EP1744884B1 - Procede pour determiner des valeurs de densite et/ou d'encrage et dispositif d'impression pour la mise en oeuvre dudit procede - Google Patents

Procede pour determiner des valeurs de densite et/ou d'encrage et dispositif d'impression pour la mise en oeuvre dudit procede Download PDF

Info

Publication number
EP1744884B1
EP1744884B1 EP05736412A EP05736412A EP1744884B1 EP 1744884 B1 EP1744884 B1 EP 1744884B1 EP 05736412 A EP05736412 A EP 05736412A EP 05736412 A EP05736412 A EP 05736412A EP 1744884 B1 EP1744884 B1 EP 1744884B1
Authority
EP
European Patent Office
Prior art keywords
correction
measuring
fact
measured
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05736412A
Other languages
German (de)
English (en)
Other versions
EP1744884A1 (fr
Inventor
Peter Ehbets
Wolfgang Geissler
Adrian Kohlbrenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
X Rite Switzerland GmbH
Heidelberger Druckmaschinen AG
Original Assignee
X Rite Europe GmbH
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34965927&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1744884(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by X Rite Europe GmbH, Heidelberger Druckmaschinen AG filed Critical X Rite Europe GmbH
Publication of EP1744884A1 publication Critical patent/EP1744884A1/fr
Application granted granted Critical
Publication of EP1744884B1 publication Critical patent/EP1744884B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2233/00Arrangements for the operation of printing presses
    • B41P2233/50Marks on printed material
    • B41P2233/51Marks on printed material for colour quality control

