EP1752216A1 - Verwendung von Titandioxid-Mischoxid als Photokatalysator - Google Patents

Verwendung von Titandioxid-Mischoxid als Photokatalysator Download PDF

Info

Publication number
EP1752216A1
EP1752216A1 EP05017324A EP05017324A EP1752216A1 EP 1752216 A1 EP1752216 A1 EP 1752216A1 EP 05017324 A EP05017324 A EP 05017324A EP 05017324 A EP05017324 A EP 05017324A EP 1752216 A1 EP1752216 A1 EP 1752216A1
Authority
EP
European Patent Office
Prior art keywords
mixed oxide
titanium dioxide
component
anatase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05017324A
Other languages
English (en)
French (fr)
Inventor
Reinhard Dr. Vormberg
Kai Dr. Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to EP05017324A priority Critical patent/EP1752216A1/de
Priority to PCT/EP2006/063993 priority patent/WO2007017327A2/en
Priority to CN2006800293843A priority patent/CN101242893B/zh
Priority to US11/995,837 priority patent/US20080188370A1/en
Priority to JP2008525507A priority patent/JP2009504368A/ja
Publication of EP1752216A1 publication Critical patent/EP1752216A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • B01J35/612
    • B01J35/613
    • B01J35/615

Definitions

  • the invention relates to the use of titanium dioxide mixed oxide as a photocatalyst.
  • EP-A-778 812 titanium dioxide mixed oxide particles produced by reacting titanium tetrachloride and a chloride of silicon, germanium, boron, tin, niobium, chromium, aluminum, gold, silver, palladium in a flame are known for photocatalytic uses.
  • silicon and aluminum-titanium mixed oxide particles are not optimal for photocatalytic purposes.
  • the anatase content and thus the photocatalytic activity in such mixed oxide powders increases with increasing proportion of silicon dioxide. From these statements it can be concluded that a photocatalytic activity noticeably occurs only from 10% silicon dioxide content.
  • Out DE-A-10260718 are silica-coated titanium dioxide particles having a silica content of 0.5 to 40 wt .-% known.
  • the particles have a low photocatalytic activity and are therefore preferably used in sunscreen formulations.
  • Silicon-titanium mixed oxide particles are described with a silicon dioxide content of 1 to 30 wt .-%, based on the mixed oxide.
  • the mixed oxide has a high temperature resistance, but the silica content reduces the photocatalytic activity.
  • WO03 / 037994 are known with the oxides of silicon, aluminum, cerium and / or zirconium coated titanium dioxide particles.
  • the coating provides effective protection against photocatalytic reactions.
  • the particles are obtained by adding a precursor of silica in the presence of a Surface-modifying substance precipitated on titanium dioxide particles and optionally post-treated hydrothermally.
  • the proportion of silicon dioxide, based on titanium dioxide is from 0.1 to 10% by weight. From as little as 0.1% by weight, a marked reduction in photocatalytic activity is observed.
  • EP-A-988853 and EP-A-1284277 are silica-coated titanium dioxide particles in which a silica shell leads to a reduction of the photocatalytic activity.
  • the particles are therefore mainly used in sunscreen formulations.
  • a titanium dioxide mixed oxide can be used which contains more than 98.5 wt .-% and ⁇ 0.2 to ⁇ 1 wt .-% of the mixed oxide component.
  • a titanium dioxide mixed oxide can be used which contains more than 99.0% by weight of titanium dioxide and ⁇ 0.3 to ⁇ 0.5% by weight of the mixed oxide component.
  • Mixed oxide according to the invention comprises the mixed oxide in the form of a powder, in a dispersion or as a coating component of a coated substrate.
  • the dispersion may comprise as the liquid phase water and / or an organic solvent or solvent mixture.
  • the content of titanium dioxide mixed oxide in the dispersion can be up to 70% by weight.
  • the dispersion may further comprise additives known to the person skilled in the art for adjusting the pH and surface-active substances.
  • the coated substrate may preferably be obtained by applying the dispersion to a substrate, such as glass or a polymer, followed by thermal treatment.
  • the number of mixed oxide components in addition to titanium dioxide is preferably 1 or 2 and more preferably 1.
  • the BET surface area of the titanium dioxide mixed oxide is determined according to DIN 66131.
  • the BET surface area of the titanium dioxide mixed oxide is 40 to 120 m 2 / g.
  • Mixed oxide is the intimate mixing of titanium dioxide and the further or further mixed oxide components X 1 , X 2 ,... X n at the atomic level to form X 1 -O-Ti, X 2 -O-Ti,. to understand n -O-Ti bonds.
  • the primary particles may also have areas in which the mixed oxide components are present in addition to titanium dioxide.
  • Primary particles are to be understood as the smallest particles which can not be further divided without the breaking of chemical bonds. These primary particles can grow into aggregates. Aggregates are characterized by the fact that their surface is smaller than the sum of the surfaces of the primary particles of which they are made. Titanium dioxide mixed oxides with a low BET surface area can be present wholly or predominantly in the form of nonaggregated primary particles, while titanium dioxide mixed oxides with a high BET surface area can have a higher degree of aggregation or can be completely aggregated.
  • TEM transmission electron microscopy
  • EDX Energy dispersive X-ray Analysis, energy dispersive X-ray spectroscopy
  • the sum of the proportions of titanium dioxide and the other mixed oxide components, based on the total amount of the mixed oxide, is at least 99.5% by weight.
  • the mixed titanium oxide oxide may have traces of impurities from the raw materials as well as impurities caused by the process. These impurities can be up to a maximum of 0.5% by weight, but usually not more than 0.3% by weight.
