EP1743018B1 - Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln - Google Patents

Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln Download PDF

Info

Publication number
EP1743018B1
EP1743018B1 EP05734132A EP05734132A EP1743018B1 EP 1743018 B1 EP1743018 B1 EP 1743018B1 EP 05734132 A EP05734132 A EP 05734132A EP 05734132 A EP05734132 A EP 05734132A EP 1743018 B1 EP1743018 B1 EP 1743018B1
Authority
EP
European Patent Office
Prior art keywords
monomer
copolymer
monomers
mol
alkylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05734132A
Other languages
English (en)
French (fr)
Other versions
EP1743018A1 (de
Inventor
Gregor Brodt
Pia Baum
Tanja Seebeck
Marcus Guzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1743018A1 publication Critical patent/EP1743018A1/de
Application granted granted Critical
Publication of EP1743018B1 publication Critical patent/EP1743018B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions

Definitions

  • the present invention relates to novel copolymers having N-heterocyclic groups and their use in liquid and solid detergent formulations. These copolymers show in the washing process a color transfer inhibiting effect.
  • copolymers described in these documents are characterized in part by a good inhibition of color transfer in washing processes. However, they generally have low compatibility with the other commonly used detergent ingredients. Thus, there is the danger of incompatibilities, for example in the form of turbidity or phase separations, especially in liquid detergents.
  • the A) a polymeric graft base without monoethylenically unsaturated units and B) formed by polymerization of a cyclic, 3- to 7-membered N-vinylamide polymeric side chains contain, wherein the proportion of the side chains (B) in the total polymer ⁇ 60 wt .-% is.
  • Similar graft polymers are disclosed in U.S. Pat DE 10156135 and the DE 10156133 described for this purpose.
  • graft polymers are distinguished by improved compatibility with detergent constituents, in particular liquid detergents, the disadvantage of a poorer ink transfer inhibition is at the same time accepted for this advantage. In addition, the achieved compatibility is not completely satisfactory.
  • the present invention relates to the use of such copolymers in liquid or solid detergent formulations comprising in polymerized form: (a) 80 to 99.9 mol% at least one monomer A, each comprising a heterocycle having at least 1 N atom (N-heterocycle) of 3 to 10 ring members and a C 2 -C 6 alkenyl group bonded to a C or N ring atom of the heterocycle; and (b) 0.1 to 20 mol% at least one monomer B which is copolymerizable with the monomer A and has a monoethylenically unsaturated double bond and a linear or branched poly-C 2 -C 4 -alkylene oxide group having on average 4 to 500 C 2 -C 4 -alkylene oxide units and 1 or 2, independently of one another comprises radicals selected from C 1 -C 2 -alkyl, wherein here and in the following all quantities of monomers in mol% are based on the total amount of monomers used to prepare the copo
  • the invention also relates to such copolymers, with the proviso that the end group of the poly-C 2 -C 4 alkylene oxide group in the monomers B is selected from C 1 -C 2 -alkyl, when the monomer B is an ester of a ethylenically unsaturated carboxylic acid with a linear poly-C 2 -C 4 alkylene oxide.
  • the invention further relates to a process for preparing such copolymers comprising the radical polymerization of at least one monomer A with the at least one monomer B.
  • N-heterocycle is an aromatic or non-aromatic, heterocyclic radical having usually 3 to 10, in particular 4 to 8 and especially 5 to 7 ring atoms, where 1, 2 or 3 of the ring atoms are heteroatoms, preferably under nitrogen and oxygen are selected, wherein at least one ring member is a nitrogen atom.
  • the N-heterocycle may be aromatic (heteroaryl) or partially or fully saturated.
  • the N-heterocycle may optionally have one or more, for example, 1, 2, 3 or 4 substituents selected from C 1 -C 4 alkyl, C 3 -C 6 cycloalkyl and phenyl.
  • the N-heterocycle may have a carbonyl group and / or an N-oxide group as a ring member.
  • the 3) N-heterocycle may also be present as a betainic structure in which at least one N atom of the heterocycle has a C 1 -C 20 -alkanediyl group with a lower -SO 3 - , -OSO 3 - , -COO - , -OPO (OH) O - , -OPO (OR f ) O - or -PO (OH) O - selected anionic group, wherein R f is C 1 -C 6 alkyl.
  • C 1 -C 20 -alkanediyl here means a linear or branched aliphatic, two-membered, ie bonded via two carbon atoms, Hydrocarbon radical with usually 1 to 20 and in particular 1 to 10 C-atoms.
  • alkyl for a linear or branched aliphatic hydrocarbon radical having usually 1 to 10, in particular 1 to 6 and especially 1 to 4 carbon atoms, such as.
  • cycloalkyl for a cycloaliphatic hydrocarbon radical having usually 3 to 6 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • alkenyl for a monoethylenically unsaturated hydrocarbon radical having generally 2 to 6 and in particular 2 to 3 carbon atoms, for.
  • alkenyl is vinyl and allyl, particularly preferably allyl.
  • C 2 -C 4 -alkylene oxide represents a linear or branched alkanedyloxy group having generally 2 to 4 and in particular 2 C atoms, such as CH 2 CH 2 O, (CH 2 ) 3 O, (CH 2 ) 4 O.
  • the monomers A furthermore include N-vinylheterocyclic monomers having one of imidazoles, imidazolines and imidazolidines, pyridines, pyrroles, pyrrolidines, quinolines, isoquinolines, purines, pyrazoles, triazoles, tetrazoles, indolizines, pyridazines, pyrimidines, pyrazines, indoles, isoindoles, oxazoles , Oxazolidines, morpholines, piperazines, piperidines, isoxazoles, thiazoles, isothiazoles, indoxylene, isatins, dioxindoles and hydanthoines and derivatives thereof, eg barbituric acid, uracil and derivatives thereof, selected N-heterocycle.
  • the monomers A different from the lactams III are also referred to below as monomers A2.
  • the stated monomers A2 can also be used as betaine derivatives or quaternized products.
  • N-heterocycles used in the monomers A2 are selected in particular from imidazoles, pyridines, pyridine-N-oxides and also betaine derivatives and quaternization products thereof, especially from imidazoles.
  • Particularly preferred monomers A2 are N-vinylimidazole and C 1 -C 4 -alkylvinylimidazoles, for example N-vinyl-2-methylimidazole, N-vinyl-4-methylimidazole, N-vinyl-5-methylimidazole, N-vinyl-2-ethylimidazole, in particular N-vinylimidazole and methylvinylimidazoles, especially N-vinylimidazole and N-vinyl-2-methylimidazole; 3-vinylimidazole-N-oxide; 2- and 4-vinylpyridines, eg 2-vinyl-4-methylpyridine, 2-vinyl-6-methylpyridine and 2- and 4-vinylpyridine; Vinylpyridine N-oxides, such as 2- and 4-vinylpyridine N-oxides, for example 2-vinyl-4-methylpyridine-N-oxide, 4-vinyl-2-methylpyridine-N-oxide and 2-
  • Especially preferred betaine monomers A2 are monomers of the formula IV b, IV and IV e f, in which the group W 1 -X - is -CH 2 -COO -, - (CH 2) 2 -SO 3 - or - (CH 2 ) 3 -SO 3 - and R b , R c , R d , R e are each H.
  • the quaternized monomers A2 used are preferably vinylimidazoles and vinylpyridines, these having been quaternized before or after the polymerization. Particular preference is given to using 1-methyl-3-vinylimidazolium methosulfate and methachloride.
  • alkylating agents such as alkyl halides, which generally have 1 to 24 C atoms in the alkyl radical, or dialkyl sulfates, which generally contain alkyl radicals having 1 to 10 C atoms.
  • alkylating agents such as alkyl halides, which generally have 1 to 24 C atoms in the alkyl radical, or dialkyl sulfates, which generally contain alkyl radicals having 1 to 10 C atoms.
  • suitable alkylating agents from these groups are methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, propyl chloride, hexyl chloride, dodecyl chloride, lauryl chloride and dimethyl sulfate and diethyl sulfate.
  • alkylating agents are, for example, benzyl halides, in particular benzyl chloride and benzyl bromide; Chloroacetic acid; Fluorschwefelklaremethylester; diazomethane; Oxonium compounds such as trimethyloxonium tetrafluoroborate; Alkylene oxides, such as ethylene oxide, propylene oxide and glycidol, which are used in the presence of acids; cationic epichlorohydrins.
  • Preferred quaternizing agents are methyl chloride, dimethyl sulfate and diethyl sulfate.
  • Suitable monomers A are furthermore mixtures of the abovementioned monomers A1 and A2.
  • the monomers A are selected to be at least 85 mol% and especially 90 mol% among the monomers A1 (N-vinyllactams), and more preferably among N-vinylpyrrolidones.
  • N-vinyllactam is N-vinylpyrrolidone.
  • Particular preference is given to the N-vinyllactams and in particular N-vinylpyrrolidone as the sole monomer A.
  • the monomers A comprise at least one N-vinyllactam as monomer A1 and at least one monomer A2 different therefrom, in particular an N-vinylimidazole.
  • the molar ratio A1: A2 is then preferably in the range from 9: 1 to 1: 9, in particular 4: 1 to 1: 4.
  • the monomers A are selected from N-vinylpyrrolidone and mixtures of N-vinylpyrrolidone with N-vinylimidazole.
  • the proportion of the monomers A at least 85 mol% and in particular at least 90 mol% of the total amount of the monomers used for the preparation of the copolymers.
  • the proportion of the monomers A based on the total amount of monomers, is from 85 mol% to 99.5 mol% and particularly preferably from 90 to 99 mol%.