Definitions

  • the invention relates to a method for determining color and / or density values for monitoring and / or regulating the printing process in a printing device according to the preamble of independent claim 1.
  • the invention also relates to a trained for the method printing device according to the preamble of the independent claim 27th
  • the measured values are detected directly during the printing process with a measuring arrangement which is located within the printing device - e.g. a sheetfed offset press or generally a printer - is installed.
  • a measuring arrangement which is located within the printing device - e.g. a sheetfed offset press or generally a printer - is installed.
  • This type of measured value acquisition or measurement is referred to below as “inline”.
  • “externally” refers to a measured value acquisition outside the printing device in a stable state of the printed product.
  • An inline measured value acquisition is eg in US-A-4,660,159 disclosed.
  • the inking is not yet stable.
  • the disturbing effects of inking are caused by various parameters of the printing process.
  • the appearance of the printed product by subsequent processing steps, for. B. painting the surface to be changed. Both effects lead to differences between the measured values measured inline and the corresponding measured values determined externally in a stable state of the printed product. Inline and external measured values are therefore not directly comparable.
  • Another general object of the invention is to provide a printing device in which the inventive method can be used. This object is achieved by the cited in the characterizing part of the independent claim 27 training the printing device. Trainings and Particularly advantageous embodiments of the inventive printing device are the subject of claims dependent on claim 27.
  • said correction of the measurement differences is achieved by computational correction measures and preferably in conjunction with a special design of the measuring arrangement (measurement technique).
  • measuring arrangement measuring technique
  • CIE Commission Internationale de l'éclairage
  • Coldorimetry the standards for the color and density measurement technique to be used
  • DIN 5033, ISO 5 the standards for the color and density measurement technique to be used
  • CIE compliant color values XYZ or L * a * b *
  • process standards have been defined.
  • a process standard for offset printing technology is defined in the standard DIN / ISO 12647-2.
  • the application of a process standard enables flexible processing of a print job with different printing presses. However, it requires characterization, adjustment and stable operation of the printing press according to the specifications of the process standard.
  • the measuring technology used must be able to output standard-compliant color and density values for these tasks. This can e.g. be achieved by a combination of a tri-colorimeter and a densitometer. Ideally, however, a spectrophotometer is used as the measurement technique because it supports both measurement modes and allows flexibility in the selection of density filters.
  • the printer can control individual measuring fields in the print control strip or in the image.
  • the printer can manually load a single sheet.
  • the complete print control strip (AxisControl) or the entire sheet (ImageControl) is automatically measured.
  • These measuring systems use standard measuring geometries.
  • the template is a finished printed end product in a stable state. The resulting readings conform to CIE-compliant color readings and can be used directly to control and monitor or control the printing process, for color communication, or for display.
  • the trend is towards automated printing machines.
  • This inline measurement technology offers great advantages. By integrating the inline measuring technology into a closed control loop with the individual printing units, the printing press can be automatically and quickly color-coded. In addition, the color can be constantly checked and tracked during the printing process, which allows a continuous quality control.
  • inline measurement technology is much more complex than conventional external color measurement technology.
  • the inline measurement must be carried out shortly after the paint application.
  • the color layer is not yet stable. It is influenced by various printing process parameters and color properties, which decay with different time constants. Depending on the situation, this can result in large differences between the inline measured values and corresponding external measured values on stable dry samples.
  • the process dependence complicates the interpretation of the measurement data. It is not clear whether a measured variation was caused by a change in the color application or by a change in the process parameters. A similar problem arises if the printed product is further processed after the inline measurement.
  • a typical example is the application of a lacquer layer in a subsequent coating plant.
  • the present invention is particularly concerned with inline measurement in sheetfed offset presses, but is also suitable for other printing methods and devices.
  • the invention essentially comprises a special design of the measuring technology and measuring geometry as well as correction methods for the inline measured values, which enable a conversion into standard-compliant color and density measured values for corresponding stable external samples (printed products).
  • Inline measuring systems are available for web offset printing presses, eg For example, QuadTech's ColorControlSystem (CCS) system. However, these systems are installed after the drying systems at the end of the web offset printing press. At the time of measurement, the print material is already dry and in a stable state. A process-dependent correction of the measured values is not necessary here.
  • CCS QuadTech's ColorControlSystem
  • a sheetfed offset printing machine is designated as a whole by 1.
  • the printing press has four (or possibly also more) printing units 11-14 and prints sheets which are provided on a so-called feeder 15.
  • the sheets are first printed in the first printing unit 11 with a first color, then passed on to the second printing unit 12 until finally finished with all the colors printed leave the last printing unit 14.
  • a measuring arrangement 20 is provided, which measures the sheets (at the measuring points provided for this purpose) immediately after printing. Subsequently, the printed sheets are fed to further processing stages, for example a dryer unit and a coating unit 16, and finally output in a so-called boom 17.
  • the printing press Apart from the measurement during the printing process or immediately thereafter, the printing press as far as the prior art, so that the expert requires no further explanation.
  • the inline measuring arrangement 20 comprises, in a manner known per se, one or more simultaneously measuring measuring heads.
  • the measuring heads can also be installed in different printing units. For reasons of cost, however, it makes sense to combine the measurement of the colors of all participating printing units at a common location after the last printing unit.
  • the measuring heads are preferably arranged in a row at right angles to the printing direction.
  • the measuring unit 20 further includes an automated linear movement device perpendicular to the printing direction, so that each point can be approached and measured across the sheet width.
  • the mechanical design of an automated measuring arrangement with several measuring heads is known per se and requires no further explanation.
  • a correction computer 40 which receives the measured values detected by the measuring arrangement and, after the correction, feeds them to a control computer 50, which finally controls the printing units 11-14 of the printing press 1 in a manner known per se.
  • a control computer 50 which finally controls the printing units 11-14 of the printing press 1 in a manner known per se.
  • the Fogra Research Report No. 52.023 contains images showing the state of the ink layer immediately after the ink splitting at the printing nip. In these pictures the emergence of threads, the so-called microstripes, between rubber blanket and printed sheet is visible. These threads have a diameter of 30 to 60 microns and tear off after a certain distance from the nip. The result is a color layer with a macroscopic surface modulation in relation to the layer thickness, which has not decayed at the time of the inline measurement.
  • the surface modulation is directly caused by the threading of the color fission.
  • a reduced effect occurs which is caused by the interaction of the fresh color on the printing sheet with the blanket of the last printing unit.
  • An emulsion of paint residues and dampening solution is transferred to the paint layer.
  • the surface modulations of the color layer influence the measured values. They depend on a variety of printing process parameters, such as printing speed, printing unit, substrate and color type. In addition, differences between measured values determined inline and externally are also caused by the drying behavior of the ink on the substrate, which has a significantly longer time constant.
  • the differences between measured values determined inline and externally must be corrected for the practical utilization of the measured values.
  • the method according to the invention uses for this correction a metrological component (special design of the measuring arrangement 20) as well as computational components, which are executed in the correction computer 40.