  • the proportion of the mixed oxide components is from ⁇ 0.1 to ⁇ 2 wt .-%. Titanium dioxide mixed oxides with proportions, in addition to titanium dioxide, of less than 0.1 wt .-% show a comparable photoactivity as a titanium dioxide with comparable features. At proportions of more than 1% by weight, a decreasing photoactivity is already to be expected.
  • the crystalline rutile and anatase moieties in the titanium dioxide mixed oxide can absorb light quanta, thereby promoting an electron from the valence band into the conduction band.
  • the distance between valence and conduction band is 3.05 eV corresponding to an absorption at 415 nm, with anatase the distance is 3.20 eV corresponding to an absorption at 385 nm. If the free electrons migrate to the surface, they can have a trigger photocatalytic reaction.
  • the use according to the invention requires a titanium dioxide mixed oxide in which the primary particles have a rutile and anatase phase. This feature is essential to achieve high photocatalytic activity. A possible cause of this effect could be that the quanta trapped by the rutile moiety are passed on to the anatase moiety, which increases the likelihood of generating reactive electrons on the surface.
  • a titanium dioxide mixed oxide having a rutile / anatase ratio of 1/99 to 99/1 can be used.
  • titanium dioxide mixed oxides in which the anatase phase predominates may be rutile / anatase ratios of 40/60 to 5/95.
  • the mixed oxide component present in addition to titanium dioxide can be present in amorphous and / or crystalline form.
  • a titanium-silicon mixed oxide can be used, wherein the silica content is amorphous.
  • the structure of the titanium dioxide mixed oxide used can be varied. Thus, it may be present in the form of aggregated primary particles or there may be individual, non-aggregated primary particles.
  • the mixed oxide component may be randomly distributed over the primary particle or, in particular for Silica, be arranged in the form of a shell around a titanium dioxide core.
  • pyrogenically produced titanium dioxide mixed oxide in the sense of the invention is understood to mean one which is obtained by reacting hydrolyzable and / or oxidizable starting compounds in the presence of steam and / or oxygen in a high-temperature zone.
  • the titanium dioxide mixed oxide produced in this way consists of primary particles which have no inner surface and carry hydroxyl groups on their surface.
  • Example 1 4.1 kg / h TiCl 4 and 0.05 kg / h SiCl 4 are evaporated. The vapors are mixed by means of nitrogen together with 2.0 Nm 3 / h of hydrogen and 9.1 Nm 3 / h of dried air in the mixing chamber of a burner of known type, and a central tube, at the end of which the reaction mixture is ignited, a water-cooled flame tube fed and burned there.
  • the resulting titanium dioxide mixed oxide is then deposited in a filter.
  • By treatment with moist air at about 500-700 ° C adhering chloride is removed.
  • Example 2 is carried out analogously to Example 1.
  • the batch sizes and the experimental conditions of Examples 1 and 2 are shown in Table 1, the physical chemical properties are shown in Table 2.
  • Powders 3 and 4 are pyrogenically produced titanium dioxide powders.
  • Powders 1 to 4 are examined for their photocatalytic activity with respect to fatty acid degradation.
  • test substance used is methyl stearate (methyl stearate in short) dissolved in n-hexane. Since this substance is applied to the surface to be tested as a thin film of fat for the activity tests, first of all a powder is produced from the powders 1 to 4 on the carrier material glass.
  • a dispersion of 120 mg each of the powders 1 to 4 in 2 ml of isopropanol is prepared and applied to a glass surface of 4 ⁇ 9 cm.
  • the layers are then annealed at 100 ° C for 60 min in a muffle furnace.
  • a defined amount of a methyl stearate solution (5 mmol / l) in n-hexane is applied to the layers obtained and these are first irradiated for 15 minutes with 1.0 mW / cm 2 UV-A light.
  • each about 500 .mu.l of a methyl stearate solution (5 mmol / l) in n-hexane are applied to the mixed oxide layers, so that based on the wash-off (5 ml of n-hexane), a concentration of about 0, 5 mmol / l gives.
  • the values determined by means of gas chromatography (FID) are shown in Table 3.
  • the comparison with a previously determined reference value determined by applying the defined amount of methyl stearate and immediate washing of the methyl stearate layer with n-hexane without prior irradiation, provides information about the photocatalytic activity of the layers.
  • Table 3 shows the remaining amount of methyl stearate on the TiO 2 layers after 5 min irradiation with 1.0 mW / cm 2 UV-A light.
  • the layers After application of 500 ⁇ l of the (methyl stearate in n-hexane) solution, the layers are kept in darkness for 1 hour. Subsequently, the layers are washed off with 5 ml of n-hexane and the methyl stearate concentration is determined by means of gas chromatography. The degradation rate is negligible at 40 ⁇ M / h.
  • the determination of the photon efficiency is with an error of max. 10% bad.
  • the deviation of the dark test value from the initial concentration (reference value) is within the measurement inaccuracy. Consequently, one can convert the degradation rates directly into the corresponding photon efficiencies.
  • the calculation basis is the initial degradation rates of the individual samples, ie the rates determined after the shortest irradiation time.
  • titanium mixed oxide powders having a proportion of the mixed oxide component of ⁇ 0.1 to ⁇ 2% by weight, the titanium dioxide fraction of which has rutile and anatase phases which have grown together, can be used as effective photocatalysts. Namely, the prior art would suggest that the mixed oxide component would lead to a reduction in the photocatalytic activity.

