EP1754025A2 - Determination de l'instant de reception d'un signal ultrasonore par detection de forme d'impulsion - Google Patents

Determination de l'instant de reception d'un signal ultrasonore par detection de forme d'impulsion

Info

Publication number
EP1754025A2
EP1754025A2 EP05733644A EP05733644A EP1754025A2 EP 1754025 A2 EP1754025 A2 EP 1754025A2 EP 05733644 A EP05733644 A EP 05733644A EP 05733644 A EP05733644 A EP 05733644A EP 1754025 A2 EP1754025 A2 EP 1754025A2
Authority
EP
European Patent Office
Prior art keywords
time
signal
ultrasonic
ultrasound
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05733644A
Other languages
German (de)
English (en)
Inventor
Tobias Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1754025A2 publication Critical patent/EP1754025A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Definitions

  • the invention relates to an ultrasonic flow sensor according to the preamble of patent claim 1 and a method for determining the time of reception of an ultrasonic signal according to the preamble of patent claim 7.
  • Ultrasonic flow sensors are used in particular to measure the volume or mass flow or the flow rate of a gaseous or liquid medium flowing through a pipeline.
  • a known type of ultrasound flow sensor comprises two ultrasound transducers arranged offset in the flow direction, each of which generates ultrasound signals and emits them to the other ultrasound transducer.
  • the ultrasonic signals are received by the other transducer and evaluated using electronics.
  • the transit time difference between the signal in the flow direction and the signal in the opposite direction is a measure of the flow velocity of the fluid.
  • the desired measurement variable e.g. a volume or mass flow can be calculated.
  • Fig. 1 shows a typical arrangement of an ultrasonic flow sensor with two ultrasonic transducers A, B, which are arranged within a pipe 3 and face each other at a distance L.
  • a fluid 1 flows in the pipeline 3 at a speed v in the direction of the arrow 2.
  • the measuring section L is opposite to the
  • the ultrasonic transducers A, B send each other ultrasonic signals that are either slowed or accelerated by the flow, depending on the direction.
  • the transit times of the sound signals are a measure of the flow velocity to be determined.
  • Fig. 2 shows a highly simplified schematic representation of a transducer arrangement with an associated control and evaluation electronics 4.
  • the flow sensor can e.g. work according to the so-called "sing-around" process.
  • the reception of an ultrasonic signal AO or B0 at one of the transducers A, B triggers an ultrasonic signal in the opposite direction.
  • the "reception time" of the signal A0, B0 is defined here as the first zero crossing No of the signal after the signal amplitude Amp has a predetermined threshold value SW (the so-called pretrigger
  • the time to would be the time of reception of the signal. (Alternatively, the reception time of the signal could also be determined differently, e.g. by evaluating the phase of the signal.)
  • Contamination, drifting or aging of the ultrasonic transducers, or turbulence in the flowing fluid can lead to the amplitude of the ultrasonic signals A0, B0 varying greatly.
  • the zero crossing detection is hardly impaired, since the same zero crossing (based on the entire signal) is always detected as the reception time and the frequency of the signal remains essentially the same.
  • the amplitude of the half-wave lying before the time to falls below the threshold value SW incorrect measurements of the time of reception can occur, since the
  • the ultrasound signal then exceeds the threshold value SW at a later point in time and thus an incorrect zero crossing is detected as the reception time.
  • the receiving unit 4 shows the signal curve of the ultrasonic signal A0, B0 or converter output signal 5 with a reduced amplitude Amp. This signal only exceeds the fixed threshold value SW at a later point in time. In this case, the receiving unit 4 determines the zero crossing Ni and thus an incorrect zero crossing N as the reception time t o of the ultrasonic signal A0, B0.