  • the aim of the metrological component is to maximally reduce the influence of the process-dependent disruptive effects and to provide as unambiguous as possible measured values.
  • additional boundary conditions often have to be taken into account for the design of the measurement technique, such as space limitations in the printing press or varying measurement distance, which boundary conditions according to a further aspect of the invention by deviations from the normalized 0 ° / 45 ° measurement geometry can be taken into account.
  • the remaining measured value deviations from externally determined, standard-conforming measured values are then compensated by numerical correction measures or models in the correction computer 40.
  • the arrows in FIG. 1 represent the data flow of the measured values.
  • the measured values may be density values, color values or reflectance spectra depending on the measuring technique of the measuring arrangement used. In fact, the data flow between the components is bidirectional.
  • the measurement data acquired by the measuring arrangement 20 are transmitted in digital form to the correction computer 40. This corrects the measurement data and forwards it to the control computer 50 of the printing press 1.
  • the corrected measurement data can be displayed by the control computer 50 for the printer, stored, or used for the color control of the printing press. In this case, the (corrected) measured data for the color control are compared with desired values 51 in a manner known per se, and the settings of the printing units 11-14 are determined therefrom and transmitted electronically to them.
  • the correction computer 40 requires for the conversion of the measured values process-specific correction parameters, which are made available in a correction database 41.
  • the correction computer 40 requires for the selection of the correction parameters from the database 41 information 42 about the current printing process. These necessary information 42, for example substrate type, color type and printing unit assignment, are selected or entered by the printer at the (not shown) control panel of the printing machine 1 and transmitted in practice via the control computer 50 to the correction computer 40.
  • the measuring unit 20 consists of a bar in which there are several measuring heads 21 mounted in a row transversely to the direction of travel of the paper, the bar being installed at the end of the last printing unit of an offset printing press.
  • the measuring heads themselves are mounted on a motor-driven slide, which can be moved electronically controlled transversely to the paper direction within the beam. In this way it is possible to detect any measuring locations on the paper.
  • the measuring arrangement 20 in addition to the measuring heads 21, also has separate measuring heads for determining the paper and register position.
  • the measuring arrangement is connected to a rotary encoder of the printing unit, so that the measuring sequence can be synchronized with the rotational movement of the printing cylinder.
  • a typical measuring head 21 is in FIG. 2 shown schematically.
  • the measurement geometry corresponds to the color measurement standard 0/45 ° in accordance with DIN 5033.
  • the illumination from a light source 22 takes place below 0 ° and is imaged by means of an optical system 23 in the measurement plane 24.
  • a light source a central flash light source is preferably used, the light is passed with a fiber optic multiple distributor to the individual measuring heads.
  • the measuring light reflected by the measuring point on the printed sheet is recorded at 45 °.
  • An optical system 25 images the measuring spot in the measuring plane onto an analyzer 26.
  • the analyzer 26 is shown as a photodiode array grating spectrometer with a fiber coupling 27.
  • the measuring head 21 in this design corresponds to a spectrophotometer.
  • the following is the case for a spectral measurement technique over the entire visible range.
  • the measured values are a reflectance spectrum which corresponds to the spectral reflectance of the sample of typically 400 to 700 nm with a spectral resolution of 10 or 20 nm. Density and tristimulus color measuring heads use only part of this spectrum. However, the metrological aspects and the correction models for these spectral subareas are identical to the general case and can be derived directly from the spectral case.
  • inline measurement technology must be able to supply compatible measured values to an external reference.
  • the external reference is defined by measured values on stable samples with a standard-compliant spectrophotometer with 0 ° / 45 ° measuring geometry. Stable sample in this context means that the effects of color separation have subsided and that the sample is finished. In addition, the color layer must be in a defined external state.
  • 21 polarizing filters 28 and 29 are used according to an aspect of the invention in the illumination and receiver channel of the measuring head.
  • the polarization filters consist of linear polarizers and are installed with mutually perpendicular polarization axes in the illumination and receiver channel.
  • the use of polarizing filters is known per se for density measurement in hand-held measuring devices. A description of this technique is contained in the publication "Color and Quality" of Heidelberger Druckmaschinen AG.
  • the use according to the invention of polarization filters in inline measurement for the purpose of eliminating or suppressing the surface effect, i.
  • the suppression of that component of the measuring light which is reflected directly on the structured surface of the ink layer, is not yet described in the literature.
  • UV filter 30 is installed, which suppresses the ultraviolet (UV) portion of the illumination spectrum below 400 nm.
  • This UV barrier filter 30 can be realized, for example, with a type GG420 filter glass from Schott.
  • the UV blocking filter prevents the fluorescence of the brightener additives in the paper from being excited.
  • the UV cutoff filter 30 improves the match with the external reference values because the external meter can use a different illumination source.
  • boundary conditions in the printing press can influence the design of the measuring arrangement 20, for example limited installation space in the printing press or unclean paper support in the measuring plane. According to another important aspect of the invention, these boundary conditions can be taken into account by measuring geometry deviating from the normalized 0 ° / 45 ° measuring geometry.
  • FIG. 2 shows that the distance 31 from the lower edge of the measuring head 21 to the measuring plane 24 has a significant influence on the size of the measuring assembly 20. Namely, in the standard geometry, it determines the distance between the illumination and receiver channels at the lower edge of the measuring arrangement. In addition, it can be seen that the receiver and illumination channel move laterally in the measurement plane (arrow 32) when the measurement distance 31 changes. The mutual displacement limits the working range of the measuring optics.
  • FIG. 3b An improvement for the installation space and the working area is achieved if the lighting and receiver channel are arranged on the same side from the vertical on the measuring plane.
  • This inventive configuration is in the Fig. 3b shown.
  • Fig. 3a shows in comparison the standard geometry 0 ° / 45 °. If the measuring distance is changed, the lateral offset between the illumination and the receiver is reduced. The measurement angles correspond to Fig. 3b no longer the standard geometry. Since any deviation from the standard geometry inevitably entails measured value deviations, the new measurement angles must be chosen so that the smallest possible deviations result from the measurement with standard geometry. Since measurement is carried out using polarizing filters, this requirement corresponds to the condition that the path lengths of the light beams in the color layer are identical for the different measuring geometries.
  • the corresponding illumination angles and receiver angles in air can be calculated from the angles in the color layer with the known refraction law (H. Haferkorn, Optik, p. 40).
  • Fig. 4 represented in the form of a diagram.
  • the coordinate axes denote the illumination angle and the receiver angle in air, the points on the curve 33 each correspond to an angle pair for the measurement geometry.
  • Particularly useful and advantageous for inline measurement are illumination angles greater than 10 ° with the corresponding receiver angles less than 45 °.
  • the measurement geometry according to the invention explained above is also of interest for a measurement technique without a polarization filter.
  • the crossed polarizing filters cause a large signal loss and can not be used when, for example, a weak light source has to be used.
  • This is achieved according to a further aspect of the invention by tilting the illumination channel in the direction of the receiver channel. In FIG. 3b As can be seen, this increases the angular separation between the directed reflection at the surface and the receiver angle.
  • the measurement angles should in this case also satisfy the equation [1].
  • Advantageous measuring geometries are illumination angles in the range of 10 ° to 15 ° and receiver angles in the range of 40 ° to 45 °.
  • Reference values are understood to mean those measured values which are obtained with a standard-compliant color measuring device on finished printed sheets outside the printing press. For the correction of the measured values There are three different states, which are defined in more detail below.