Abstract

Verwendung von Titandioxid-Mischoxid als Photokatalysator, wobei das Titandioxid-Mischoxid folgende Merkmale aufweist:
- BET-Oberfläche: 5 bis 300 m2/g aufweist,
- Mischoxidkomponente: ein oder mehrere Oxide aus der Gruppe umfassend Aluminium, Cer, Silicium, Wolfram, Zink, Zirkon
- Anteile:
- Titandioxid mehr als 97,5 Gew.-%,
- Mischoxidkomponente ≥ 0,1 bis < 2 Gew.-%,
- Summe der Anteile von Titandioxid und Nebenkomponente mindestens 99,5 Gew.-%,

jeweils bezogen auf die Gesamtmenge des Mischoxides,
- Titandioxid-Anteil der Primärpartikel umfassend miteinander verwachsene Rutil- und Anatasphasen.

Description

  • Die Erfindung betrifft die Verwendung von Titandioxid-Mischoxid als Photokatalysator.
  • Aus EP-A-778812 sind durch Umsetzung von Titantetrachlorid und einem Chlorid von Silicium, Germanium, Bor, Zinn, Niob, Chrom, Aluminium, Gold, Silber, Palladium in einer Flamme erzeugte Titandioxid-Mischoxidpartikel für photokatalytische Verwendungen bekannt. Von besonderer Bedeutung sind dabei Silicium- und Aluminium-Titan-Mischoxidpartikel. Es wird offenbart, dass solche Mischoxidpulver mit einem Gehalt an Siliciumdioxid von ca. 5 bis 10 Gew.-% nicht optimal für photokatalytische Zwecke sind. Weiter wird ausgeführt, dass der Anatas-Gehalt und damit die photokatalytische Aktivität in solchen Mischoxidpulvern mit steigendem Anteil an Siliciumdioxid zunimmt. Aus diesen Aussagen ist zu folgern, dass eine photokatalytische Aktivität erst ab 10 % Siliciumdioxid-Anteil merklich auftritt.
  • Aus DE-A-10260718 sind mit Siliciumdioxid umhüllte Titandioxidpartikel mit einem Siliciumdioxid-Anteil von 0,5 bis 40 Gew.-% bekannt. Die Partikel weisen eine niedrige photokatalytische Aktivität auf und werden daher bevorzugt in Sonnenschutzformulierungen eingesetzt.
  • In DE-A-4235996 werden Silicium-Titan-Mischoxidpartikel mit einem Siliciumdioxid-Anteil von 1 bis 30 Gew.-%, bezogen auf das Mischoxid beschrieben. Das Mischoxid weist eine hohe Temperaturbeständigkeit auf, der Siliciumdioxid-Anteil jedoch reduziert die photokatalytische Aktivität.
  • Aus WO03/037994 sind mit den Oxiden von Silicium, Aluminium, Cer und/oder Zirkon beschichtete Titandioxidpartikel bekannt. Die Beschichtung führt zu einem effektiven Schutz vor photokatalytischen Reaktionen. Die Partikel werden erhalten, indem eine Vorstufe von Siliciumdioxid in Gegenwart eines oberflächenmodifizierenden Stoffes auf Titandioxidpartikel gefällt und gegebenenfalls hydrothermal nachbehandelt werden. Der Anteil von Siliciumdioxid, bezogen auf Titandioxid, beträgt 0,1 bis 10 Gew.-%. Bereits ab 0,1 Gew.-% wird eine merkliche Verringerung der photokatalytischen Aktivität beobachtet.
  • Aus EP-A-988853 und EP-A-1284277 sind mit Siliciumdioxid umhüllte Titandioxidpartikel bekannt, bei denen eine Siliciumdioxidhülle zu einer Reduzierung der photokatalytischen Aktivität führt. Die Partikel finden daher hauptsächlich in Sonnenschutzformulierungen Verwendung.
  • Die technische Lehre, die der Stand der Technik vermittelt, ist die, dass Mischoxidkomponenten neben Titandioxid zu einer Verringerung der photokatalytischen Aktivität führen.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein für die Verwendung als Photokatalysator geeigneten Stoff bereitzustellen.
  • Gegenstand der Erfindung ist die Verwendung eines Titandioxid-Mischoxides als Photokatalysator, wobei das Titandioxid-Mischoxid folgende Merkmale aufweist:
    • BET-Oberfläche: 5 bis 300 m2/g aufweist,
    • Mischoxidkomponente: ein oder mehrere Oxide aus der Gruppe umfassend Aluminium, Cer, Silicium, Wolfram, Zink, Zirkon
    • Anteile:
      • Titandioxid mehr als 97,5 Gew.-%,
      • Mischoxidkomponente ≥ 0,1 bis < 2 Gew.-%,
      • Summe der Anteile von Titandioxid und Nebenkomponente mindestens 99,5 Gew.-%,
      jeweils bezogen auf die Gesamtmenge des Mischoxides,