  • An essential aspect of the invention is the point in time of the form of the ultrasound signal characteristic size (eg the time of the maximum
  • a reception time e.g. a zero crossing
  • the time shift between the reference time and the reception event remains unchanged as long as the threshold lies between the same two amplitudes of the ultrasound signal. If the amplitude of the ultrasound signal or the associated transducer output signal changes so strongly that the threshold lies between two other amplitudes of the signal, the time difference between the characteristic quantity and the detected reception event changes suddenly. This can be recognized by the receiving unit of the ultrasonic flow sensor and the time of reception can be corrected accordingly.
  • the characteristic quantity is preferably a quantity which is independent of the signal amplitude, e.g. the time of the maximum amplitude, the signal center of gravity or the center of gravity of the envelope.
  • the point in time of the center of gravity of the envelope curve determines the reference point in time.
  • the temporal focus of the envelope can e.g. can be calculated in a processor unit according to the following relationship:
  • the receiving unit comprises a device for determining the maximum amplitude of the ultrasound signal.
  • the characteristic quantity is the maximum amplitude of the ultrasound signal.
  • the choice of the maximum amplitude of the ultrasound signal as the reference point in time provides the same result as the choice of the center of gravity of the envelope, provided that the position of the maximum amplitude does not change relative to the other amplitudes. However, if the position of the maximum amplitude shifts relative to the other amplitudes, incorrect measurements can occur since the time interval between the detected reception time to and the reference time changes by n * 2pi.
  • the receiving unit preferably comprises a comparator, at the input of which the transducer output signal generated by the ultrasonic transducer and a reference signal (e.g. a threshold voltage) are present, the receiving unit providing information about the reference time (e.g. time of the maximum amplitude or the center of gravity of the comparator) from the output signal of the comparator Envelope curve).
  • a comparator at the input of which the transducer output signal generated by the ultrasonic transducer and a reference signal (e.g. a threshold voltage) are present, the receiving unit providing information about the reference time (e.g. time of the maximum amplitude or the center of gravity of the comparator) from the output signal of the comparator Envelope curve).
  • the reception event is preferably a zero crossing, but can also be another predetermined criterion.
  • the receiving unit is preferably able to correct the reception time depending on its position in time at the reference time.
  • 1 shows an ultrasonic flow sensor known from the prior art with two ultrasonic transducers; 2 shows an ultrasonic flow sensor with associated control and reception circuit;
  • Receiving time to an ultrasonic signal A0, B0 by means of zero crossing detection is detected as the reception time to.
  • a predetermined threshold value SW is detected as the reception time to.
  • another event e.g. exceeding a threshold value, could also be defined as a reception event.
  • the receiving unit 4 (FIG. 2) also determines the time to of the maximum signal amplitude Amp max and the time difference ⁇ t between the reception time to and the time ti. (You can also choose the time of another characteristic quantity, for example the time of the center of gravity of the envelope curve 6 can be determined as the reference time ti.)
  • the incorrect zero crossing (here Ni) is detected as the reception time t 0 .