  • the proportion of ethylene oxide units in the poly-C 2 -C 4 -alkylene oxide group of the monomers B is chosen such that it contains at least 50 mol%, in particular 75 mol% and specifically about 100 mol% with respect to the C 2 -C 4 -alkylene oxide units contained in the monomer B.
  • the poly-C 2 -C 4 alkylene oxide group of the monomers B naturally has 2 end groups in the case of a linear structure and 3 or more end groups in the case of a branched structure, one of which carries one ethylenically unsaturated group.
  • the remaining terminal radicals (end groups) may be hydrogen or OH or an organic radical.
  • Preferred organic end groups have 1 to 10 C atoms, in particular 1 to 4 C atoms, and are usually selected from H, C 1 -C 10 -alkyl and benzyl (or OH, C 1 -C 10 -alkyloxy and benzyloxy), in particular H and C 1 -C 4 -alkyl and especially C 1 -C 2 -alkyl.
  • the monomers B preferably have 1 or 2 of such end groups and in particular 1 end group.
  • the linear or branched poly-C 2 -C 4 -alkylene oxide groups Z generally have a degree of alkoxylation in the range from 4 to 500, in particular from 6 to 200 and especially from 6 to 100.
  • alkanetriyl means a linear or branched aliphatic, trivalent, preferably bonded via three different carbon atoms hydrocarbon radical having generally 2 to 4, in particular 3 C-atoms.
  • the radicals Z 2 or Z 2 and Z 3 are preferably each at least 50%, more preferably at least 75% and most preferably about 100% ethylene oxide units.
  • radicals R 2 and R 3 in the formulas (II.1) and (II.2) are each independently of one another methyl.
  • variable X is H and Y is C (O) O or C (O) NH.
  • variable Z in formula (I) is in particular the structures of the formula (II.1) or (II.2) mentioned above as being preferred.
  • R 1 is in particular H or methyl.
  • Particular preference is given to the methylpoly-C 2 -C 3 -alkylene glycol esters of acrylic acid or of methacrylic acid and, among these, especially those having a proportion of at least 50 mol%, in particular at least 80 mol% of ethylene oxide groups, in each case based on the total amount of C 2 C 3 alkylene oxide groups, and especially methyl polyethylene glycol esters of (meth) acrylic acid.
  • variable X is H and Y is CH 2 -O.
  • variable Z in formula (I) is in particular the structures of the formula (II.1) or (II.2) mentioned above as being preferred.
  • R 1 is in particular H or methyl.
  • allyl ether C 2 -C 3 alkoxylates H
  • the monomers B can be prepared by standard methods of organic chemistry known to the person skilled in the art (see, for example, US Pat. Houben-Weyl, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, 1954 ) are prepared, for. Example, by esterification, amidation, transamidation, transesterification or alkoxylation of suitable (meth) acrylic acids, (meth) acrylic esters, (meth) acrylamides and maleic acid, maleic acid (half) esters, maleic acid (half) amides; by alkoxylation of allyl alcohol; by etherification of allyl halides with poly-C 2 -C 4 -alkylene oxides and vinylation of polyalkylene oxides with OH or NH terminus with acetylene. Accordingly, in particular z.
  • methyl polyethylene glycol (meth) acrylic acid can be obtained by esterification of (meth) acrylic acid with polyethylene glycol monomethyl ethers.
  • Allyl alcohol polyalkoxylates suitable as monomers B are also commercially available, e.g. under the names Pluriol® A 010 R and Pluriol® A 11 RE from BASF Aktiengesellschaft.
  • the proportion of the monomers B at most 15 mol.% And especially at most 10 mol .-% of the total amount of the monomers used to prepare the copolymers.
  • the proportion of the monomers B is 0.5 to 15 mol .-% and particularly preferably 1 to 10 mol .-%.
  • one or more further with the A and B monomers copolymerizable monomers C include: Examples of monomers C are monoethylenically unsaturated C 3 -C 10 monocarboxylic and C 4 -C 10 dicarboxylic acids, e.g.
  • maleic anhydride For example, maleic anhydride; Amides of monoethylenically unsaturated C 3 -C 6 carboxylic acids with primary and secondary C 1 -C 12 amines, eg. B. (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide or N-butyl (meth) acrylamide; unsaturated nitriles, e.g. For example, acrylonitrile and methacrylonitrile; and the salts of said acids, the derivatives thereof and mixtures thereof.
  • Amides of monoethylenically unsaturated C 3 -C 6 carboxylic acids with primary and secondary C 1 -C 12 amines eg. B.
  • (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide or N-butyl (meth) acrylamide unsaturated nitriles, e
  • the monomer C is selected from monoethylenically unsaturated C 3 -C 10 -mono- and C 4 -C 10 -dicarboxylic acids, in particular acrylic acid, methacrylic acid and maleic acid.
  • the proportion of monomers C is less than 20 mol .-%, in particular less than 15 mol .-% and especially less than 10 mol .-%, based on the total weight of the copolymer.
  • the proportion of the monomers C is 1 to 20 mol .-%, in particular 1 to 15 mol .-%, based on the total weight of the copolymer.
  • the K values of the copolymers used according to the invention are usually from 10 to 150, preferably from 10 to 80 and more preferably from 15 to 60 (determined by H. Fikentscher, Cellulosic Chemistry, Vol. 13, pp. 58-64 and 71-74 (1932 ) in water or aqueous sodium chloride solutions at 25 ° C (concentration NaCl 0.1 to 7.0 wt .-%) and polymer concentrations, depending on the K value range at 0.1 wt .-% to 5 wt .-%. % lie).
  • the respective desired K value can be adjusted by the composition of the starting materials.
  • the present invention furthermore relates to a process for the preparation of the copolymers according to the invention in which the at least one monomer A is radically polymerized with the at least one monomer B and optionally with the monomers C.
  • the free-radical polymerization of the monomers can be carried out by any known method, such as solution polymerization, emulsion polymerization, suspension polymerization or bulk polymerization, preferably the methods of solution polymerization and bulk polymerization, very particularly preferably solution polymerization.
  • suitable organic solvents are aliphatic and cycloaliphatic monohydric C 1 -C 4 -alcohols, e.g. For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and tert-butanol; polyhydric alcohols, such as C 1 -C 4 -glycols, for. Ethylene glycol, propylene glycol and butylene glycol and glycerin; Mono- and dialkyl ethers of polyhydric alcohols, such as C 1 -C 4 -alkyl ethers of said polyhydric alcohols, eg.
  • Monomethylethyleneglycol monoethylethyleneglycol, dimethylethyleneglycol and dimethylpropyleneglycol
  • Ether alcohols eg.
  • cyclic ethers e.g. Eg dioxane
  • Preferred organic solvents are alcohols.
  • the polymerization is preferably carried out in an aqueous polymerization medium which contains at least 50% by volume, in particular at least 80% by volume and particularly preferably at least 95% by volume of water, based on the total amount of solvent. Particularly preferably, the polymerization is carried out in water.
  • Suitable radical initiators are, in particular, peroxo compounds, azo compounds, redox initiator systems and reducing compounds. Of course you can also use mixtures of radical starters.
  • thermally activatable polymerization initiators preference is given to initiators having a decomposition temperature ("10 h half-life decomposition temperature") in the range from 20 to 180 ° C., in particular from 50 to 120 ° C.
  • thermal initiators are inorganic peroxo compounds, such as peroxodisulfates (ammonium and alkali metal sulfates, preferably sodium peroxodisulfate), peroxosulfates, percarbonates and hydrogen peroxide; organic peroxy compounds, such as diacetyl peroxide, di-tert-butyl peroxide, diamyl peroxide, dioctanoyl peroxide, didecanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, bis (o-toluyl) peroxide, succinyl peroxide, tert-butyl peracetate, tert-butyl permalate, tert-
  • initiators can be used in combination with reducing compounds as starter / regulator systems.
  • reducing compounds include phosphorus-containing compounds such as phosphorous acid, hypophosphites and phosphinates, sulfur-containing compounds such as sodium hydrogen sulfite, sodium sulfite and sodium formaldehyde sulfoxilate, and hydrazine.
  • phosphorus-containing compounds such as phosphorous acid, hypophosphites and phosphinates
  • sulfur-containing compounds such as sodium hydrogen sulfite, sodium sulfite and sodium formaldehyde sulfoxilate, and hydrazine.
  • Suitable examples are the combinations tert-butyl hydroperoxide / sodium disulfite and tert-butyl hydroperoxide / sodium hydroxymethanesulfinate; furthermore systems with addition small amounts of redox metal salts such as iron salts, eg ascorbic acid / iron (II) sulfate / sodium perox
  • Preferred initiators are soluble in the amount used in the polymerization medium. Therefore, particularly water-soluble initiators are preferred. Particularly preferred initiators are the aforementioned diazo compounds, in particular water-soluble diazo compounds such as azobis (2-amidinopropane) dihydrochloride.
  • photoinitiators e.g. Benzophenone, acetophenone, benzoin ethers, Benzyldialkylketone and their derivatives.
  • the polymerization initiators are usually used in amounts of from 0.01 to 15% by weight, preferably from 0.25 to 5% by weight, based in each case on the monomers to be polymerized, and may be used singly or as Exploitation of beneficial synergistic effects in combination with each other.
  • regulators conventional in the polymerization e.g. Mercapto compounds such as mercaptoethanol, thioglycolic acid, 1,4-bismercaptobutane-2,3-diol; Alkali metal sulfites and hydrogen sulfites such as sodium sulfite; Alkali metal phosphites and hypophosphites such as sodium hypophosphite, etc. are added.