  • State 1 corresponds to the inline measurement in the printing machine with the measuring arrangement 20. At the time of measurement, the ink layer on the substrate is still wet. In addition, the surface of the ink layer is greatly disturbed by the effects of color splitting at the last printing unit.
  • State 2 corresponds to the situation when a sheet is taken out of the boom 17 directly after the printing process and a color measurement is made thereon.
  • the color layer is still wet.
  • the effects of color splitting have already subsided.
  • the surface of the color layer can be assumed to be smooth and glossy with maximum gloss, only a minimal surface effect occurs.
  • State 3 corresponds to the situation when the color measurement is performed on a printed sheet of completely dried ink.
  • the drying process typically takes several hours.
  • the ink film has assumed the microscopic surface roughness of the substrate.
  • the ink layer remains on the substrate during the drying process, the thickness of the ink layer on the substrate is maintained.
  • part or even all of the color pigments penetrate the substrate during the drying process. This effect alters the density and color measurements and must be corrected.
  • correction models according to the invention described below enable the conversion of the measured values between these three states.
  • the conversion is possible in both directions.
  • a sequential sequence is advantageously selected for the practical implementation, ie the measured values obtained in accordance with condition 1 from the measuring arrangement 20 are first transformed into measured values corresponding to condition 2 in state 2 (external measurement wet) and then these measured values corresponding to state 2 are measured state 3 (external measurement dry) corresponding measured values transformed.
  • This sequential correction process is in FIG. 5 shown schematically.
  • the correction of the measured values of state 1 (Block 401) to state 2 (block 402) mainly involves correcting the effects of color splitting (block 404).
  • the correction from state 2 (block 402) to state 3 (block 403) corresponds to the correction of the drying behavior of the ink layer on the particular substrate type (block 405).
  • state 2 there is exactly one external reference state (state 2, block 402) into which all inline metrics (block 401) are transformed. Starting from this state 2, the measured data are then further processed for all applications. Typical applications are displaying the measurements (block 406), storing the measurements as setpoints for the print job (block 407), communicating the setpoints to another press (block 406), and using as the current actual color control value (block 407). ,
  • the external measuring device For the determination of reference values in the states 2 and 3, it makes sense that an external measuring device is used together with the inline measuring arrangement 20.
  • the corrected measurement values in states 2 and 3 must correspond to the reference values which correspond to the measurement with a standard-compliant spectrophotometer, colorimetric or density meter.
  • the external reference values are performed with a measuring device equipped with the same measuring filters as in the inline measuring device 20. This means that in the preferred realization of the method, the external reference values are determined with a measuring device which is equipped with polarization filters and a UV blocking filter.
  • a numerical bandpass correction is performed.
  • the bandpass correction may be performed as described in standard ISO 13655 (ISO 13655, Graphic Technology - Spectral measurement and colorimetric computation for graphic arts images, Annex A, 1996).
  • an external measuring device which has exchangeable measuring filters in the illumination and receiver channels.
  • the meter should support the metering modes without filters, with UV cut filter and with polarizing filters.
  • An exemplary embodiment of such a measuring device is the spectrophotometer SpectroEye from Gretag-Macbeth AG. This functionality allows for takeover or delivery of readings from or to other measuring systems using other measuring filters.
  • the external measuring device can measure a printed reference sheet in all measuring modes. The measured values with the corresponding measuring filter can then be forwarded to the inline measuring arrangement 20 or to another external system. In particular, this allows the adoption of setpoints for color control, which were measured with other measuring filters.
  • the transformed measured values can be adjusted with a correction model which changes the layer thickness. This transformation can be carried out with the layer thickness modulation model which will be described below.
  • the following sections describe the theoretical basis for the inventive computational correction measures (correction algorithms).
  • the first section describes the correction of the inline measurement error, while the second section describes the correction of the drying behavior.
  • the practical application of the correction algorithms and the concrete implementation of the entire correction system are described below.
  • the starting point for the correction or compensation of the inline measurement errors is the color layer at the time of the inline measurement with a modulated surface.
  • the result of the correction must be a compatible external state 2 measurement, which corresponds to a homogeneous color layer.
  • the necessary correction parameters and freedom line and their influence are derived from a color model that simulates the metrological behavior of the ink layer.
  • the reflection factor R consists of two additive components.
  • c 0 is a correction function dependent on the relevant printing process parameters.
  • the surface effect is preferably eliminated by metrological means, ie by the use of polarization filters in the measuring arrangement 20.
  • the amplitude of the surface effect is influenced by the relevant printing process parameters.
  • the correction function c 0 or the dependence on the printing process parameters is determined experimentally. The general procedure is explained below.
  • the second component in equation [2] includes the absorption by the ink as well as the multiple reflections at the interfaces of the ink layer.
  • the multiple reflections are referred to in the literature as Lichtfang.
  • the modulated surface of the color layer after the color splitting influences the absorption behavior and light trapping.
  • the behavior and influence of both effects can be deduced as follows.
  • Equation [2] The modulation of the surface causes the thickness of the ink layer at certain points is smaller than the corresponding layer thickness without modulation. By this effect, the average absorption capacity of the ink layer is reduced.
  • the effect can therefore be described in equation [2] by adapting the product of absorption coefficient ⁇ and layer thickness d.
  • One possibility for the implementation is multiplication by a process-dependent correction factor c 1 , which assumes values less than or equal to 1 as a function of the layer thickness modulation.
  • c 1 is a correction function dependent on the relevant printing process parameters, which, as explained below, can be determined experimentally with characterization measurements.
  • the modulated surface also affects the light trapping of the color layer, since the modulation affects the angles of incidence of the light rays and thus the critical angle for the total reflection at the surface.
  • An elegant implementation of this dependence in equation [2] is achieved according to the invention by varying the refractive index of the ink layer n 2 in the calculation.
  • the surface modulation reduces the mean critical angle for the total reflection, leaving more light trapped in the ink layer. This behavior corresponds to an increase of the refractive index n 2 .
  • n 2c is the refractive index after the correction
  • c 2 is a multiplicative correction function which, like the correction functions c 0 and c 1, is process-dependent and must be characterized experimentally.
  • the correction of the inline measurement errors can thus be implemented with three different types of errors, namely surface effect, layer thickness modulation and light capture according to the equations [2] to [5].
  • the three correction functions c 0 , c 1 , c 2 are used, which are parameterized as a function of the printing process parameters and whose corresponding values are stored in the correction database 41 already mentioned.
  • the reflection factor of an absorbing ink layer on a diffusely scattering substrate can be described by the following equation.
  • R c O ⁇ R O + ( 1 - R 0 ) 1 - R 2 ⁇ ⁇ p ⁇ e - kd 1 - R 2 ⁇ ⁇ p ⁇ e - kd .
  • the first additive component c 0 R 0 again corresponds to the surface effect and is identical to equation [2].
  • the correction of the light capture is implemented in the Kubelka-Munk model as a scaling of the diffuse internal reflection coefficient R.
  • R 2 ⁇ c R 2 c 2 .
  • c 0 , c 1 and c 2 are again process parameter-dependent correction functions.
  • the application of the algorithm for the correction of inline measurement errors with a color model is shown schematically in FIG. 6 shown.
  • the illustrated sequence corresponds to the correction of a spectral measured value of the remission spectrum.
  • the correction of the entire reflectance spectrum is achieved by performing the correction cycle for each support point of the spectrum.
  • the diffuse reflectance ⁇ p of the substrate is determined from the measured absolute remission value of the substrate (paper white measurement, block 411) (block 413).