  • the time difference ⁇ t changes abruptly by integral multiples of 1 / f or 1 / (2f), where f is the ultrasound frequency. This is recognized by the reception unit 4 and the reception time to is corrected accordingly.
  • FIG. 5 shows a known logic circuit for zero crossing detection, with which the reception time to can be determined.
  • the circuit comprises a first comparator 10, at whose input (-) the ultrasound signal US or the corresponding converter output signal 5 is present, and at whose other input (+) a threshold voltage U sw is supplied as a reference.
  • the output of the comparator 10 always goes into the "high" state when the amplitude of the ultrasonic signal A0, B0 exceeds the reference voltage U sw . From the duration of the high phases, the
  • Time of the maximum amplitude Amp max can be determined.
  • the second comparator 11 of FIG. 5 is used for zero crossing detection.
  • the second comparator 11 receives the ultrasound signal US at its positive input (+) and a corresponding reference voltage (here 0V) at its negative input (-).
  • the output signal K 1, K 2 of the comparators 10, 11 is shown in FIG. 6.
  • FIG. 6 shows the pulse-width-modulated output signal Ki of the first comparator 10.
  • the individual high phases of the signal Ki can be stored and evaluated, for example, in different counters.
  • the longest high phase indicates the maximum amplitude Ampmax of the ultrasonic signal A0 or B0.
  • the comparator output signal could be processed further analog or digital or evaluated arithmetically. For example, a cross-correlation of different output signals Ki could be carried out.
  • the center of gravity T s of the envelope curve 6 of the ultrasonic signal A0, B0 is used as a characteristic variable which is set in relation to the detected reception time to.
  • the temporal focus of the envelope 6 can be determined, for example, from the following relationship:
  • k is a running index, which is the number of positive half-waves of the ultrasound signal after the
  • Threshold value SW describes.
  • a (k) is the amplitude of the kth half-wave after the threshold value has been exceeded (trigger time).
  • a (k) Since a higher amplitude A (k) also results in a larger high time of the first comparator 10, A (k) can be replaced by the high time of the signal Ki in a rough but sufficiently good approximation.
  • the first sum of the aforementioned equation can be implemented without arithmetic functions, for example by means of a counter, the clock input of which is enabled by the high level of the pulse-width-modulated comparator output signal Ki.
  • the multiplication by the running index k can be achieved without arithmetic, by increasing or decreasing the clock frequency of the counter every half wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un capteur de débit à ultrasons comportant au moins un transducteur d'ultrasons (A, B), destiné à émettre et à recevoir des signaux ultrasonores (A0, B0), ainsi qu'une unité réceptrice (4) placée sur le transducteur d'ultrasons (A, B), laquelle unité détecte un passage par zéro (N) du signal ultrasonore (A0, B0) comme instant de réception, après dépassement d'une valeur seuil prédéfinie (SW) par le signal ultrasonore (A0, B0). L'objectif de cette invention est d'améliorer sensiblement la précision de mesure du capteur. A cet effet, l'unité réceptrice (4) détecte l'instant d'une grandeur caractéristique du signal ultrasonore (A0, B0) et détermine le décalage temporel relatif ( DELTA t) de la grandeur caractéristique (Ampmax,Ts) par rapport au passage par zéro (N0 ou N1) détecté comme instant de réception (to).
EP05733644A 2004-05-22 2005-04-21 Determination de l'instant de reception d'un signal ultrasonore par detection de forme d'impulsion Ceased EP1754025A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004025243A DE102004025243A1 (de) 2004-05-22 2004-05-22 Bestimmung des Empfangszeitpunkts eines Ultraschallsignals mittels Pulsformerfassung
PCT/EP2005/051761 WO2005114112A2 (fr) 2004-05-22 2005-04-21 Determination de l'instant de reception d'un signal ultrasonore par detection de forme d'impulsion