  • Suitable amounts of regulator are generally in the range of 0.01 to 5 wt .-%, based on the monomers to be polymerized.
  • the polymerization temperature is generally in the range from 10 to 200.degree. C., preferably from 40 to 140.degree. C., more preferably from 50 to 120.degree.
  • the polymerization may be carried out under atmospheric pressure, optionally it may also be carried out in a closed system under the evolving autogenous pressure.
  • the production of the copolymers is followed by a chemical and / or physical deodorization, ie removal of unreacted monomers.
  • physical deodorization the monomers are mixed with water vapor, e.g. B. by distilling off part of the aqueous polymerization medium and / or by passing superheated steam out of the polymerization mixture.
  • chemical deodorization unreacted monomers in the reaction mixture are removed by use of more severe polymerization conditions, e.g. B. by the addition of further polymerization, often by addition of the above-mentioned redox initiators and especially by the addition of hydroperoxides, such as hydrogen peroxide and alkyl hydroperoxides, z.
  • tert-butyl hydroperoxide in combination with reducing agents, in particular sulfur-containing reducing agents such as hydrogen sulfite, dithionite, adducts of bisulfite to ketones, such as the acetone-bisulfite adduct, hydroxymethanesulfinate and the like, optionally in the presence of traces of transition metals, eg Fe 2 + or Fe 3+ .
  • sulfur-containing reducing agents such as hydrogen sulfite, dithionite
  • adducts of bisulfite to ketones such as the acetone-bisulfite adduct, hydroxymethanesulfinate and the like
  • transition metals eg Fe 2 + or Fe 3+
  • polymer-analogous reaction z As polymer-analogous reaction z.
  • transamidation, transesterification or alkoxylation in the polymer molecule contained (meth) acrylic acid units, (meth) acrylic acid ester units, (meth) acrylamide units and maleic acid units, maleic acid (half) ester units, maleic acid (half ) amide units, vinyl alcohol units, allyl alcohol units, vinylamine units and allylamine units, in particular the polymer-analogous esterification and amidation of (meth) acrylic acid units containing precursor polymers into consideration.
  • copolymers of the invention based on (meth) acrylic acid esters or amides as components of the monomer units B, z.
  • Example proceed by copolymerizing (meth) acrylic acid in an amount equivalent to the molar amount of the monomer B with the monomer A and optionally the monomer C and then the copolymer formed with polyalkylene glycols which are not end-capped, unilaterally by alkyl , Phenyl or alkylphenyl radicals end-capped or aminated on one side or end-capped on one side by alkyl, phenyl or alkylphenyl radicals and aminated on one side, esterified or aminated.
  • a vinylpyridine N-oxide is used as monomer A, it has proven advantageous to first copolymerize the desired amount of the corresponding vinylpyridine compound with the other monomers and then to add the copolymerized vinylpyridine to vinylpyridine N-oxide units oxidize.
  • copolymers according to the invention are outstandingly suitable as dye transfer inhibitors in the washing of colored textiles. They effectively reduce or prevent dye transfer between the textiles.
  • copolymers according to the invention can be used universally in a wide variety of detergents, such as liquid and solid detergents or detergent formulations. In particular, they have a good compatibility with the usual detergent components, especially with regard to liquid detergents and detergent formulations.
  • Good compatibility means, for the purposes of the present invention, that the copolymers according to the invention can easily be incorporated or formulated into detergent component formulations containing conventional components without segregation processes occurring, and that the resulting detergent formulations have good stability, in particular against segregation, within the usual life. In the case of liquid detergent formulations, this means, in particular, that no significant precipitation of the copolymers according to the invention takes place before or during use or turbidity does not occur.
  • the copolymers of the invention are generally used in amounts ranging from 0.05 to 5 wt .-%, preferably 0.1 to 2 wt .-%, each based on the total weight of the detergent (formulations). They are suitable for both heavy-duty detergents and special detergents, such as color detergents. In color-preserving color detergents, they are usually used in amounts ranging from 0.1 to 1.5% by weight, preferably 0.1 to 1% by weight, based in each case on the total weight of the detergents (formulations).
  • the detergents can be in solid form, for. B. in powder, granule, extrudate or tablet form, as a so-called compact detergent with a bulk density in the range of 500 to 950 g / l, or in liquid setting. They contain the anionic, nonionic and / or cationic surfactants commonly used in amounts of 2 to 50 wt .-%, preferably 8 to 30 wt .-%, each based on the total weight of the detergent (formulations). Particular preference is given to producing phosphate-free or reduced-phosphate detergents which have a phosphate content of at most 25% by weight, based in each case on the total weight of the detergent formulations (formulations), calculated as pentasodium tripolyphosphate.
  • Suitable anionic surfactants are, for example, C 8 -C 22 , preferably C 10 -C 18, fatty alcohol sulfates, for example C 9 / C 11 -alcohol sulfate, C 12 / C 14 -alcohol sulfates, lauryl sulfate, cetyl sulfate, myristyl sulfate, palmitylsulfate, stearyl sulfate and tallow fatty alcohol sulfate.
  • Suitable anionic surfactants are sulfated alkoxylated C 8 -C 22 -, preferably C 10 -C 18 -alcohols or their soluble salts.
  • Compounds of this type are prepared, for example, by first alkoxylating the alcohol and then sulfating the alkoxylation product.
  • Ethylene oxide is preferably used for the alkoxylation, with 2 to 50 mol, in particular 3 to 20 mol, of ethylene oxide being used per mole of fatty alcohol.
  • the alkoxylation can also be carried out with propylene oxide or with butylene oxide.
  • the alkylene oxides can also be used in combination.
  • the alkoxylated alcohols may then contain the ethylene oxide, propylene oxide and / or butylene oxide units in the form of blocks or in random distribution.
  • alkyl sulfonates in particular C 8 -C 24 - and especially C 10 -C 18 -alkyl sulfonates, and soaps, for example the salts of aliphatic C 8 -C 24 -carboxylic acids.
  • anionic surfactants are linear C 9 -C 20 -alkylbenzenesulfonates (LAS).
  • the anionic surfactants are preferably added to the detergent in the form of salts.
  • Suitable cations are alkali metal ions, such as sodium, potassium and lithium ions, and ammonium ions, e.g. Hydroxyethylammonium, di (hydroxyethyl) ammonium and tri (hydroxyethyl) ammonium ions.
  • nonionic surfactants are alkoxylated C 8 -C 22 -alcohols, in particular C 10 -C 18 -alcohols, such as fatty alcohol alkoxylates, oxo alcohol alkoxylates and guerbet alcohol alkoxylates.
  • the alkoxylation can be carried out with ethylene oxide, propylene oxide and / or butylene oxide.
  • the alkoxylated alcohols may then contain the alkylene oxide units in the form of blocks or in random distribution. From 2 to 50, preferably from 3 to 20, moles of at least one of these alkylene oxides are used per mole of alcohol.
  • the alkylene oxide used is preferably ethylene oxide.
  • nonionic surfactants are alkylphenol alkoxylates, in particular C 6 -C 14 -alkylphenol ethoxylates containing on average 5 to 30 alkylene oxide units.
  • nonionic surfactants are C 8 -C 22 -, in particular C 10 -C 18 -alkylpolyglucosides. These compounds contain 1 to 20, preferably 1.1 to 5 glucoside units.
  • NT1 and NT2 in which D is C 6 -C 22 -alkyl, preferably C 10 -C 18 -alkyl
  • E is hydrogen or C 1 -C 4 -alkyl, preferably methyl
  • G is polyhydroxy-C 5 -C 12 -alkyl with at least 3 hydroxyl groups, preferably polyhydroxy-C 5 -C 6 alkyl.
  • such compounds are obtained by acylation of reducing aminated sugars with acid chlorides of C 10 -C 18 carboxylic acids.
  • the detergent formulations containing 3 to 12 moles of ethylene oxide ethoxylated C 10 -C 18 alcohols as nonionic surfactants.
  • Particularly suitable cationic surfactants are, for example, C 7 -C 25 -alkylamines; C 7 -C 25 N, N-dimethyl-N- (hydroxyalkyl) ammonium salts; quaternized mono- and di- (C 7 -C 25 ) -alkyldimethylammonium compounds; Esterquats, such as quaternary esterified mono-, di- or trialkanolamines esterified with C 8 -C 22 carboxylic acids; and imidazoline quats such as 1-alkyl-imidazolinium salts of the general formulas KT1 or KT2: wherein R aa is C 1 -C 25 alkyl or C 2 -C 25 alkenyl, R bb is C 1 -C 4 alkyl or hydroxyalkyl and R cc is C 1 -C 4 alkyl, hydroxyalkyl or a radical R aa is - (CO) -W 2 - (
  • the powdery and granular detergents and optionally also structured (multiphase) liquid detergents also contain one or more inorganic builders.
  • Suitable inorganic builders are all commonly used compounds, such as aluminosilicates, silicates, carbonates and polyphosphates.
  • crystalline and amorphous aluminosilicates with ion-exchanging properties such as zeolites, for example zeolite A, X, B, P, MAP and HS in their Na-form and in forms in which Na is partially exchanged for other cations, such as Li, K, Ca, Mg or ammonium.
  • zeolites for example zeolite A, X, B, P, MAP and HS in their Na-form and in which Na is partially exchanged for other cations, such as Li, K, Ca, Mg or ammonium.
  • silicates e.g. amorphous and crystalline silicates such as amorphous disilicates, sodium metasilicate, crystalline disilicates and layered silicates, e.g. the layered silicate SKS-6 (Clariant AG).