  • the extinction spectrum is calculated using the inverse KMS model according to equation [7] (block 422) E (block 423) of state 1 is calculated.
  • the correction function c 0 valid for the specific print job and for the concrete printing process parameters is read from the correction database 41 and applied.
  • the absorbance value according to state 2 (block 425) is transformed into the remission value of state 2 (block 427).
  • the direct KMS model in equation [6] is used.
  • the correction of the light capture is performed.
  • the internal reflection factor R 2 is multiplied by the corresponding correction function c 2 , which is also read from the correction database 41.
  • the surface effect is set equal to zero in this transformation.
  • the correction of the inline measured values can also be carried out without a color model.
  • the correction is advantageously carried out directly on the measured remission value R or the corresponding density value D.
  • the measured value deviation is considered to be composed of the three error types surface effect, layer thickness modulation and light capture and is corrected accordingly.
  • the surface effect is added to equation (3) as an additive component to the reflection factor R.
  • Equation [2] simulated behavior of the correction of the layer thickness modulation acc. Equation [4] and the correction of the light capture acc. Equation [5] is in the FIGS. 7a and 7b shown.
  • the diagram of Fig. 7a represents the behavior of the relative density error Dc / D as a function of the density value D for the two correction types
  • Fig. 7b shows the behavior of the relative remission error Rc / R as a function of the remission value R for the two correction types.
  • the behavior of the correction of the film thickness modulation shows a constant relative density error as a function of the density.
  • D c D c 1 .
  • c 1 is again a process-dependent correction function that is read in from the correction database.
  • c 2 is again a process-dependent correction function, which is read from the correction database.
  • FIGS. 7a and 7b also show that the film thickness modulation error and the light tracing error have different signs and can compensate each other. This behavior can cause numerical instabilities in the correction. For this reason, according to a further aspect of the invention for the correction with and without a color model, a threshold value D s is introduced. For high densities, mainly the film thickness modulation error is dominant. For low densities, the error caused by light trapping is dominant. The distinction between high and low densities is made by the threshold, which is preferably chosen in the range of about 1.0.
  • the correction of the drying effect enables the transformation of the measured values of state 2 (externally wet) into measured values of state 3 (externally dry).
  • the drying behavior on coated and uncoated papers is also characterized according to the invention with the three error types surface effect, layer thickness modulation and light capture and corrected accordingly.
  • the required correction function c 0 , c 1 , c 2 are (after their determination) also stored in the correction database 41 and correspond to a second data set in addition to the correction functions for the correction of the inline error.
  • the correction computer 40 is connected to the measuring arrangement 20 and receives therefrom for each scanned measuring field the data of the acquired spectra.
  • the control computer 50 transmits to the correction computer 40 the environmental parameters suitable for each measured field, ie machine, process and measuring field parameters. These parameters are in detail: printing speed, number of the printing unit in which the measuring arrangement 20 is located, paper class (eg glossy paper, matte paper, natural paper), color type class (eg scale color cyan), measuring field type (eg solid tone, grid 70%, gray) and the Number of the printing unit in which the measuring field was printed.
  • the correction is case specific, with a single case defining a particular combination of environment parameters.
  • the correction database 41 is realized as a table in which a correction case is treated in each line.
  • a single line comprises a set of conditional parameters (corresponding to the environmental parameters) and a set of correction parameters.
  • the correction computer 40 compares the relevant environmental parameters with the condition parameters in the correction database 41 for each measurement. For this purpose, the table is processed line by line until a first match is found. In this way, the appropriate case and thus the appropriate correction parameters are found.
  • the table is traversed from the top (beginning of the table) downwards (end of the table).
  • the cases are ordered in the table according to the degree of specificity, the table starting with very specific cases and ending with very generic cases. So it always tries first to perform a specific correction. If no cases are defined for this purpose, the correction gradually becomes more generic.
  • correction computer 40 it is decided for each individual value of the uncorrected reflectance spectrum, with each measurement, whether this is in the absorption, transmission or transitional range of the color. These are the remission values of the individual wavelengths (spectral values) are compared with defined threshold values D s (see above). Spectral values in the transmission range (D ⁇ D s ) are multiplied by the correction function c 2 (see equation [12]), which is defined by the correction parameters in the respective table line. Spectral values in the transition range (D ⁇ D s ) are not corrected.
  • Spectral values in the absorption range (D> D s ) are logarithmized, multiplied by a density-dependent correction function c 1 (see equation [11]) and then delogarithmated again, the correction function c 1 typically being a second-degree polynomial of density and its coefficients also being part the correction parameters are. As measured with polarizing filters, there is no surface effect and thus c 0 can be set equal to zero.
  • the corrected spectrum is then forwarded to the control computer (50).
  • correction database 41 has to be created before the actual inline correction.
  • prints with defined fields are made for all cases of interest (see definition above) and measured both with the inline measuring arrangement 20 and with an external measuring device. Since the correction parameters depend strongly on the layer thickness, prints for each case of interest are made and measured at at least 3 different layer thicknesses. From the totality of these measurement data, a set of correction parameters is then calculated for each individual case, whereby, of course, this preferably takes place computer-aided.
  • the spectra of the inline measurements and the externally acquired measurements are offset against each other.
  • it is determined for each part of the spectrum based on a defined threshold value, whether this is in the absorption, transmission or transition range of the color.
  • the correction parameters required for these areas are determined, which define the correction functions c 1 and c 2 (c 0 is not required in the measurement with polarization filters).
  • the correction function c 2 is obtained by dividing the spectral values of the transmission ranges of the measurements recorded inline and externally by one another and then averaging them.
  • the density-dependent correction function c 1 for the absorption range selected as polynomial of degree 2 the density values of the measurements recorded in-line and externally are divided by each other. With the thus obtained density - dependent quotients are calculated by the method of least squares the coefficients of the correction polynomial and thus the correction function c 1 determined.
  • the correction functions c 1 and c 2 or their parameters are then stored in the correction database 41 according to cases structured.
  • the method according to the invention also allows the corrected values to be provided only after a mean value formation or another method for compensating fluctuations of the measured values.
  • This fluctuation may be due to metrological reasons, but in particular comes from the printing process itself.
  • offset printing it has been known for a long time (for example, "Offsetdrucktechnik", Helmut Teschner), that the printing process is subject to both systematic and random fluctuations, these fluctuations also being of very short-term nature, i. especially from bow to bow, can be.
  • Conventional procedure is taken to measure a single sheet after printing the printing press and measured. The measured values obtained from this are then used, for example, for process control or displayed.
  • the corrected measured values are not only provided as described above directly after a correction of the inline error, but can also be subjected to further computational processing steps.
  • One such processing step is, for example, the conversion between different measurement conditions.
  • a particularly relevant case in practice is the conversion of measurements with different filters. If, for example, the corrected measured values initially exist as values measured with polarization filters, then it may be necessary to compare these values for tuning with specifications from the preliminary stage with values measured without polarization filters. A computational component for the conversion of polarization filters measured values in values measured without polarization filter then fulfills this task.