Publications (1)

Publication Number Publication Date
EP1754025A2 true EP1754025A2 (fr) 2007-02-21

Family

ID=35134139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05733644A Ceased EP1754025A2 (fr) 2004-05-22 2005-04-21 Determination de l'instant de reception d'un signal ultrasonore par detection de forme d'impulsion

Country Status (5)

Country Link
US (1) US8744785B2 (fr)
EP (1) EP1754025A2 (fr)
JP (1) JP4976287B2 (fr)
DE (1) DE102004025243A1 (fr)
WO (1) WO2005114112A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799810A (zh) * 2017-06-27 2020-02-14 萨基姆通讯能源及电信联合股份公司 用于测量流体速度的方法
CN111157066A (zh) * 2019-12-31 2020-05-15 浙江大学 基于第一包络重合度的气体超声波流量计渡越时间计算方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904098B2 (ja) * 2006-07-05 2012-03-28 Jfeアドバンテック株式会社 物理量測定装置及び超音波式流量測定装置
DE102008019991B4 (de) * 2008-04-21 2015-10-22 Mib Gmbh Messtechnik Und Industrieberatung Konzentrationsbestimmungsverfahren und Messgerät
EP2182349A1 (fr) * 2008-10-28 2010-05-05 Axsensor AB Procédé de détermination de l'instant de début d'une réponse de signal oscillant périodiquement
DE202011005427U1 (de) * 2011-04-19 2012-07-20 Acam-Messelectronic Gmbh Vorrichtung zum Messen der Laufzeit eines Ultraschallsignals in einer strömenden Flüssigkeit
JP6101020B2 (ja) * 2012-08-29 2017-03-22 日立オートモティブシステムズメジャメント株式会社 超音波流量計
CN102967334B (zh) * 2012-09-26 2015-08-26 朱作行 利用对信号包络线处理测量流体流量的系统及方法
CN108548578B (zh) * 2018-03-29 2020-01-03 中国计量大学 一种基于自适应阈值的超声波回波信号特征峰识别方法
JP7298186B2 (ja) * 2019-02-26 2023-06-27 セイコーエプソン株式会社 超音波計測装置、及び超音波計測方法
CN112833999A (zh) * 2021-03-04 2021-05-25 宁波水表(集团)股份有限公司 一种超声水表的快速校表方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022058A (en) * 1975-08-07 1977-05-10 Brown Alvin E Apparatus for determining the arrival time of alternating signals
US4542656A (en) * 1982-11-30 1985-09-24 Bestobell Sparling Limited Fluid flow monitoring
US4603589A (en) * 1983-12-27 1986-08-05 Kabushiki Kaisha Toshiba Ultrasonic flowmeter
JPS60187815A (ja) * 1984-03-07 1985-09-25 Toshiba Corp 流量測定装置
GB2156985B (en) * 1984-04-02 1987-06-24 Teltec Electronic Equip Apparatus for measuring movable part-structures, eg blood vessels, within a living body
US4583410A (en) * 1984-05-29 1986-04-22 Nusonics, Inc. Timing circuit for acoustic flow meters
SE456279B (sv) * 1986-09-16 1988-09-19 Bost & Co Ab Sett och anordning for att tidsbestemma en akustisk puls
EP0262441B1 (fr) * 1986-09-30 1991-03-27 Siemens Aktiengesellschaft Procédé de différence de phase ultrasonique pour mesurer de hautes vitesses d'écoulement
US5035147A (en) * 1990-02-09 1991-07-30 Curtin Matheson Scientific, Inc. Method and system for digital measurement of acoustic burst travel time in a fluid medium
US5341809A (en) * 1990-08-31 1994-08-30 Hitachi, Ltd. Ultrasonic flowmeter
FI88209C (fi) * 1992-04-14 1993-04-13 Kytoelae Instrumenttitehdas Foerfarande och anordning vid akustisk stroemmaetning foer att foersaekra sig om den funktionsfoermaoga
US5633715A (en) * 1994-05-20 1997-05-27 Wyko Corporation Centroid approach for estimating modulation peak in broad-bandwidth interferometry
DE19636945A1 (de) * 1996-09-11 1998-03-12 Siemens Ag Verfahren und Einrichtung zur Messung der Laufzeitdifferenz eines elektrischen, elektromagnetischen oder akustischen Signals
US5639971A (en) * 1996-10-04 1997-06-17 Dieterich Technology Holding Corp. Method and apparatus for detecting a signal
US5793704A (en) * 1996-12-13 1998-08-11 Solid Scientific Research And Development Ltd. Method and device for ultrasonic ranging
SE9802762D0 (sv) * 1998-08-19 1998-08-19 Siemens Elema Ab Zero crossing detector and method of determining a zero crossing point
JP3616324B2 (ja) * 2000-11-27 2005-02-02 東京計装株式会社 伝播時間差方式による超音波流量計
JP2003050145A (ja) * 2001-08-08 2003-02-21 Kansai Gas Meter Co Ltd 超音波流速測定方法および装置
JP2003279396A (ja) * 2002-03-25 2003-10-02 Kaijo Corp 超音波流量計
JP2004069524A (ja) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd 流量計測装置
JP2005259985A (ja) 2004-03-11 2005-09-22 Sumitomo Electric Ind Ltd 光送信モジュール及びそれを用いた光送信器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005114112A2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799810A (zh) * 2017-06-27 2020-02-14 萨基姆通讯能源及电信联合股份公司 用于测量流体速度的方法
CN110799810B (zh) * 2017-06-27 2021-11-30 萨基姆通讯能源及电信联合股份公司 用于测量流体速度的方法
CN111157066A (zh) * 2019-12-31 2020-05-15 浙江大学 基于第一包络重合度的气体超声波流量计渡越时间计算方法
CN111157066B (zh) * 2019-12-31 2020-11-20 浙江大学 基于第一包络重合度的气体超声流量计渡越时间计算方法

