimaanlage
DE19805880C2 (de) Verfahren und Vorrichtung zum Betreiben eines Kältemittelsystems
DE10053438A1 (de) Klimaanlage für Fahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080604