  • the silicates can be used in the form of their alkali, alkaline earth or ammonium salts. Preferably, Na, Li and Mg silicates are used.
  • Carbonates and bicarbonates suitable as inorganic builders may also be used in the form of their alkali metal, alkaline earth metal and ammonium salts. Preference is given to sodium, lithium and magnesium carbonates and hydrogencarbonates, particular preference being given to sodium carbonate and / or sodium bicarbonate.
  • the inorganic builders may be included in the detergents in amounts of from 5 to 60% by weight. They can be incorporated alone or in any combination with each other in the detergent. In powder and granular detergents, they are added in amounts of from 10 to 60% by weight, preferably from 20 to 50% by weight. In structured sossigwaschmittein inorganic builders in amounts up to 40 wt .-%, preferably up to 20 wt .-%, are used. They are suspended in the liquid formulation ingredients.
  • the detergents contain one or more organic co-builders in addition to the inorganic builders.
  • the organic co-builders are present in the powdered and granular as well as in the structured liquid detergent formulations in amounts of from 0.1 to 15% by weight, preferably from 0.25 to 8% by weight. In liquid detergent formulations, they are present in amounts of from 0.1 to 20% by weight and preferably from 0.25 to 10% by weight.
  • the powdered and granular heavy-duty detergents may also contain a bleach system consisting of at least one bleach, optionally in combination with a bleach activator and / or a bleach catalyst.
  • Suitable bleaching agents are, for example, adducts of hydrogen peroxide with inorganic salts, such as sodium perborate monohydrate, sodium perborate tetrahydrate and sodium carbonate perhydrate, as well as inorganic and organic peracids in the form of their alkali metal or magnesium salts or partly also in the form of the free acids.
  • inorganic salts such as sodium perborate monohydrate, sodium perborate tetrahydrate and sodium carbonate perhydrate
  • inorganic and organic peracids in the form of their alkali metal or magnesium salts or partly also in the form of the free acids.
  • suitable organic percarboxylic acids and their salts are Mg monoperphthalate, phthalimidopercaproic acid and dodecane-1,10-diacetic acid.
  • An example of an inorganic peracid salt is K-peroxomonosulfate (oxone).
  • bleaching agents are used, they are present in amounts of 5 to 30% by weight, preferably 10 to 25% by weight, in the formulations.
  • Suitable bleach activators are, for example: acylamines, such as N, N, N ', N'-tetraacetylethylenediamine (TAED), tetraacetylglycoluril, N, N'-diacetyl-N, N'-dimethylurea and 1,5-diacetyl-2,4- dioxohexahydro-1,3,5-triazine; acylated lactams, such as acetylcaprolactam, octanoylcaprolactam and benzoylcaprolactam; substituted phenol esters of carboxylic acids such as Na-acetoxybenzenesulfonate, Na-octanoyloxybenzenesulfonate and sodium p-nonanoyloxybenzenesulfonate; N-Methylmorpholiniumacetonitrilmethylsulfat and hydrogen sulfate; acylated sugars
  • bleach activators are used in detergents, they are present in amounts of from 0.1 to 15% by weight, preferably in amounts of from 1 to 8% by weight, more preferably in amounts of from 1.5 to 6% by weight ,
  • Suitable bleach catalysts are quaternized imines and sulfonimines and Mn or Co complexes. If bleach catalysts are used in the detergent formulations, they are in amounts of up to 1.5% by weight, preferably up to 0.5% by weight, in the case of the very active Mn complexes in amounts up to 0.1% by weight .-% contain.
  • the detergents preferably contain an enzyme system. These are usually proteases, lipases, amylases or cellulases.
  • the enzyme system may be limited to a single enzyme or may include a combination of different enzymes.
  • the detergents are generally added amounts of 0.1 to 1.5 wt .-%, preferably 0.2 to 1 wt .-%, of the ready-made enzyme.
  • Suitable proteases are e.g. Savinase and Esperase (manufactured by Novo Nordisk), a suitable lipase is e.g. Lipolase (manufactured by Novo Nordisk), a suitable cellulase is e.g. Celluzym (manufacturer also Novo Nordisk).
  • the detergents also preferably contain soil release polymers and / or grayness inhibitors.
  • soil release polymers are, for example, polyesters made from on one side with dihydric and / or polyhydric alcohols, in particular ethylene glycol and / or propylene glycol, closed polyethylene oxides (alcohol component) and aromatic dicarboxylic acids or aromatic and aliphatic dicarboxylic acids (acid component).
  • Further suitable soil-release polymers are amphiphilic graft copolymers and copolymers of vinyl and / or acrylic esters with or on polyalkylene oxides and modified celluloses, for example methylcellulose, hydroxypropylcellulose and carboxymethylcellulose.
  • Preferably used soil release polymers are graft polymers of vinyl acetate on polyethylene oxide of average molecular weight M w 2500 to 8 000 in a weight ratio of 1.2: 1 to 3: 1, and commercially available polyethylene terephthalate / polyoxyethylene terephthalates of average molecular weight M w 3000 to 25000 from polyethylene oxides of average molecular weight M w 750 to 5000 with terephthalic acid and ethylene oxide and a molar ratio of polyethylene terephthalate to polyoxyethylene terephthalate of 8: 1 to 1: 1 and block polycondensates containing blocks of (a) ester units of polyalkylene glycols of average molecular weight M w from 500 to 7500 and aliphatic dicarboxylic acids and / or monohydroxymonocarboxylic acids and (b) ester units of aromatic dicarboxylic acids and polyhydric alcohols.
  • These amphiphilic block polymers have average molecular weights M w of
  • Grayness inhibitors and soil release polymers are in the detergent formulations in amounts of 0 to 2.5 wt .-%, preferably 0.2 to 1.5 wt .-%, particularly preferably 0.3 to 1.2 wt .-% , contain.
  • copolymers according to the invention are suitable for the following applications: as brighteners in detergents, auxiliaries in textile production, adjuvants in cosmetic formulations, adjuvants in agrofuels, additives in water treatment, auxiliaries in metalworking agents and coolants and as gas hydrate inhibitors and in other fields of application oilfield.
  • a reactor 800 g of distilled water were heated under nitrogen supply to about 82 ° C (T) internal temperature. Then, 360 g of vinylpyrrolidone (VP) and, in parallel, a mixture of 20.8 g of methacrylic acid (MAS), 19.2 g of ⁇ -methoxy-.omega.-methacryloylpolyethylene glycol (having a number-average molecular weight of polyethylene glycol (PEG) of about 1000) (MPEGMA). and 60 g of water (W1) within 3 h continuously (ie at a constant rate) added.
  • VP vinylpyrrolidone
  • MAS methacrylic acid
  • MPEGMA ⁇ -methoxy-.omega.-methacryloylpolyethylene glycol
  • W1 60 g of water (W1) within 3 h continuously (ie at a constant rate) added.
  • Examples 2 to 10 were carried out analogously to Example 1, wherein in each case indicated in Table 1 below amounts of vinylpyrrolidone (VP), optionally as a mixture with the particular amount of vinylimidazole (VI), as well as methacrylic acid (MAS), ⁇ -Metoxy - ⁇ -methacryloylpolyethylene glycol (MPEGMA), water (W1 and W2) and 2,2'-azobis (2-methylpropionamidine) dihydrochloride (V50) were used.
  • VP vinylpyrrolidone
  • VI vinylimidazole
  • MAS methacrylic acid
  • MPEGMA ⁇ -Metoxy - ⁇ -methacryloylpolyethylene glycol
  • Example 19 was carried out analogously to Example 18.
  • Example 21 was carried out analogously to Example 20.
  • Example 22 was carried out analogously to Example 23, but no mercaptoethanol (ME) was added.
  • the copolymers of the invention were tested as color transfer inhibitors in detergents.
  • WM 1 0 , 15 wt%
  • WM2 0.25 wt%
  • WM3 0.15 wt%
  • WM4 1 wt%).
  • white cotton test fabric under the washing conditions mentioned in Table 4 in the presence of dye which was added to the wash liquor as 0.03 or 0.06 wt.% Aqueous solution, washed.
  • the staining of the test fabric was measured photometrically using the Elrepho 2000 photometer (Datacolor).
  • the remission (in%) was measured at the wavelength of the respective maximum absorption of the different dyes.
  • the whiteness of the test fabric after the wash was used to evaluate staining.
  • the measured values given in Table 5 a - c were confirmed by multiple repetition and averaging.
  • Table 5 a - c shows the results of the wash tests with copolymers according to the invention in comparison with washing tests without dye transfer inhibitor.
  • Table 3 ⁇ / b> Compositions of detergents WM1 to WM4 (in% by weight) WM 1 [%] WM 2 [%] WM 3 [%] WM 4 [%] C 12 / C 14 fatty alcohol sulfate 24 24 C 12 / C 14 fatty alcohol ethoxylate 2 2 C 12 / C 14 alkyl benzene sulfonate 9 9 C 13 / C 15 - tallow fatty alcohol reacted with 7 EO units 6.6 6.6 6 6 coconut fatty acid 5 5 Soap 1.8 1.8 0.7 0.7 borax 2.2 2.2 Zeolite A 45 45 Polycarboxylate (acrylic acid / maleic acid copolymer; w / w 70:30, M w 70000) 5 5 sodium 7 7 7 Trisodium citrate x 2 H 2 O 12 12 12
  • Table 6 summarizes the visual ratings after 4 weeks storage at 40 ° C. ⁇ b> Table 6: ⁇ / b> Copolymer Example No. WM 4 without clear Copolymer 1 clear Copolymer 3 clear Copolymer 9 clear Copolymer 10 clear Copolymer 11 clear Copolymer 22 clear Copolymer 23 clear

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

  • Die vorliegende Erfindung betrifft neue Copolymere mit N-heterocyclischen Gruppen und ihre Verwendung in flüssigen und festen Waschmittelformulierungen. Diese Copolymere zeigen im Waschprozess eine die Farbübertragung inhibierende Wirkung.