Also Published As

Publication number Publication date
US8744785B2 (en) 2014-06-03
WO2005114112A3 (fr) 2006-04-13
DE102004025243A1 (de) 2005-12-08
JP4976287B2 (ja) 2012-07-18
WO2005114112A2 (fr) 2005-12-01
JP2007538240A (ja) 2007-12-27
US20070186680A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
EP1754025A2 (fr) Determination de l'instant de reception d'un signal ultrasonore par detection de forme d'impulsion
EP0797105B1 (fr) Procédé pour la mesure du temp de trajet d'un signal électrique, électromagnétique, ou acoustique
EP0452531B1 (fr) Dispositif électrique pour mesurer le temps de propagation d'un signal électrique
EP2406585B1 (fr) Procédé et appareil de mesure d'écoulement tourbillonnaire, destinés à surveiller et/ou mesurer un écoulement pariétal d'un fluide traversant une conduite tubulaire et possédant deux phases ou plus
EP1733193A1 (fr) Detection de passage par zero d'un signal ultrasonore avec valeur seuil variable
DE102005004331B4 (de) Verfahren zur Bestimmung der Laufzeit eines Ultraschallsignals eines Ultraschallsensors sowie Ultraschallsensor
EP2936080A1 (fr) Procédé de vérification de la fiabilité de données de mesure déterminées d'une mesure de débit par ultrasons par la méthode de la différence de temps de vol et débitmètre à ultrasons
EP2440888B1 (fr) Procédé de mesure d'un mesurande
DE10206134A1 (de) Ultraschall-Strömungsmesser
DE102007027188A1 (de) Ultraschallströmungssensor mit Quadratur-Demodulation
EP1941243A1 (fr) Procédé et dispositif de mesure ultrasonique de débit de produits fluides
WO2003102512A1 (fr) Mesure du debit a l'aide du temps de parcours des ultrasons permettant de determiner la concentration de particules dans un fluide en ecoulement
WO2004055484A2 (fr) Dispositif de positionnement d'un appareil de mesure de debit sous forme de pince de serrage sur un contenant
DE2241145A1 (de) Verfahren und vorrichtung zur ermittlung eines messwertes fuer die relativbewegung zwischen einem stroemungsmittel und einem gegenstand
DE202011005427U1 (de) Vorrichtung zum Messen der Laufzeit eines Ultraschallsignals in einer strömenden Flüssigkeit
EP3517946B1 (fr) Procédé de détermination d'une valeur corrigée de la vitesse sonique dépendant de la viscosité dans un fluide à analyser
DE19633558C2 (de) Ultraschall-Durchflußmeßverfahren
DE102009035983A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Durchflussmenge eines Fluids
DE4114233C2 (de) Anordnung zur Ultraschall-Durchflußmessung
DE102008044738B4 (de) Sensoranordnung und Detektionsverfahren zur Messung einer Eisschicht
EP0025026A2 (fr) Dispositif pour la mesure de la vitesse d'un fluide
DE19520889A1 (de) Verfahren und Meßgerät zur Erfassung der Einschubtiefe in einer Rohrverbindung
DE102004027958B4 (de) Verfahren und Vorrichtung zum Messen der Strömungsgeschwindigkeit von Fluiden
DD266857A1 (de) Schaltungsanordnung zum auswerten von echosignalen eines ultraschall-entfernungsmessers
DE19535846C2 (de) Verfahren und Vorrichtung zur Messung des Massenflusses von strömenden flüssigen Medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20100908

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20160301