Claims (31)

  1. Procédé de détermination de valeurs d'encrage et/ou de densité pour la surveillance et/ou la régulation du processus d'impression dans un dispositif d'impression, spécialement une presse offset à feuilles, des champs de mesure d'une feuille imprimée pendant le processus d'impression étant directement mesurés de manière photoélectrique dans ou sur le dispositif d'impression en fonctionnement et les valeurs d'encrage et/ou de densité pour les champs de mesure concernés étant formées à partir des valeurs de mesure obtenues, caractérisé en ce que des écarts de valeur de mesure dus à la mesure directement dans le processus d'impression sont corrigés par le calcul par rapport à une mesure sur des feuilles imprimées en dehors du processus d'impression.
  2. Procédé selon la revendication 1, caractérisé en ce que les écarts de valeur de mesure sont corrigés partiellement aussi par la mesure.
  3. Procédé selon la revendication 2, caractérisé en ce que des effets de scission du film d'encre sur l'emprise d'impression, et de modification superficielle engendrée par celle-ci sont au moins partiellement éliminés par l'utilisation de filtres de polarisation (28, 29) lors de la mesure.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce que des filtres d'arrêt à ultraviolets sont utilisés lors de la mesure pour améliorer la reproductibilité des valeurs de mesure.
  5. Procédé selon la revendication 2, caractérisé en ce que des effets de scission du film d'encre sur l'emprise d'impression et de modification superficielle engendrée par celle-ci sont au moins partiellement éliminés par l'utilisation d'une géométrie de mesure avec une séparation angulaire entre le reflet dirigé de l'éclairage et le récepteur de plus de 45 °.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les valeurs de mesure sont corrigées par le calcul de telle sorte que les valeurs de mesure d'un premier état qui correspond à la feuille imprimée directement dans le processus d'impression, soient converties en valeurs de mesure d'un deuxième état qui correspond à une feuille imprimée encore humide en dehors du dispositif d'impression, et ces valeurs de mesure sont converties finalement en valeurs de mesure d'un troisième état qui correspond à une feuille imprimée sèche en dehors de la presse.
  7. Procédé selon la revendication 6, caractérisé en ce que les valeurs de mesure sont corrigées par le calcul de telle sorte que les valeurs de mesure du premier, du deuxième et du troisième états puissent être converties mutuellement les unes en les autres.
  8. Procédé selon la revendication 6 ou 7, caractérisé en ce que la correction par le calcul des valeurs de mesure des champs de mesure est réalisée en fonction des paramètres ambiants importants pour chaque champ de mesure à l'aide de paramètres de correction, des paramètres de correction correspondants étant utilisés pour chaque ensemble de paramètres ambiants, dont il est question.
  9. Procédé selon la revendication 8, caractérisé en ce que les paramètres de correction sont enregistrés conjointement avec les paramètres ambiants dans une base de données et peuvent être appelés de manière sélective de celle-ci au moyen des paramètres ambiants.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les valeurs de mesure sont corrigées au moyen de trois types d'erreur qui représentent les apports d'écart de valeur de mesure d'un effet de surface, d'une modulation d'épaisseur de couche et d'une absorption de lumière.
  11. Procédé selon la revendication 10, caractérisé en ce que les apports d'écart de valeur de mesure de l'effet de surface, de la modulation d'épaisseur de couche et de l'absorption de lumière sont calculés à l'aide d'une fonction de correction, les fonctions de correction étant définies par les paramètres de correction.
  12. Procédé selon la revendication 11, caractérisé en ce que la correction de valeur de mesure est réalisée sur la base d'un modèle d'encrage.
  13. Procédé selon la revendication 12, caractérisé en ce que l'apport d'écart de valeur de mesure de la modulation d'épaisseur de couche est calculé comme un facteur de multiplication du produit de l'épaisseur de couche et du coefficient d'absorption ou de l'extinction.
  14. Procédé selon la revendication 12, caractérisé en ce que l'apport d'écart de valeur de mesure de l'absorption de lumière est calculé par une modification de l'indice de réfraction de la couche d'encrage.
  15. Procédé selon la revendication 12, caractérisé en ce que l'apport d'écart de valeur de mesure de l'absorption de lumière est calculé par une modification multiplicative du coefficient de réflexion intégral interne de la surface limite de la couche d'encrage à l'air.
  16. Procédé selon l'une quelconque des revendications 12 à 15, caractérisé en ce que la correction de valeur de mesure est réalisée dans un cycle de correction séquentiel, le degré de réflexion diffus de la feuille étant calculé tout d'abord au moyen d'une mesure à blanc du papier, puis l'effet de surface étant corrigé, puis l'extinction étant calculée au moyen d'un modèle d'encrage inversé par rapport au modèle d'encrage choisi, puis l'apport d'erreur de valeur de mesure de la modulation d'épaisseur de couche étant corrigé au moyen de l'extinction, puis l'apport d'erreur de valeur de mesure de l'absorption de lumière étant corrigé au moyen du modèle d'encrage choisi et finalement une valeur de réflectance corrigée étant calculée.
  17. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la correction de valeur de mesure est réalisée directement sur les valeurs de mesure, l'apport d'erreur de valeur de mesure de la modulation d'épaisseur de couche étant appliqué comme erreur d'échelle de la valeur de densité mesurée et l'apport d'erreur de valeur de mesure de l'absorption de lumière comme erreur d'échelle du facteur de réflexion.
  18. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la correction de l'apport d'erreur de valeur de mesure de la modulation d'épaisseur de couche et la correction de l'apport d'erreur de valeur de mesure de l'absorption de lumière sont utilisées de manière séparée pour différentes zones de la valeur de réflectance mesurée, pour des valeurs de réflectance, dont les valeurs de densité calculées à partir de celles-ci se trouvent au-dessus d'une valeur seuil de densité, seul l'apport d'erreur de valeur de mesure de la modulation d'épaisseur de couche étant corrigé et pour toutes les autres valeurs de réflectance, seul l'apport d'erreur de valeur de mesure de l'absorption de lumière étant corrigé.
  19. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la correction de valeur de mesure est effectuée du deuxième état au troisième état également sur la base de trois apports d'erreur de valeur de mesure d'effet de surface, de modulation d'épaisseur de couche et d'absorption de lumière, un deuxième ensemble de paramètres de correction étant utilisé de manière analogue à celui pour la correction du premier état au deuxième état et ce deuxième ensemble de paramètres de correction étant mis également à disposition dans la base de données de correction.
  20. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que des paramètres de correction génériques sont enregistrés dans la base de données de correction, lesquels sont conçus pour des types de papier typiques et des couleurs de processus standard.
  21. Procédé selon la revendication 20, caractérisé en ce que dans la base de données de correction sont enregistrés en outre des paramètres de correction spécifiques qui sont conçus pour des cas spéciaux, dans lesquels les paramètres de correction génériques ne sont pas valables ou sont inexacts.
  22. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les paramètres de correction sont calculés à partir des valeurs de mesure d'impressions générées avec des paramètres ambiants systématiquement variés dans le premier état et à partir de valeurs de mesure de référence de ces impressions dans le deuxième et/ou le troisième état.
  23. Procédé selon la revendication 22, caractérisé en ce que les valeurs de référence sont mesurées avec un appareil de mesure externe qui est équipé des mêmes filtres de mesure que le dispositif de mesure interne au sein du dispositif d'impression.
  24. Procédé selon la revendication 23, caractérisé en ce que des différences dans la résolution spectrale entre l'appareil de mesure externe et le dispositif de mesure interne sont supprimées à l'aide d'une correction de passe-bande numérique.
  25. Procédé selon la revendication 23, caractérisé en ce que pour la mesure des valeurs de référence, un appareil de mesure externe est utilisé, lequel présente plusieurs filtres de mesure interchangeables, et en ce que des mesures de référence sont réalisées dans différents modes de mesure de l'appareil de mesure externe, les données de mesure pouvant être échangées entre le dispositif de mesure interne et d'autres systèmes de mesure dotés d'autres filtres de mesure.
  26. Procédé selon la revendication 23, caractérisé en ce qu'au cas où la densité mesurée sur la feuille de référence ne correspond pas à la densité de consigne exigée, les valeurs de mesure transformées pour le filtre de mesure exigé sont corrigées par une étape de correction.
  27. Dispositif d'impression, notamment presse offset à feuilles, caractérisé en ce qu'il présente un dispositif de mesure (20) en ligne pour la mesure photoélectrique de points de mesure d'une feuille imprimée directement pendant le processus d'impression, des moyens (40) étant présents afin de former à partir des valeurs de mesure obtenues lors de la mesure les valeurs d'encrage et/ou de densité pour les points de mesure concernés, et en ce qu'il présente un ordinateur de correction (40) qui corrige par le calcul des écarts de valeur de mesure dus à la mesure directement dans le processus d'impression par rapport à une mesure sur la feuille imprimée en dehors du processus d'impression.
  28. Dispositif d'impression selon la revendication 27, caractérisé en ce que le dispositif de mesure (20) est réalisé afin de supprimer au moins partiellement la part due à l'effet de surface de l'écart de valeur de mesure.
  29. Dispositif d'impression selon la revendication 28, caractérisé en ce que le dispositif de mesure (20) présente des filtres de polarisation (28, 29) et de préférence également un filtre d'arrêt à ultraviolets (30).
  30. Dispositif d'impression selon l'une quelconque des revendications 27 à 29, caractérisé en ce que le dispositif de mesure (20) présente une géométrie de mesure divergeant de la géométrie de mesure 0/45° normalisée, les angles de mesure de l'éclairage et du récepteur étant choisis de telle sorte qu'ils soient disposés sur le même côté de la normale sur le plan de mesure et la longueur de course correspondante des rayons principaux du récepteur et de l'éclairage dans la couche d'encrage soit identique à la géométrie de mesure normalisée.
  31. Dispositif d'impression selon l'une quelconque des revendications 27 à 30, caractérisé en ce que l'ordinateur de correction (40) est réalisé afin de réaliser le procédé selon l'une quelconque des revendications 1 à 20.
EP05736412A 2004-05-03 2005-04-29 Procede pour determiner des valeurs de densite et/ou d'encrage et dispositif d'impression pour la mise en oeuvre dudit procede Active EP1744884B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021599A DE102004021599A1 (de) 2004-05-03 2004-05-03 Verfahren zur Ermittlung von Farb- und/oder Dichtewerten und für das Verfahren ausgebildete Druckeinrichtungen
PCT/EP2005/004608 WO2005108083A1 (fr) 2004-05-03 2005-04-29 Procede pour determiner des valeurs de densite et/ou d'encrage et dispositif d'impression pour la mise en oeuvre dudit procede