    • Titandioxid-Anteil der Primärpartikel umfassend miteinander verwachsene Rutil- und Anatasphasen.
  • Bevorzugt kann ein Titandioxid-Mischoxid verwendet werden, welches mehr als 98,5 Gew.-% und ≥ 0,2 bis < 1 Gew.-% der Mischoxidkomponente enthält. Besonders bevorzugt kann ein Titandioxid-Mischoxid verwendet werden, welches mehr als 99,0 Gew.-% Titandioxid und ≥ 0,3 bis < 0,5 Gew.-% der Mischoxidkomponente enthält.
  • Mischoxid im Sinne der Erfindung umfasst das Mischoxid in Form eines Pulver, in einer Dispersion oder als Beschichtungsbestandteil eines beschichteten Substrates.
  • Die Dispersion kann als flüssige Phase Wasser und/oder ein organisches Lösungsmittel oder Lösungsmittelgemisch aufweisen. Der Gehalt an Titandioxid-Mischoxid in der Dispersion kann bis zu 70 Gew.-% betragen. Die Dispersion kann weiterhin dem Fachmann bekannte Additive zur Einstellung des pH-Wertes sowie oberflächenaktive Stoffe enthalten.
  • Das beschichtete Substrat kann bevorzugt erhalten werden, indem man die Dispersion auf ein Substrat, beispielsweise Glas oder ein Polymer, aufbringt und nachfolgend thermisch behandelt.
  • Die Anzahl der Mischoxidkomponenten neben Titandioxid beträgt bevorzugt 1 oder 2 und besonders bevorzugt 1.
  • Die BET-Oberfläche des Titandioxid-Mischoxides wird entsprechend der DIN 66131 bestimmt. Bevorzugterweise liegt die BET-Oberfläche des Titandioxid-Mischoxides bei 40 bis 120 m2/g.
  • Unter Mischoxid ist die innige Vermischung von Titandioxid und der weiteren oder den weiteren Mischoxidkomponenten X1, X2, ....Xn auf atomarer Ebene unter Bildung von X1-O-Ti-, X2-O-Ti, ... Xn-O-Ti-Bindungen zu verstehen. Daneben können die Primärpartikel auch Bereiche aufweisen, in denen die Mischoxidkomponenten neben Titandioxid vorliegen.
  • Unter Primärpartikel sind kleinste, nicht ohne das Brechen von chemischen Bindungen weiter zerteilbare Partikel zu verstehen. Diese Primärpartikel können zu Aggregaten verwachsen. Aggregate zeichnen sich dadurch aus, dass ihre Oberfläche kleiner ist als die Summe der Oberflächen der Primärpartikel aus denen sie bestehen. Titandioxid-Mischoxide mit einer niedrigen BET-Oberfläche können ganz oder überwiegend in Form von nichtaggregierten Primärpartikeln vorliegen, während Titandioxid-Mischoxide mit hoher BET-Oberfläche einen höheren Aggregationsgrad aufweisen oder vollständig aggregiert vorliegen können.
  • Durch Auszählung aus TEM-Aufnahmen (TEM = Transmissions-Elektronenmikroskopie) in Verbindung mit EDX (Energy Dispersive X-ray Analysis, energiedispersive Röntgenspektroskopie) wird gefunden, dass Primärpartikel mit X-O-Ti-Bindungen mit einem Anteil von mindestens 80%, bezogen auf die Gesamtmenge des Titandioxid-Mischoxides, vorliegen. In der Regel beträgt der Anteil mehr als 90%, insbesondere mehr als 95%.
  • Die Summe der Anteile von Titandioxid und den weiteren Mischoxidkomponenten beträgt, bezogen auf die Gesamtmenge des Mischoxides, mindestens 99,5 Gew.-%. Darüberhinaus kann das Titandioxid-Mischoxid Spuren von Verunreinigungen aus den Ausgangsstoffen, wie auch durch den Prozess hervorgerufene Verunreinigungen aufweisen. Diese Verunreinigungen können maximal bis zu 0,5 Gew.-%, in der Regel jedoch nicht mehr als 0,3 Gew.-%, betragen.
  • Der Anteil der Mischoxidkomponenten, bezogen auf die Gesamtmenge des Mischoxides, beträgt von ≥ 0,1 bis < 2 Gew.-%. Titandioxid-Mischoxide mit Anteilen, neben Titandioxid, von kleiner als 0,1 Gew.-% zeigen eine vergleichbare Photoaktivität wie ein Titandioxid mit vergleichbaren Merkmalen. Bei Anteilen von mehr als 1 Gew.-% ist bereits mit einer abnehmenden Photoaktivität zu rechnen.
  • Die kristallinen Rutil- und Anatas-Anteile im Titandioxid-Mischoxid können Lichtquanten absorbieren, wodurch ein Elektron aus dem Valenzband in das Leitungsband promoviert wird. Bei Rutil liegt der Abstand zwischen Valenz- und Leitungsband bei 3,05 eV entsprechend einer Absorption bei 415 nm, bei Anatas beträgt der Abstand 3,20 eV entsprechend einer Absorption bei 385 nm. Wandern die freien Elektronen an die Oberfläche, können sie dort eine photokatalytische Reaktion auslösen.