  • Während des Waschvorgangs werden von gefärbten Textilien oft Farbstoffmoleküle abgelöst, die wiederum auf andere Textilien aufziehen können. Um dieser unerwünschten Farbübertragung entgegenzuwirken, werden oftmals sogenannte Farbübertragungsinhibitoren eingesetzt. Hierbei handelt es sich häufig um Polymere, die Monomere mit stickstoffheterocyclischen Resten (= N-heterocyclische Gruppen bzw. N-Heterocyclen) einpolymerisiert enthalten.
  • So beschreibt z. B. die DE 4235798 Copolymerisate aus a) 1-Vinylpyrrolidon, 1-Vinylimidazol, 1-Vinylimidazolium-Verbindungen oder deren Mischungen; b) weiteren Stickstoff-haltigen, basischen ethylenisch ungesättigten Monomeren; und gegebenenfalls c) anderen monoethylenisch ungesättigten Monomeren und deren Verwendung zur Inhibierung der Farbstoffübertragung während des Waschvorgangs.
  • Ähnliche Copolymere werden zu diesem Zweck in der DE 19621509 und der WO 98/30664 beschrieben.
  • Die in diesen Schriften beschriebenen Copolymere zeichnen sich zum Teil durch eine gute Inhibierung der Farbübertragung in Waschprozessen aus. Sie besitzen im Allgemeinen jedoch eine geringe Verträglichkeit mit den weiteren üblicherweise verwendeten Waschmittelbestandteilen. So besteht insbesondere bei Flüssigwaschmitteln die Gefahr von Unverträglichkeiten, zum Beispiel in Form von Trübungen oder Phasenseparationen.
  • Zur Lösung der Verträglichkeitsproblematik werden in der DE 10156134 als Farbübertragungsinhibitoren Pfropfpolymerisate vorgeschlagen, die A) eine polymere Pfropfgrundlage ohne monoethylenisch ungesättigte Einheiten und B) durch Polymerisation eines cyclischen, 3- bis 7-gliedrigen N-Vinylamids gebildete polymere Seitenketten enthalten, wobei der Anteil der Seitenketten (B) am Gesamtpolymerisat ≥ 60 Gew.-% beträgt. Ähnliche Pfropfpolymere werden in der DE 10156135 und der DE 10156133 für diesen Zweck beschrieben.
  • Zwar zeichnen sich derartige Pfropfpolymere durch eine verbesserte Verträglichkeit mit Waschmittelbestandteilen, insbesondere von Flüssigwaschmitteln, aus, jedoch wird für diesen Vorteil gleichzeitig der Nachteil einer schlechteren Farbübertragungsinhibierung in Kauf genommen. Zudem ist die erzielte Verträglichkeit nicht vollständig zufriedenstellend.
  • Aus der älteren deutschen Patentanmeldung 10256162.2 sind Copolymere von Vinyllactamen mit (Meth)acrylsäureestern von Alkylpolyalkylenglykolen bekannt, die an den Endgruppen der Polyetherkette einen aliphatischen Kohlenwasserstoffrest mit 3 bis 40 C-Atomen aufweisen.
  • Es war daher Aufgabe der vorliegenden Erfindung, Polymere mit einer guten eine Farbübertragung beim Waschvorgang inhibierenden Wirkung bereitzustellen, die eine gute Verträglichkeit mit herkömmlichen Waschmittelbestandteilen, insbesondere bei flüssigen Waschmittelformulierungen, besitzen.
  • Es wurde überraschend gefunden, dass diese Aufgabe durch Copolymere auf Basis von Monomeren mit N-Heterocyclen (Monomere A) gelöst wird, die ethylenisch ungesättigte Monomere B mit Polyalkylenoxid-Gruppen in einer Menge von 0,1 bis 20 mol-% einpolymerisiert enthalten.
  • Dementsprechend betrifft die vorliegende Erfindung die Verwendung derartiger Copolymeren in flüssigen oder festen Waschmittelformulierungen, umfassend in polymerisierter Form:
    (a) 80 bis 99,9 mol-% wenigstens eines Monomers A, das jeweils einen mindestens 1 N-Atom aufweisenden Heterocyclus (N-Heterocyclus) aus 3 bis 10 Ringgliedern und eine an ein C- oder N-Ringatom des Heterocyclus gebundene C2-C6-Alkenyl-gruppe umfasst; und
    (b) 0,1 bis 20 mol-% wenigstens eines mit dem Monomer A copolymerisierbaren Monomers B, das eine monoethylenisch ungesättigte Doppelbindung sowie eine lineare oder verzweigte Poly-C2-C4-alkylenoxidgruppe mit im Mittel 4 bis 500 C2-C4-Alkylenoxideinheiten und 1 oder 2 endständigen, unabhängig voneinander unter C1-C2-Alkyl ausgewählten Resten umfasst,
    wobei hier und im Folgenden alle Mengenangaben von Monomeren in mol-% auf die zur Herstellung der Copolymere eingesetzte Gesamtmonomermenge bezogen sind.
  • Die Erfindung betrifft außerdem derartige Copolymere, mit der Maßgabe, dass die Endgruppe der Poly-C2-C4-alkylenoxidgruppe in den Monomeren B unter C1-C2-Alkyl ausgewählt ist, wenn es sich bei dem Monomer B um einen Ester einer ethylenisch ungesättigten Carbonsäure mit einem linearen Poly-C2-C4-Alkylenoxid handelt. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung derartiger Copolymere umfassend die radikalische Polymerisation mindestens eines Monomers A mit dem mindestens einen Monomer B.
  • Hier und im Folgenden steht N-Heterocyclus für einen aromatischen oder nichtaromatischen, heterocyclischen Rest mit in der Regel 3 bis 10, insbesondere 4 bis 8 und speziell 5 bis 7 Ringatomen, wobei 1, 2 oder 3 der Ringatome Heteroatome sind, die vorzugsweise unter Stickstoff und Sauerstoff ausgewählt sind, wobei mindestens 1 Ringglied ein Stickstoffatom ist. Der N-Heterocyclus kann aromatisch (Heteroaryl) oder teilweise oder vollständig gesättigt sein. Des Weiteren kann der N-Heterocyclus gegebenenfalls einen oder mehrere, z.B. 1, 2, 3 oder 4 unter C1-C4-Alkyl, C3-C6-Cycloalkyl und Phenyl ausgewählte Substituenten aufweisen. Weiterhin kann der N-Heterocyclus eine Carbonylgruppe und/oder eine N-Oxid-Gruppe als Ringglied aufweisen. Im Übrigen kann der N-Heterocyclus in quaternisierter Form, z. B. durch Alkylierung wenigstens eines N-Ringatoms, vorliegen. Darüber hinaus kann der 3) N-Heterocylus auch als betainische Struktur vorliegen, bei der wenigstens ein N-Atom des Heterocyclus über eine C1-C20-Alkandiylgruppe mit einer unter -SO3 -, -OSO3 -, -COO-, -OPO(OH)O-, -OPO(ORf)O- oder -PO(OH)O- ausgewählten anionischen Gruppe verbrückt ist, wobei Rf für C1-C6-Alkyl steht. C1-C20-Alkandiyl bedeutet hier einen linearen oder verzweigten aliphatischen, zweibindingen, d. h. über zwei C-Atome gebundenen, Kohlenwasserstoffrest mit in der Regel 1 bis 20 und insbesondere 1 bis 10 C-atomen.
  • Hier und im Folgenden steht Alkyl für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit in der Regel 1 bis 10, insbesondere 1 bis 6 und speziell 1 bis 4 C-Atomen, wie z. B. Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-ethylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyi, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-3-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, 1-Methylhexyl, 1-Ethylhexyl, 2-Ethylhexyl, 1-Methylheptyl, 1-Methyloctyl oder 1-Methylnonyl:
  • Hier und im Folgenden steht Cycloalkyl für einen cycloaliphatischen Kohlenwasserstoffrest mit in der Regel 3 bis 6 C-Atomen, wie z B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl.
  • Hier und im Folgenden steht Alkenyl für einen monoethylenisch ungesättigten Kohlenwasserstoffrest mit in der Regel 2 bis 6 und insbesondere 2 bis 3 C-Atomen, z. B. für Vinyl, Propen-1-yl, Propen-2-yl, Allyl, 1-Buten-1-yl, 1-Buten-2-yl, 2-Methylpropen-3-yl (Methallyl), 1-Penten-2-yl und 1-Hexen-2-yl. Insbesondere steht Alkenyl für Vinyl und Allyl, besonders bevorzugt für Allyl.
  • C2-C4-Alkylenoxid steht für eine lineare oder verzweigte Alkandiyloxy-Gruppe mit in der Regel 2 bis 4 und insbesondere 2 C-Atomen, wie CH2CH2O, (CH2)3O, (CH2)4O, CH(CH3)-CH2O, CH2-CH(CH3)O, CH2-C(CH3)2O, CH(CH3)-CH(CH3)-O, C(CH3)2-CH2O, CH2CH(CH3)-CH2O, CH(CH3)-(CH2)2O und (CH2)2-CH(CH3)O, insbesondere für eine der vorgenannten Alkan-1,2-diyloxy-Gruppen und speziell für CH2CH2O.