Publications (2)

Publication Number Publication Date
EP1744884A1 EP1744884A1 (fr) 2007-01-24
EP1744884B1 true EP1744884B1 (fr) 2008-07-23

Family

ID=34965927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05736412A Active EP1744884B1 (fr) 2004-05-03 2005-04-29 Procede pour determiner des valeurs de densite et/ou d'encrage et dispositif d'impression pour la mise en oeuvre dudit procede

Country Status (7)

Country Link
US (1) US7515267B2 (fr)
EP (1) EP1744884B1 (fr)
JP (1) JP4879885B2 (fr)
CN (1) CN100567001C (fr)
AT (1) ATE402014T1 (fr)
DE (2) DE102004021599A1 (fr)
WO (1) WO2005108083A1 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470010B2 (en) * 2005-10-11 2008-12-30 Silverbrook Research Pty Ltd Inkjet printhead with multiple ink inlet flow paths
DE102006014657B4 (de) * 2006-03-28 2008-11-20 Koenig & Bauer Aktiengesellschaft Verfahren zur Farbregelung einer Druckmaschine
CN100588542C (zh) 2006-03-30 2010-02-10 海德堡印刷机械股份公司 用于在印刷机中进行颜色测量的方法
DE102007011344B4 (de) * 2006-03-30 2020-11-26 Heidelberger Druckmaschinen Ag Verfahren zur Farbmessung bei Druckmaschinen
DE102007008017A1 (de) 2007-02-15 2008-08-21 Gretag-Macbeth Ag Farbspaltungskorrekturverfahren
DE102007044758B4 (de) * 2007-03-08 2021-02-25 Heidelberger Druckmaschinen Ag Verfahren zur Farbmessung und Farbregelung bei Druckmaschinen mittels internem und externem Farbmessgerät
DE102007014735A1 (de) * 2007-03-24 2008-09-25 Massen Machine Vision Systems Gmbh Überwachung des Farbeindrucks von mehrfarbig gemusterten Flächen
DE102008022770B4 (de) * 2007-05-30 2018-01-11 Heidelberger Druckmaschinen Ag Verfahren zur Umrechnung von Farbmesswerten in polarisierter oder unpolarisierter Form
DE102010004417A1 (de) * 2009-02-09 2010-09-02 Heidelberger Druckmaschinen Ag Konvertierung von filterlos gemessenen Farbmesswerten in mit Filtern gemessene Farbmesswerte und umgekehrt
JP4473930B1 (ja) 2009-02-27 2010-06-02 パナソニック株式会社 帳票読取装置
DE102010011577A1 (de) 2009-03-25 2010-10-14 Heidelberger Druckmaschinen Ag Winkelabhängige Farbwertkorrektur
CN101844438B (zh) 2009-03-25 2014-06-11 海德堡印刷机械股份公司 印刷机中的在线油墨调节
DE102010015034B4 (de) * 2009-04-30 2016-01-14 Heidelberger Druckmaschinen Ag Hybrid-Inline-Farbregelung für Druckmaschinen
US8123326B2 (en) * 2009-09-29 2012-02-28 Eastman Kodak Company Calibration system for multi-printhead ink systems
US8104861B2 (en) * 2009-09-29 2012-01-31 Eastman Kodak Company Color to color registration target
US20120201559A1 (en) * 2009-10-30 2012-08-09 Holland William D Calibrated reflection densitometer
DE102010051952B4 (de) * 2009-12-11 2022-01-20 Heidelberger Druckmaschinen Ag Analyse Farbauszüge
DE102010011985A1 (de) * 2010-03-19 2011-09-22 Stefan Spengler Verfahren zur Qualitätserfassung bei einer Wiedergabe von Farben
EP2439071A1 (fr) 2010-10-11 2012-04-11 KBA-NotaSys SA Motif de contrôle des couleurs pour la mesure optique de couleurs imprimées sur un substrat de type feuille ou toile à l'aide d'une presse d'impression multicolore et utilisations correspondantes
CN102649347B (zh) 2011-02-26 2016-08-03 海德堡印刷机械股份公司 印刷机中墨盒挠曲的补偿
DE102011014073A1 (de) 2011-03-16 2012-09-20 Robert Bosch Gmbh Verfahren zur Regelung eines Druckvorgangs
DE102012004482A1 (de) * 2011-03-24 2012-09-27 Heidelberger Druckmaschinen Aktiengesellschaft Nutzenfarboptimierung
JP5761499B2 (ja) * 2011-03-30 2015-08-12 大日本印刷株式会社 枚葉印刷物検査装置
DE102012005785A1 (de) 2011-04-28 2012-10-31 Heidelberger Druckmaschinen Ag Color Booster beim Auftragswechsel
DE102012012517A1 (de) * 2011-07-15 2013-01-17 Heidelberger Druckmaschinen Aktiengesellschaft Feuchtmittelregelung in einer Druckmaschine
CN102909950B (zh) 2011-08-03 2015-12-09 海德堡印刷机械股份公司 在印刷速度变化时输墨装置的控制
DE102012016832A1 (de) 2011-09-22 2013-03-28 Heidelberger Druckmaschinen Ag Farbregelung auf letzter Farbauftragswalze
DE102012020911A1 (de) 2011-11-11 2013-05-16 Heidelberger Druckmaschinen Ag Färbungswächter für Druckmaschinen
JP5904784B2 (ja) * 2011-12-27 2016-04-20 キヤノン株式会社 画像形成装置
CN102756551B (zh) * 2012-06-29 2015-06-17 深圳劲嘉彩印集团股份有限公司 胶印机在线颜色控制装置及方法
US8767277B2 (en) 2012-11-16 2014-07-01 Hewlett-Packard Development Company, L.P. Printer calibration using measured and determined optical densities of different primary colors from test patches
DE102014222799B4 (de) 2014-11-07 2016-09-01 Koenig & Bauer Ag Verfahren zum Ermitteln einer in einem Druckprozess einer Druckmaschine auftretenden Tonwertzunahme
EP3035035B1 (fr) 2014-12-18 2020-07-22 CLUTEX - Klastr Technické Textilie, o.s. Procédé pour la mesure continue de couleur des surfaces textiles et machine pur l'exécution du procédé.
DE102015205275B8 (de) * 2015-03-24 2017-08-03 Heidelberger Druckmaschinen Ag Verfahren zur Korrektur von Abweichungen gemessener Bilddaten
DE102017200808A1 (de) * 2016-02-02 2017-08-03 Heidelberger Druckmaschinen Ag Verfahren zur automatisierten Erzeugung von Referenzfarbwerten für die Farbsteuerung
DE102016207994B4 (de) * 2016-05-10 2017-11-30 Heidelberger Druckmaschinen Ag Verfahren zum Erzeugen eines Proofs
CN106739484B (zh) * 2016-11-24 2019-05-14 杭州电子科技大学 一种预测印刷品干燥过程颜色变化的方法
DE102018202522A1 (de) * 2017-03-22 2018-09-27 Heidelberger Druckmaschinen Ag Verfahren zur optimierten Farbsteuerung in einer Druckmaschine
CN107042689B (zh) * 2017-04-24 2019-05-03 北京奇良海德印刷股份有限公司 一种印刷色彩质量测试方法
US11318759B2 (en) 2018-06-12 2022-05-03 Hewlett-Packard Development Company, L.P. Print region based print drying
CN109596216B (zh) * 2018-10-15 2021-04-27 昆明理工大学 一种基于CIE Lab系统的钝化膜表面颜色浓度的表征方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2737177A (en) * 1976-07-29 1979-02-01 Addressograph Multigraph Ink thickness control and method
ATE20620T1 (de) * 1982-04-10 1986-07-15 Hell Rudolf Dr Ing Gmbh Verfahren und vorrichtung zur dichtemessung von farbschichten noch feuchter druckfarbe.
US4665496A (en) * 1983-11-04 1987-05-12 Gretag Aktiengesellschaft Process and apparatus for the evaluation of the printing quality of a printed product by an offset printing machine
US5182721A (en) * 1985-12-10 1993-01-26 Heidelberger Druckmaschinen Aktiengesellschaft Process and apparatus for controlling the inking process in a printing machine
DE3707027A1 (de) * 1987-03-05 1988-09-15 Deutsche Forsch Druck Reprod Verfahren zur steuerung der farbgebung im mehrfarbendruck
US5754283A (en) * 1994-10-26 1998-05-19 Byk-Gardner Usa, Division Of Atlana Color measuring device having interchangeable optical geometries
US5724259A (en) 1995-05-04 1998-03-03 Quad/Tech, Inc. System and method for monitoring color in a printing press
JP3661230B2 (ja) * 1995-06-30 2005-06-15 凸版印刷株式会社 印刷品質管理装置
JP3761240B2 (ja) * 1996-02-28 2006-03-29 浜松ホトニクス株式会社 光検出装置
DE19650075A1 (de) * 1996-12-03 1998-06-04 Roland Man Druckmasch Antrieb für eine Druckmaschine
JP2000055826A (ja) * 1998-08-12 2000-02-25 Dakku Engineering Kk 品質検査装置
EP1033247B1 (fr) * 1999-02-26 2011-01-05 Koenig & Bauer Aktiengesellschaft Procédé de controle de l'encrage dans une machine à imprimer
DE10257981A1 (de) * 2002-01-15 2003-07-24 Heidelberger Druckmasch Ag Farbsteuerung einer Druckmaschine mit spektralbasierter Farbmessung
US6744077B2 (en) * 2002-09-27 2004-06-01 Lumileds Lighting U.S., Llc Selective filtering of wavelength-converted semiconductor light emitting devices
JP2004230793A (ja) * 2003-01-31 2004-08-19 Mitsubishi Heavy Ind Ltd 印刷機の色調制御装置