  • Die erfindungsgemäße Verwendung setzt ein Titandioxid-Mischoxid voraus, bei dem die Primärpartikel eine Rutil- und Anatasphase aufweisen. Dieses Merkmal ist wesentlich um eine hohe photokatalytische Aktivität zu erzielen. Eine mögliche Ursache für diesen Effekt könnte sein, dass die von dem Rutil-Anteil aufgefangenen Quanten an den Anatas-Anteil weitergeleitet werden, wodurch die Wahrscheinlichkeit reaktionsfähige Elektronen an der Oberfläche zu generieren, steigt.
  • Bevorzugt kann ein Titandioxid-Mischoxid mit einem Rutil/Anatas-Verhältnis von 1/99 bis 99/1 verwendet werden. Besonders bevorzugt sind Titandioxid-Mischoxide in denen die Anatasphase überwiegt. Insbesondere können dies Rutil/Anatas-Verhältnisse von 40/60 bis 5/95 sein.
  • Die neben Titandioxid vorliegende Mischoxidkomponente kann amorph und/oder kristallin vorliegen.
  • Bevorzugt kann ein Titan-Silicium-Mischoxid verwendet werden, wobei der Siliciumdioxidanteil amorph ist.
  • Die Struktur des verwendeten Titandioxid-Mischoxides kann vielfältig sein. So kann es in Form aggregierter Primärpartikel vorliegen oder es können einzelne, nicht aggregierte Primärpartikel vorliegen. Die Mischoxidkomponente kann statistisch über den Primärpartikel verteilt sein oder, insbesondere für Siliciumdioxid, in Form einer Hülle um einen Titandioxidkern angeordnet sein.
  • Bevorzugt kann pyrogen hergestelltes Titandioxid-Mischoxid verwendet werden. Unter pyrogen hergestelltem Titandioxid-Mischoxid im Sinne der Erfindung ist eines zu verstehen, welches durch Umsetzung von hydrolysierbaren und/oder oxidierbaren Ausgangsverbindungen in Gegenwart von Wasserdampf und/oder Sauerstoff in einer Hochtemperaturzone erhalten wird. Das so hergestellte Titandioxid-Mischoxid besteht aus Primärpartikeln, welche keine innere Oberfläche aufweisen und an ihrer Oberfläche Hydroxylgruppen tragen.
  • Beispiele: A. Herstellung der Titandioxid-Mischoxide
  • Beispiel 1: Es werden 4,1 kg/h TiCl4 und 0,05 kg/h SiCl4 verdampft. Die Dämpfe werden mittels Stickstoff zusammen mit 2,0 Nm3/h Wasserstoff und 9,1 Nm3/h getrockneter Luft in der Mischkammer eines Brenners bekannter Bauart gemischt, und über ein Zentralrohr, an dessen Ende das Reaktionsgemisch gezündet wird, einem wassergekühlten Flammrohr zugeführt und dort verbrannt.
  • Das entstandene Titandioxid-Mischoxid wird anschließend in einem Filter abgeschieden. Durch eine Behandlung mit feuchter Luft bei ca. 500-700°C wird anhaftendes Chlorid entfernt.
  • Das Beispiel 2 wird analog Beispiel 1 durchgeführt. Die Ansatzgrößen und die experimentellen Bedingungen der Beispiele 1 und 2 sind in Tabelle 1, die physikalischechemischen Eigenschaften sind in Tabelle 2 wiedergegeben.
  • Pulver 3 und 4 sind pyrogen hergestellte Titandioxidpulver.
  • B. Photokatalytische Aktivität
  • Die Pulver 1 bis 4 werden hinsichtlich ihrer photokatalytischen Aktivität bezüglich des Fettsäureabbaus untersucht.
  • Als Testsubstanz wird Stearinsäuremethylester (kurz: Methylstearat), gelöst in n-Hexan, eingesetzt. Da diese Substanz für die Aktivitätstests als dünner Fettfilm auf die zu testende Oberfläche aufgetragen wird, wird zunächst aus den Pulvern 1 bis 4 eine Schicht auf dem Trägermaterial Glas hergestellt.
  • Hierzu wird eine Dispersion aus je 120 mg der Pulver 1 bis 4 in 2 ml Isopropanol hergestellt und auf eine Glasfläche von 4 x 9 cm aufgetragen. Die Schichten werden anschließend bei 100°C für 60 min im Muffelofen getempert.
  • Auf die erhaltenen Schichten wird eine definierte Menge einer Methylstearat-Lösung (5 mmol/l) in n-Hexan aufgetragen und diese zunächst für 15 Minuten mit 1,0 mW/cm2 UV-A Licht bestrahlt.