  • Zu den Monomeren A zählen cyclische Lactame, die an ihrem Stickstoffatom einen C2-C6-Alkenylrest, insbesondere einen Vinylrest tragen. Derartige Lactame können durch die allgemeine Formel (III)
    Figure imgb0001
    worin
  • x
    für eine ganze Zahl im Bereich von 1 bis 6 steht; und
    Ra
    für H oder C1-C4-Alkyl steht;
    und worin eine oder mehrere der den Lactamring bildenden CH2-Gruppen gegebenenfalls 1 oder 2 unter C1-C4-Alkyl ausgewählte Substituenten aufweist, beschrieben werden. Die unter den Lactamen III bevorzugten N-Vinyllactame weisen insbesondere 5 bis 7 Ringatome auf. Beispiele für derartige N-Vinyllactame sind N-Vinylpyrrolidone, z.B. N-Vinyl-3-methylpyrrolidon und N-Vinylpyrrolidon; N-Vinylcapro- und -valerolactame, z.B. N-Vinyl-3-methyl-ε-caprolactam, N-Vinyl-ε-caprolactam und N-Vinyl-δ-valerolactam; N-Vinylpiperidon und N-Vinyloxazolidone, z.B. N-Vinyl-5-methyloxazolidon und N-Vinyloxazolidon. Bevorzugte N-Vinyllactame sind N-Vinylpyrrolidon, N-Vinyl-ε-caprolactam und N-Vinyl-δ-valerolactam, besonders bevorzugt N-Vinylpyrrolidon. Die Lactame III werden im Folgenden auch als Monomere A1 bezeichnet.
  • Zu den Monomeren A zählen weiterhin N-Vinylheterocyclische Monomere mit einem unter Imidazolen, Imidazolinen und Imidazolidinen, Pyridinen, Pyrrolen, Pyrrolidinen, Chinolinen, lsochinolinen, Purinen, Pyrazolen, Triazolen, Tetraazolen, Indolizinen, Pyridazinen, Pyrimidinen, Pyrazinen, Indolen, Isoindolen, Oxazolen, Oxazolidinen, Morpholinen, Piperazinen, Piperidinen, Isoxazolen, Thiazolen, Isothiazolen, Indoxylen, Isatinen, Dioxindolen und Hydanthoinen sowie deren Derivaten, z.B. Barbitursäure, Uracil und deren Derivaten, ausgewählten N-Heterocyclus. Die von den Lactamen III verschiedenen Monomere A werden im Folgenden auch als Monomere A2 bezeichnet.
  • Die genannten Monomere A2 können auch als betainische Derivate oder quaternisierte Produkte eingesetzt werden.
  • In den Monomeren A2 verwendete N-Heterocyclen sind insbesondere unter Imidazolen, Pyridinen, Pyridin-N-oxiden sowie betainischen Derivaten und Quaternisierungsprodukten davon, speziell unter Imidazolen ausgewählt.
  • In einer bevorzugten Ausführungsform sind die Monomere A2 unter N-Vinylimidazolen der allgemeinen Formel IV a, betainischen N-Vinylimidazolen der allgemeinen Formel IV b, 2- und 4-Vinylpyridinen der allgemeinen Formeln IV c und IV d sowie betainischen 2- und 4-Vinylpyridinen der allgemeinen Formeln IV e und IV f ausgewählt:
    Figure imgb0002
    Figure imgb0003
    worin
  • Rb, Rc, Rd, Re
    jeweils unabhängig voneinander für H, C1-C4-Alkyl oder Phenyl, bevorzugt H oder C1-C4-Alkyl, besonders bevorzugt H stehen;
    W1
    für C1-C20-Alkylen, beispielsweise -CH2-, -CH(CH3)-, -(CH2)2-, -CH2- CH(CH3)-, -(CH2)3-, -(CH2)4-, -(CH2)5-, -(CH3)6-, vorzugsweise C1-C3- Alkylen; insbesondere -CH2-, -(CH2)2- oder -(CH2)3- steht;
    Q-
    für -SO3 -, -OSO3 - , -COO-, -OPO(OH)O-, -OPO(ORf)O- oder -PO(OH)O- steht; und
    Rf
    für C1-C24-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso- Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo- Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n- Heptyl, n-Octyl, n-Nonyl, n-Decyl; besonders bevorzugt C1-C4-Alkyl steht.
  • Besonders bevorzugte Monomere A2 sind N-Vinylimidazol und C1-C4-Alkylvinylimidazole, z.B. N-Vinyl-2-methylimidazol, N-Vinyl-4-methylimidazol, N-Vinyl-5-methylimidazol, N-Vinyl-2-ethylimidazol, insbesondere N-Vinylimidazol und Methylvinylimidazole, speziell N-Vinylimidazol und N-Vinyl-2-methylimidazol; 3-Vinylimidazol-N-oxid; 2- und 4-Vinylpyridine, z.B. 2-Vinyl-4-methylpyridin, 2-Vinyl-6-methylpyridin und 2-und 4-Vinylpyridin; Vinylpyridin-N-oxide, wie 2- und 4-Vinylpyridin-N-oxide, z.B. 2-Vinyl-4-methylpyridin-N-oxid, 4-Vinyl-2-methylpyridin-N-oxid und 2- und 4-Vinylpyridin-N-oxid; sowie betainische Derivate und Quatemisierungsprodukte davon.
  • Besonders bevorzugte betainische Monomere A2 sind Monomere der Formeln IV b, IV e und IV f, in denen die Gruppierung W1-X- für -CH2-COO-, -(CH2)2-SO3 - oder -(CH2)3-SO3 - steht und Rb, RC, Rd, Re jeweils für H stehen.
  • Als quaternisierte Monomere A2 werden bevorzugt Vinylimidazole und Vinylpyridine verwendet, wobei diese vor oder nach der Polymerisation quaternisiert wurden. Besonders bevorzugt werden 1-Methyl-3-vinylimidazoliummethosulfat und -methochlorid verwendet.
  • Die Quaternisierung kann insbesondere mit Alkylierungsmitteln wie Alkylhalogeniden, die in der Regel 1 bis 24 C-Atome im Alkylrest aufweisen, oder Dialkylsulfaten, die im allgemeinen Alkylreste mit 1 bis 10 C-Atomen enthalten, vorgenommen werden. Beispiele für geeignete Alkylierungsmittel aus diesen Gruppen sind Methylchlorid, Methylbromid, Methyliodid, Ethylchlorid, Ethylbromid, Propylchlorid, Hexylchlorid, Dodecylchlorid, Laurylchlorid sowie Dimethylsulfat und Diethylsulfat. Weitere geeignete Alkylierungsmittel sind z.B. Benzylhalogenide, insbesondere Benzylchlorid und Benzylbromid; Chloressigsäure; Fluorschwefelsäuremethylester; Diazomethan; Oxoniumverbindungen, wie Trimethyloxoniumtetrafluoroborat; Alkylenoxide, wie Ethylenoxid, Propylenoxid und Glycidol, die in Gegenwart von Säuren zum Einsatz kommen; kationische Epichlorhydrine. Bevorzugte Quaternisierungsmittel sind Methylchlorid, Dimethylsulfat und Diethylsulfat.
  • Als Monomere A kommen weiterhin Mischungen der vorgenannten Monomere A1 und A2 in Betracht.
  • In einer bevorzugten Ausführungsform sind die Monomere A zu wenigstens 85 mol.-% und speziell 90 mol.-% unter den Monomeren A1 (N-Vinyllactamen) und besonders bevorzugt unter N-Vinylpyrrolidonen ausgewählt. Ganz besonders bevorzugtes N-Vinyllactam ist N-Vinylpyrrolidon. Besonders bevorzugt sind die N-Vinyllactame und insbesondere N-Vinylpyrrolidon als alleiniges Monomer A.
  • In einer weiteren bevorzugten Ausführungsform umfassen die Monomere A wenigstens ein N-Vinyllactam als Monomer A1 und wenigstens ein davon verschiedenes Monomer A2, insbesondere ein N-Vinylimidazol. Das Molverhältnis A1:A2 liegt dann vorzugsweise im Bereich von 9:1 bis 1:9, insbesondere 4:1 bis 1:4.
  • In einer besonders bevorzugten Ausführungsform sind die Monomere A unter N-Vinylpyrrolidon und Gemischen aus N-Vinylpyrrolidon mit N-Vinylimidazol ausgewählt.
  • Für die farbübertragungsinhibierende Wirkung der erfindungsgemäßen Copolymere hat es sich als vorteilhaft erwiesen, wenn der Anteil der Monomere A wenigstens 85 mol-% und insbesondere wenigstens 90 mol-% der Gesamtmenge der zur Herstellung der Copolymere eingesetzten Monomere ausmacht. Insbesondere beträgt der Anteil der Monomere A, bezogen auf die Gesamtmonomermenge, 85 mol-% bis 99,5 mol-% und besonders bevorzugt 90 bis 99 mol-%.
  • Es hat sich weiterhin für die erfindungsgemäßen Zwecke als vorteilhaft erwiesen, wenn der Anteil an Ethylenoxid-Einheiten in der Poly-C2-C4-alkylenoxidgruppe der Monomere B so gewählt wird, dass er mindestens 50 mol-%, insbesondere 75 mol-% und speziell etwa 100 mol-% bezüglich der im Monomer B enthaltenen C2-C4-Alkylenoxid-Einheiten beträgt.