Also Published As

Publication number Publication date
WO2005108083A1 (fr) 2005-11-17
JP4879885B2 (ja) 2012-02-22
ATE402014T1 (de) 2008-08-15
DE502005004811D1 (de) 2008-09-04
US7515267B2 (en) 2009-04-07
CN100567001C (zh) 2009-12-09
US20070081204A1 (en) 2007-04-12
EP1744884A1 (fr) 2007-01-24
JP2007536127A (ja) 2007-12-13
DE102004021599A1 (de) 2005-12-01
CN1950208A (zh) 2007-04-18

Similar Documents

Publication Publication Date Title
EP1744884B1 (fr) Procede pour determiner des valeurs de densite et/ou d'encrage et dispositif d'impression pour la mise en oeuvre dudit procede
EP1805979B1 (fr) Procede de correction de valeurs mesurees d'images
EP0884178B1 (fr) Procédé pour reguler l'encrage dans une machine d'impression
DE102008041430B4 (de) Verfahren zur Prüfung zumindest eines in einem laufenden Druckprozess einer Druckmaschine ermittelten Messwertes auf seine Plausibilität
EP2313272B1 (fr) Procede de controle de vraisemblance d'au moins une valeur de mesure déterminee dans une machine d'impression
DE102008041427B4 (de) Verfahren zur automatischen Farbregelung in einem laufenden Druckprozess innerhalb einer Druckmaschine
DE4321177A1 (de) Vorrichtung zur parallelen Bildinspektion und Farbregelung an einem Druckprodukt
EP2033789A2 (fr) Calibrage d'appareils de mesure de couleur dans une machine d'impression
EP1958775B1 (fr) Procédé de correction de la séparation du film d'encre
DE19802920B4 (de) Verfahren und Vorrichtung zur Farbregelung in Druckmaschinen
EP0659559B1 (fr) Méthode pour contrÔler l'apport d'encre dans une machine d'impression
DE4109744C2 (de) Verfahren zur Ermittlung der Flächendeckung einer druckenden Vorlage, insbes. einer Druckplatte, sowie Vorrichtung zur Durchführung des Verfahrens
DE4237004A1 (de) Verfahren zur Online-Farbregelung von Druckmaschinen
DE102008041426B4 (de) Verfahren zur Verwendung in einer Druckmaschine mit mindestens einem Farbwerk
EP2727730B1 (fr) Procédé de réglage de la couleur dans une imprimante offset
DE19830487B4 (de) Verfahren zur Ermittlung von Flächendeckungen in einem Druckbild
EP0916491B1 (fr) Procédé pour déterminer des gradients colorimétriques
DE102007011344B4 (de) Verfahren zur Farbmessung bei Druckmaschinen
EP2325010B1 (fr) Procédé destiné à la détermination de caractéristiques d'une matière imprimée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOHLBRENNER, ADRIAN

Inventor name: EHBETS, PETER

Inventor name: GEISSLER, WOLFGANG

17Q First examination report despatched

Effective date: 20070403

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEIDELBERGER DRUCKMASCHINEN AG

Owner name: X-RITE EUROPE AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005004811

Country of ref document: DE

Date of ref document: 20080904

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081103

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MANROLAND AG

Effective date: 20090423

Opponent name: KOENIG & BAUER AG B

Effective date: 20090423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: HEIDELBERGER DRUCKMASCHINEN A.G.

Effective date: 20090430

Owner name: X-RITE EUROPE A.G.

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: MANROLAND AG

Effective date: 20090423

Opponent name: KOENIG & BAUER AG BOGENOFFSETMASCHINEN SCHUTZRECHT

Effective date: 20090423

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: X-RITE SWITZERLAND GMBH

Owner name: HEIDELBERGER DRUCKMASCHINEN AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG, CH

Ref country code: CH

Ref legal event code: PFA

Owner name: HEIDELBERGER DRUCKMASCHINEN AG, CH

Free format text: FORMER OWNER: HEIDELBERGER DRUCKMASCHINEN AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: POSTFACH, 8032 ZUERICH (CH)

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HEIDELBERGER DRUCKMASCHINEN AG

Owner name: X-RITE SWITZERLAND GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502005004811

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20190204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 19

Ref country code: DE

Payment date: 20230430

Year of fee payment: 19

Ref country code: CH

Payment date: 20230502

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 19