  • Für die Bestimmung werden je ca. 500 µl einer Methylstearat-Lösung (5 mmol/l) in n-Hexan auf die Mischoxid-Schichten aufgetragen , so dass sich bezogen auf die Abwaschmenge (5ml n-Hexan) eine Konzentration von ca. 0,5 mmol/l ergibt. Die mittels Gaschromatographie (FID) ermittelten Werte finden sich in Tabelle 3.
  • Nach Ende der Bestrahlung wird das auf den Mischoxid-Schichten verbliebene Methylstearat mit 5 ml n-Hexan abgewaschen und mit Hilfe der Gaschromatographie (FID) mengenmäßig bestimmt.
  • Der Vergleich mit einem zuvor ermittelten Referenzwert, bestimmt durch Auftragen der definierten Menge Methylstearat und sofortiges Abwaschen der Methylstearatschicht mit n-Hexan ohne vorherige Bestrahlung, gibt Aufschluss über die photokatalytische Aktivität der Schichten.
  • Tabelle 3 zeigt die verbliebene Menge Methylstearat auf den TiO2-Schichten nach 5 min Bestrahlung mit 1,0 mW/cm2 UV-A Licht.
  • Als Referenz- bzw. Kontroll-Versuch wurde zum Abbau von Methylstearat exemplarisch das Pulver 2 ein "Dunkelversuch" eingesetzt.
  • Nach Auftragen von 500 µl der (Methylstearat in n-Hexan)-Lösung werden die Schichten für 1 Stunde in Dunkelheit verwahrt. Anschließend werden die Schichten mit 5 ml n-Hexan abgewaschen und die Methylstearatkonzentration mit Hilfe der Gaschromatographie bestimmt. Die Abbaurate ist mit 40 µM/h vernachlässigbar.
  • Die Bestimmung der Photoneneffizienz ist mit einem Fehler von max. 10% behaftet. Somit liegt die Abweichung des Dunkelversuchswertes zur Ausgangskonzentration (Referenzwert) im Rahmen der Messungenauigkeit. Folglich kann man die Abbauraten direkt in die entsprechenden Photoneneffizienzen umrechnen. Berechnungsgrundlage sind die Anfangsabbauraten der einzelnen Proben, also jeweils die nach der kürzesten Bestrahlungszeit bestimmten Raten.
  • Berechnung der Photoneneffizienz für Beispiel 3:
    • Photonenfluss bei 350nm, 36 cm2 bestrahlter Fläche und 1,0 mW/cm2: 3,78*10-4 mol*hv*h-1
    • Analysiertes Volumen: 5 ml = 0,005 l
    • Abbaurate: 1520 µM/h * 0,005 l = 7,6*10-6 mol*h-1
    • Photoneneffizienz = Abbaurate * Photonenfluss
    • Photoneneffizienz = 7,6*10-6 molh-1 * 3,78*10-4 mol*hv*h-1
      = 2,01 x 10-2 = 2,01 %
  • Die Berechnung der Photoneneffizienz der Pulver der Beispiele 1,2 und 4 erfolgt analog. Die Ergebnisse sind in Tabelle 2 wiedergegeben.
  • Die Ergebnisse zeigen, dass bei Verwendung eines Titandioxid-Mischoxides mit den Merkmalen gemäß der Erfindung die photokatalytische Aktivität höher ist als bei Titandioxid mit vergleichbaren Merkmalen und vergleichbarem Herstellungsverfahren.
  • Es ist überraschend, dass sich Titan-Mischoxidpulvern mit einem Anteil der Mischoxid-Komponente von ≥ 0,1 bis < 2 Gew.-%, deren Titandioxid-Anteil miteinander verwachsene Rutil- und Anatasphasen aufweist, als wirksame Photokatalysatoren verwenden lassen. Der Stand der Technik würde nämlich nahe legen, dass die Mischoxid-Komponente zu einer Verringerung der photokatalytischen Aktivität führe n würde. Tabelle 1: Experimentelle Bedingungen bei der Herstellung der verwendeten Pulver 1 und 2
    Beispiel 1 2
    TiCl4 kg/h 4,1 4,1
    SiCl4 kg/h 0,05 0,05
    H2 Nm3/h 2,0 2,0
    Luft Nm3/h 9,1 14,0
    Sekundärluft Nm3/h 15 15
    Tabelle 2: Analytische Daten der verwendeten Pulver 1 bis 4
    Beispiel 1 2 3 4
    TiO2-Gehalt Gew.-% 99,41 99,46 > 99,5 > 99,5
    SiO2-Gehalt Gew.-% 0,41 0,45 < 0,002 < 0,002
    BET m2/g 48 83 50 90
    Rutil/Anatas 39/61 24/76 20/80 10/90
    Photoneneffizienz % 3,3 5,2 2,01 4,4
    Photoaktivität*) 1,64 2,59 1 2,19
    *)bezogen auf Aeroxide® TiO2 P25, Degussa = 1;
    Tabelle 3: Abbauraten von Methylstearat
    Pulver 1 2 3 4
    c0 Methylstearat mmol/l 0,46 0,48 0,43 0,4
    c5min Methylstearat mmol/l 0,27 0,13 0,05*) 0,12
    Abbaurate Methylstearat µmol/lxh 2520 3960 1520 3360
    *) c15min anstelle von c5min;