  • Die Poly-C2-C4-alkylenoxidgruppe der Monomere B weist naturgemäß im Falle einer linearen Strukur 2 Endgruppen und im Falle einer verzweigten Struktur 3 oder mehr Endgruppen auf, wovon eine eine ethylenisch ungesättigte Gruppe trägt. Die verbleibenden endständigen Reste (Endgruppen) können Wasserstoff bzw. OH oder ein organischer Rest sein. Bevorzugte organische Endgruppen weisen 1 bis 10 C-Atome insbesondere 1 bis 4 C-Atome auf und sind üblicherweise ausgewählt unter H, C1-C10-Alkyl und Benzyl (bzw. OH, C1-C10-Alkyloxy und Benzyloxy), insbesondere unter H und C1-C4-Alkyl und speziell unter C1-C2-Alkyl. Vorzugsweise weisen die Monomere B 1 oder 2 derartiger Endgruppen und insbesondere 1 Endgruppe auf.
  • Efindungsgemäß geeignete Monomere B weisen bevorzugt die allgemeine Formel (1) auf:

            X-CH=CR1-Y-Z     (I),

    worin
  • X
    für H oder COOH steht;
    R1
    für C1-C4-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec- Butyl und tert-Butyl, insbesondere H oder Methyl steht;
    Y
    für O, CH2-O, C(O)O, C(O)NH, NHC(O) oder CH2-NHC(O) steht; und
    Z
    für eine lineare oder verzweigte Poly-C2-C4-Alkylenoxidgruppe steht, umfassend im Mittel 4 bis 500 C2-C4-Alkylenoxideinheiten und 1 oder 2 endständige, unab- hängig voneinander unter H, C1-C10-Alkyl und Benzyl, vorzugsweise unter H und C1-C4-Alkyl und speziell unter C1-C2-Alkyl ausgewählte Reste.
  • Sofern die Orientierung der Reste Y beim Einbau in die Formel (I) auf unterschiedliche Weise realisiert werden kann, so erfolgt der Einbau in der oben angegebenen Weise von links nach rechts gelesen.
  • Bei der Angabe der Anzahl an C2-C4-Alkylenoxid-Einheiten in der linearen oder verzweigten Poly-C2-C4-Alkylenoxidgruppe Z bezieht sich der Ausdruck "im Mittel" hier und im Folgenden auf das Zahlenmittel der Alkylenoxideinheiten pro Monomer B. Synonym wird auch der Begriff Alkoxylierungsgrad verwendet.
  • Die linearen oder verzweigten Poly-C2-C4-Alkylenoxidgruppen Z weisen in der Regel einen Alkoxylierungsgrad im Bereich von 4 bis 500, insbesondere von 6 bis 200 und speziell von 6 bis 100 auf.
  • Die Poly-C2-C4-Alkylenoxidgruppen Z der Monomere B weisen bevorzugt eine lineare oder verzweigte Struktur der Formeln (II.1) bzw. (II.2) auf:

            -Z1-O-[Z2-O]n-R2     (II.1)

    oder
    Figure imgb0004
    worin
  • Z1, Z2 und Z3
    jeweils unabhängig voneinander für C2-C4-Alkandiyl stehen;
    Z4
    für C2-C4-Alkantriyl steht;
    n+1 bzw. m+k+1
    für eine ganze Zahl steht, wobei das Zahlenmittel von n+1 bzw. m+k+1 im Bereich von 4 bis 500, insbesondere von 6 bis 200 und speziell von 6 bis 100 liegt; und
    R2 und R3
    jeweils unabhängig voneinander für H, C1-C10-Alkyl oder Benzyl, vorzugsweise H oder C1-C4-Alkyl und speziell für C1-C2Alkyl stehen.
  • Hier und im Folgenden bedeutet Alkantriyl einen linearen oder verzweigten aliphatischen, dreibindigen, vorzugsweise über drei verschiedene C-Atome gebundenen Kohlenwasserstoffrest mit in der Regel 2 bis 4, insbesondere 3 C-Atomen.
  • In den Formeln (II.1) und (II.2) stehen die Reste Z2 bzw. Z2 und Z3 bevorzugt für jeweils mindestens 50 %, besonders bevorzugt mindestens 75 % und ganz besonders bevorzugt etwa 100 % Ethylenoxid-Einheiten.
  • In einer bevorzugten Ausführungsform stehen die Reste R2 und R3 in den Formeln (II.1) bzw. (II.2) jeweils unabhängig voneinander für Methyl.
  • Bevorzugt sind insbesondere Monomere B der Formel (I), worin Z für einen Rest der Formel (II.1) steht.
  • In einer weiteren bevorzugten Ausführungsform steht in Formel (I) die Variable X für H und Y für C(O)O oder C(O)NH. In dieser Ausführungsform steht die Variable Z in Formel (I) insbesondere für die vorstehend als bevorzugt genannten Strukturen der Formel (II.1) bzw. (II.2). R1 steht insbesondere für H oder Methyl. Besonders bevorzugt sind die Methylpoly-C2-C3-alkylenglykolester der Acrylsäure oder der Methacrylsäure und hierunter insbesondere solche mit einem Anteil von wenigstens 50 mol-%, insbesondere wenigstens 80 mol-% Ethylenoxid-Gruppen, jeweils bezogen auf die Gesamtmenge an C2-C3-Alkylenoxidgruppen, und speziell Methylpolyethylenglykolester der (Meth)Acrylsäure.
  • In einer weiteren bevorzugten Ausführungsform steht in Formel (I) die Variable X für H und Y für CH2-O. In dieser Ausführungsform steht die Variable Z in Formel (I) insbesondere für die vorstehend als bevorzugt genannten Strukturen der Formel (II.1) bzw. (II.2). R1 steht insbesondere für H oder Methyl. Besonders bevorzugt sind die Allylether-C2-C3-alkoxylate (R1 = H) und 2-Methylallyl-C2-C3-alkoxylate (R1 = Methyl), insbesondere solche mit endständiger Methylgruppe, und hierunter speziell solche mit einem Anteil von wenigstens 50 mol-%, insbesondere wenigstens 80 mol-% Ethylenoxid-Gruppen, jeweils bezogen auf die Gesamtmenge an C2-C3-Alkylenoxidgruppen, und ganz speziell Allyletherethoxylate (R1 = H).
  • Die Monomere B können durch dem Fachmann bekannte Standardverfahren der organischen Chemie (siehe z. B. Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart, 1954) hergestellt werden, z. B. durch Veresterung, Amidierung, Umamidierung, Umesterung bzw. Alkoxylierung von geeigneten (Meth)acrylsäuren, (Meth)acrylsäureestern, (Meth)acrylamiden sowie Maleinsäure, Maleinsäure(halb)estern, Maleinsäure(halb)amiden; durch Alkoxylierung von Allylalkohol; durch Veretherung von Allylhalogeniden mit Poly-C2-C4-Alkylenoxiden und Vinylierung von Polyalkylenoxiden mit OH- oder NH-Terminus mit Acetylen. Dementsprechend kann insbesondere z. B. Methylpolyethylenglykol(meth)acrylsäure durch Veresterung von (Meth)Acrylsäure mit Polyethylenglykolmonomethylethern erhalten werden.
  • Als Monomere B geeignete Allylalkoholpolyalkoxylate sind außerdem kommerziell erhältlich, z.B. unter den Namen Pluriol® A 010 R und Pluriol® A 11 RE von der BASF Aktiengesellschaft.
  • Im Hinblick auf die farbübertragungsinhibierende Leistung der erfindungsgemäßen Copolymere in üblicherweise verwendeten Waschmitteln hat es sich als vorteilhaft erwiesen, wenn der Anteil der Monomere B höchstens 15 mol.% und insbesondere höchstens 10 mol.-% der Gesamtmenge der zur Herstellung der Copolymere eingesetzten Monomere ausmacht. Insbesondere beträgt der Anteil der Monomere B 0,5 bis 15 mol.-% und besonders bevorzugt 1 bis 10 mol.-%.
  • Neben den Monomeren A und B können die erfindungsgemäßen Copolymere ein oder mehrere weitere mit den Monomeren A und B copolymerisierbare Monomere C enthalten: Beispiele für Monomere C sind monoethylenisch ungesättigte C3-C10-Mono- und C4-C10-Dicarbonsäuren, z. B. (Meth)Acrylsäure, Crotonsäure, Fumarsäure und Maleinsäure; ethylenisch ungesättigte Sulfonsäuren und deren Salze, wie Vinylsulfonsäure, 2-Acryloxyethansulfonsäure, 2- und 3-Acryloxypropansulfonsäure, 2-Methyl-2-acrylamidopropansulfonsäure und Styrolsulfonsäure sowie deren Natriumsalze; Vinylester gesättigter C1-C10-Carbonsäuren, z. B. Vinylacetat und Vinylpropionat; Vinyl- und Allylether linearer oder verzweigter C1-C10-Alkohole, z. B. Vinylethylether, Vinylpropylether, Allylmethylether, Allylethylether und Allylpropylether; Vinylformamide, z. B. N-Vinyl-N-methylformamid und N-Vinylformamid selbst; die quaternären Produkte von N-Vinyl- und N-Allylaminen, wie alkylierte N-Vinyl- und N-Allylamine, z. B. N-Vinylmethylamin, N-Vinylethylamin, N-Allylmethylamin, N-Allylethylamin und N-Allylpropylamin; die Ester monoethylenisch ungesättigter C3-C6-Monocarbonsäuren oder C4-C6-Dicarbonsäuren mit linearen oder verzweigten aliphatischen C1-C10-Alkoholen, z. B. Acrylsäuremethylester, Acrylsäureethylester, Methacrylsäuremethylester, Methacrylsäureethylester, Maleinsäuredimethylester, Maleinsäurediethylester, 2-Ethylhexylacrylat und 2-Ethylhexylmethacrylat; die Halbester monoethylenisch ungesättigter C4-C6-Dicarbonsäuren mit linearen oder verzweigten C1-C10-Alkoholen, z. B. Maleinsäuremonomethylester und Maleinsäuremonoethylester; die Anhydride monoethylenisch ungesättigter C4-C6-Dicarbonsäuren, z. B. Maleinsäureanhydrid; Amide monoethylenisch ungesättigter C3-C6-Carbonsäuren mit primären und sekundären C1-C12-Aminen, z. B. (Meth)Acrylamid, N-Methyl(meth)acrylamid, N-Isopropyl(meth)-acrylamid oder N-butyl(meth)acrylamid; ungesättigte Nitrile, z. B. Acrylnitril und Methacrylnitril; und die Salze der genannten Säuren, die Derivate davon sowie deren Mischungen.