Claims (4)

  1. Verwendung von Titandioxid-Mischoxid als Photokatalysator, wobei das Titandioxid-Mischoxid folgende Merkmale aufweist:
    - BET-Oberfläche: 5 bis 300 m2/g aufweist,
    - Mischoxidkomponente: ein oder mehrere Oxide aus der Gruppe umfassend Aluminium, Cer, Silicium, Wolfram, Zink, Zirkon
    - Anteile:
    - Titandioxid mehr als 97,5 Gew.-%,
    - Mischoxidkomponente ≥ 0,1 bis < 2 Gew.-%,
    - Summe der Anteile von Titandioxid und Nebenkomponente mindestens 99,5 Gew.-%, jeweils bezogen auf die Gesamtmenge des Mischoxids,
    - Titandioxid-Anteil der Primärpartikel umfassend miteinander verwachsene Rutil- und Anatasphasen.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis Rutil/Anatas des Mischoxides 1/99 bis 99/1 beträgt.
  3. Verwendung nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass das die Nebenkomponente des Mischoxides Siliciumdioxid ist.
  4. Verwendung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das Titandioxid-Mischoxid ein pyrogen hergestelltes Titandioxid-Mischoxid ist.
EP05017324A 2005-08-09 2005-08-09 Verwendung von Titandioxid-Mischoxid als Photokatalysator Withdrawn EP1752216A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05017324A EP1752216A1 (de) 2005-08-09 2005-08-09 Verwendung von Titandioxid-Mischoxid als Photokatalysator
PCT/EP2006/063993 WO2007017327A2 (en) 2005-08-09 2006-07-06 Use of titanium dioxide mixed oxide as a photocatalyst
CN2006800293843A CN101242893B (zh) 2005-08-09 2006-07-06 二氧化钛混合氧化物作为光催化剂的用途
US11/995,837 US20080188370A1 (en) 2005-08-09 2006-07-06 Use of Titanium Dioxide Mixed Oxide as a Photocatalyst
JP2008525507A JP2009504368A (ja) 2005-08-09 2006-07-06 二酸化チタン混合酸化物の光触媒としての使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05017324A EP1752216A1 (de) 2005-08-09 2005-08-09 Verwendung von Titandioxid-Mischoxid als Photokatalysator

Publications (1)

Publication Number Publication Date
EP1752216A1 true EP1752216A1 (de) 2007-02-14

Family

ID=35044652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05017324A Withdrawn EP1752216A1 (de) 2005-08-09 2005-08-09 Verwendung von Titandioxid-Mischoxid als Photokatalysator

Country Status (5)

Country Link
US (1) US20080188370A1 (de)
EP (1) EP1752216A1 (de)
JP (1) JP2009504368A (de)
CN (1) CN101242893B (de)
WO (1) WO2007017327A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020613A1 (en) * 2008-08-22 2010-02-25 Evonik Degussa Gmbh Use of silicon-titanium mixed oxide powder as catalyst

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505841A (ja) 2004-07-12 2008-02-28 日本板硝子株式会社 低保守コーティング
WO2007121211A2 (en) 2006-04-11 2007-10-25 Cardinal Cg Company Photocatalytic coatings having improved low-maintenance properties
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
EP1995217B1 (de) * 2007-05-22 2010-04-28 Evonik Degussa GmbH Titandioxid mit erhöhter Sinteraktivität
JP5474796B2 (ja) 2007-09-14 2014-04-16 日本板硝子株式会社 低保守コーティングおよび低保守コーティングの製造方法
US8262894B2 (en) 2009-04-30 2012-09-11 Moses Lake Industries, Inc. High speed copper plating bath
US20170312744A1 (en) * 2015-01-05 2017-11-02 Sabic Global Technologies B.V. Metal deposition using potassium iodide for photocatalysts preparation
CN106518169B (zh) * 2015-09-15 2019-07-05 Toto株式会社 具有光催化剂层的卫生陶器
KR101903079B1 (ko) * 2016-04-11 2018-10-02 울산대학교 산학협력단 높은 가시광 활성을 갖는 광촉매 및 이의 제조방법
EP3541762B1 (de) 2016-11-17 2022-03-02 Cardinal CG Company Statisch-dissipative beschichtungstechnologie

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB791657A (en) * 1955-04-22 1958-03-05 British Titan Products Improvements in or relating to the preparation of titanium dioxide
US5451390A (en) * 1992-10-24 1995-09-19 Degussa Aktiengesellschaft Flame-hydrolytically produced titanium dioxide mixed oxide, method of its production and its use
US5698177A (en) * 1994-08-31 1997-12-16 University Of Cincinnati Process for producing ceramic powders, especially titanium dioxide useful as a photocatalyst
US20020114761A1 (en) * 2001-02-20 2002-08-22 Akhtar M. Kamal Methods of producing substantially anatase-free titanium dioxide with silicon halide addition
US20030129153A1 (en) * 2001-12-22 2003-07-10 Degussa Ag Silicon-titanium mixed oxide powder prepared by flame hydrolysis, which is surface-enriched with silicon dioxide, and the preparation and use thereof
WO2004056927A2 (en) * 2002-12-23 2004-07-08 Degussa Ag Titanium dioxide coated with silicon dioxide
DE102004001520A1 (de) * 2004-01-10 2005-08-04 Degussa Ag Flammenhydrolytisch hergestelltes Silicium-Titan-Mischoxidpulver

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE496004T1 (de) * 2000-09-26 2011-02-15 Evonik Degussa Gmbh Eisenoxid- und siliciumdioxid-titandioxid- mischung
DE102004024500A1 (de) * 2004-05-18 2005-12-15 Degussa Ag Flammenhydrolytisch hergestelltes Silicium-Titan-Mischoxidpulver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB791657A (en) * 1955-04-22 1958-03-05 British Titan Products Improvements in or relating to the preparation of titanium dioxide
US5451390A (en) * 1992-10-24 1995-09-19 Degussa Aktiengesellschaft Flame-hydrolytically produced titanium dioxide mixed oxide, method of its production and its use
US5698177A (en) * 1994-08-31 1997-12-16 University Of Cincinnati Process for producing ceramic powders, especially titanium dioxide useful as a photocatalyst
US20020114761A1 (en) * 2001-02-20 2002-08-22 Akhtar M. Kamal Methods of producing substantially anatase-free titanium dioxide with silicon halide addition
US20030129153A1 (en) * 2001-12-22 2003-07-10 Degussa Ag Silicon-titanium mixed oxide powder prepared by flame hydrolysis, which is surface-enriched with silicon dioxide, and the preparation and use thereof
WO2004056927A2 (en) * 2002-12-23 2004-07-08 Degussa Ag Titanium dioxide coated with silicon dioxide
DE102004001520A1 (de) * 2004-01-10 2005-08-04 Degussa Ag Flammenhydrolytisch hergestelltes Silicium-Titan-Mischoxidpulver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020613A1 (en) * 2008-08-22 2010-02-25 Evonik Degussa Gmbh Use of silicon-titanium mixed oxide powder as catalyst

Also Published As

Publication number Publication date
US20080188370A1 (en) 2008-08-07
CN101242893A (zh) 2008-08-13
CN101242893B (zh) 2011-12-07
JP2009504368A (ja) 2009-02-05
WO2007017327A2 (en) 2007-02-15
WO2007017327A3 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
EP1752216A1 (de) Verwendung von Titandioxid-Mischoxid als Photokatalysator
DE69917099T2 (de) Katalysatorträger und Katalysator und Verfahren zur deren Herstellung aus einer Wasser in Öl Emulsion
EP3053967B1 (de) Metallische glanzpigmente basierend auf aluminium substratplättchen mit einer dicke von 1-30 nm
EP1776424B1 (de) Verfahren zur nachbehandlung von titandioxid-pigmenten
EP3583643B1 (de) Mit aluminiumoxid und titandioxid umhüllte lithium-mischoxidpartikel und verfahren zu deren herstellung
EP1438361B1 (de) Beschichtete titandioxid-teilchen
EP1785395B1 (de) Verfahren zur Herstellung dotierter Metalloxidpartikel
DE112005001602T5 (de) Katalytisches Material sowie Verfahren zu seiner Herstellung
DE102005061897A1 (de) Verfahren zur Herstellung von pulverförmigen Feststoffen
DE102004027549A1 (de) Kohlenstoffhaltiger Titandioxid-Photokatalysator und Verfahren zu seiner Herstellung
DE2713457A1 (de) Katalytische mischungen mit verringerter wasserstoffchemisorptionskapazitaet
DE102009012003A1 (de) Schutzbeschichtung für metallische Oberflächen und ihre Herstellung
EP0579062A2 (de) Subpigmentäres Titandioxid mit verbesserter Photostabilität
EP1979421A2 (de) TITANDIOXID-PIGMENTPARTIKEL MIT DOTIERTER DICHTER SiO2-HÜLLE UND VERFAHREN ZUR HERSTELLUNG
WO2009027433A2 (de) HERSTELLUNG VON SiO2-BESCHICHTETEN TITANDIOXIDPARTIKELN MIT EINSTELLBARER BESCHICHTUNG
DE19620645C2 (de) Verfahren zur Herstellung selektiver Absorber
EP1373412B1 (de) Titandioxid-pigmentzusammensetzung
DE60037138T2 (de) Feine titanoxidpartikel und verfahren zur herstellung derselben
EP1752215A1 (de) Photokatalysator
DE102005057770A1 (de) Beschichtungszusammensetzung (I)
DE102006057903A1 (de) Titandioxid enthaltende Dispersion
EP1997781B1 (de) Verfahren zur Herstellung von Titandioxid mit variabler Sinteraktivität
DE112021003979T5 (de) Gefärbte titandioxidpartikel und verfahren zu deren herstellung, sowie titandioxidpartikelmischung
WO2001030690A2 (de) Verfahren zur herstellung von aus übergangsmetalloxiden bestehenden nanotubes
EP1995217B1 (de) Titandioxid mit erhöhter Sinteraktivität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA GMBH

17Q First examination report despatched

Effective date: 20070417

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120609