  • Die Anforderungen bestimmter Anwendungen können die Wahl der Art und Menge der Monomere C beeinflussen. So kann es wünschenswert sein, die erfindungsgemäßen Polymere vor einer Verwendung in selektiver Weise weiter umzusetzen, z. B. durch gezielte Alkoholyse, Aminolyse oder Hydrolyse. So können insbesondere Vinylalkoholeinheiten entsprechende Einheiten aus Vinylesterbausteinen und Vinylamineinheiten entsprechende Einheiten aus Vinylformamideinheiten gebildet werden.
  • In einer bevorzugten Ausführungsform ist das Monomer C ausgewählt unter monoethylenisch ungesättigten C3-C10-Mono- und C4-C10-Dicarbonsäuren, insbesondere Acrylsäure, Methacrylsäure und Maleinsäure.
  • In einer bevorzugten Ausführungsform beträgt der Anteil an Monomeren C weniger als 20 mol.-%, insbesondere weniger als 15 mol.-% und speziell weniger als 10 mol.-%, bezogen auf das Gesamtgewicht des Copolymers.
  • In einer weiteren Ausführungsform beträgt der Anteil der Monomeren C 1 bis 20 mol.-%, insbesondere 1 bis 15 mol.-%, bezogen auf das Gesamtgewicht des Copolymers.
  • Die K-Werte der erfindungsgemäß verwendeten Copolymere betragen üblicherweise 10 bis 150, bevorzugt 10 bis 80 und besonders bevorzugt 15 bis 60 (bestimmt nach H. Fikentscher, Cellulose-Chemie, Bd. 13, S. 58 bis 64 und 71 bis 74 (1932) in Wasser bzw. wässrigen Natriumchloridlösungen bei 25°C (Konzentration NaCl 0,1 bis 7,0 Gew.-%) und Polymerkonzentrationen, die je nach K-Wert-Bereich bei 0,1 Gew.-% bis 5 Gew.-% liegen). Der jeweils gewünschte K-Wert lässt sich durch die Zusammensetzung der Einsatzstoffe einstellen.
  • Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Copolymere, bei dem man das mindestens eine Monomer A mit dem mindestens einen Monomer B sowie gegebenenfalls mit den Monomeren C radikalisch polymerisiert.
  • Die radikalische Polymerisation der Monomere kann nach allen bekannten Methoden, wie Lösungspolymerisation, Emulsionspolymerisation, Suspensionspolymerisation oder Substanzpolymerisation, durchgeführt werden, bevorzugt sind die Verfahren der Lösungspolymerisation und der Substanzpolymerisation, ganz besonders bevorzugt die Lösungspolymerisation.
  • Vorteilhaft führt man eine Lösungspolymerisation in Wasser oder in Mischungen von Wasser mit organischen Lösungsmitteln als Reaktionsmedium durch. Es können jedoch auch organische Lösungsmittel(-gemische) allein als Reaktionsmedium verwendet werden.
  • Beispiele für geeignete organische Lösungsmittel sind aliphatische und cycloaliphatische einwertige C1-C4-Alkohole, z. B. Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec.-Butanol und tert.-Butanol; mehrwertige Alkohole, wie C1-C4-Glykole, z. B. Ethylenglykol, Propylenglykol und Butylenglykol und Glycerin; Mono- und Dialkylether mehrwertiger Alkohole, wie C1-C4-Alkylether der genannten mehrwertigen Alkohole, z. B. Monomethylethylenglykol, Monoethylethylenglykol, Dimethylethylenglykol und Dimethylpropylenglykol; Etheralkohole, z. B. Diethylenglykol und Triethylenglykol; sowie cyclische Ether, z. B. Dioxan. Bevorzugte organische Lösungsmittel sind Alkohole.
  • Bevorzugt führt man die Polymerisation in einem wässrigen Polymerisationsmedium durch, das wenigstens 50 Vol-%, insbesondere wenigstens 80 Vol-% und besonders bevorzugt wenigstens 95 Vol-% Wasser, bezogen auf die Gesamtmenge an Lösungsmittel, enthält. Besonders bevorzugt führt man die Polymerisation in Wasser durch.
  • Sofern man die Lösungspolymerisation in einem wässrigen Polymerisationsmedium durchführt, wird vorzugsweise während der Polymerisation ein pH-Wert im Bereich von 2 bis 10, insbesondere von 3 bis 8 eingehalten.
  • Als Radikalstarter eignen sich insbesondere Peroxoverbindungen, Azoverbindungen, Redoxinitiatorsysteme und reduzierende Verbindungen. Selbstverständlich kann man auch Mischungen von Radikalstartern verwenden.
  • Unter den thermisch aktivierbaren Polymerisationsinitiatoren sind Initiatoren mit einer Zerfallstemperatur ("10 h half-life decomposition temperature") im Bereich von 20 bis 180°C, insbesondere von 50 bis 120°C bevorzugt. Beispiele für bevorzugte thermische Initiatoren sind anorganische Peroxoverbindungen, wie Peroxodisulfate (Ammonium- und Alkalimetallsulfate, vorzugsweise Natriumperoxoxdisulfat), Peroxosulfate, Percarbonate und Wasserstoffperoxid; organische Peroxoverbindungen, wie Diacetylperoxid, Di-tert.-butylperoxid, Diamylperoxid, Dioctanoylperoxid, Didecanoylperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(o-toluyl)peroxid, Succinylperoxid, tert.-Butylperacetat, tert.-Butylpermaleinat, tert.-Butylperisobutyrat, tert.-Butylperpivalat, tert.-Butylperoctoat, tert.-Butylperneodecanoat, tert.-Butylperbenzoat, tert.-Butylperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, tert.-Butylperoxi-2-ethylhexanoat und Diisopropylperoxidicarbamat; Azoverbindungen, wie 2,2'-Azobis-isobutyronitril, 2,2'-Azobis(2-methylbutyronitril) und Azobis(2-amidinopropan)dihydrochlorid.
  • Diese Initiatoren können in Kombination mit reduzierenden Verbindungen als Starter/Regler-Systeme zum Einsatz kommen. Als Beispiele für derartige reduzierende Verbindungen seien phosphorhaltige Verbindungen, wie phosphorige Säure, Hypophosphite und Phosphinate, schwefelhaltige Verbindungen, wie Natriumhydrogensulfit, Natriumsulfit und Natriumformaldehydsulfoxilat, sowie Hydrazin genannt. Geeignet sind beispielsweise die Kombinationen tert-Butylhydroperoxid/Natriumdisulfit und tert-Butylhydroperoxid/Natriumhydroxymethansulfinat; des Weiteren Systeme mit Zusatz geringer Mengen von Redoxmetallsalzen wie Eisensalze, z.B. Ascorbinsäure/Eisen(II)sulfat/Natriumperoxodisulfat.
  • Bevorzugte Initiatoren sind in der eingesetzten Menge im Polymerisationsmedium löslich. Daher sind besonders wasserlösliche Initiatoren bevorzugt. Besonders bevorzugte Initiatoren sind die vorgenannten Diazoverbindungen, insbesondere wasserlösliche Diazoverbindungen wie Azobis(2-amidinopropan)-dihydrochlorid.
  • Ebenfalls geeignet sind Photoinitiatoren; z.B. Benzophenon, Acetophenon, Benzoinether, Benzyldialkylketone und deren Derivate.
  • Die Polymerisationsinitiatoren werden je nach den Anforderungen des zu polymerisierenden Materials üblicherweise in Mengen von 0,01 bis 15 Gew.-%, vorzugsweise 0,25 bis 5 Gew.-%, jeweils bezogen auf die zu polymerisierenden Monomere, eingesetzt und können einzeln oder zur Ausnutzung vorteilhafter synergistischer Effekte in Kombination miteinander angewendet werden.
  • Zur Begrenzung der Molmassen der erfindungsgemäßen Copolymere können bei der Polymerisation übliche Regler, z.B. Mercaptoverbindungen, wie Mercaptoethanol, Thioglycolsäure, 1,4-Bismercaptobutan-2,3-diol; Alkalimetallsulfite und -hydrogensulfite, wie Natriumsulfit; Alkalimetallphosphite und -hypophosphite, wie Natriumhypophosphit, etc. zugesetzt werden. Geeignete Mengen an Regler liegen im allgemeinen im Bereich von 0,01 bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomere.
  • Die Polymerisationstemperatur liegt in der Regel im Bereich von 10 bis 200°C, bevorzugt von 40 bis 140°C, besonders bevorzugt von 50 bis 120°C.
  • Die Polymerisation kann unter atmosphärischem Druck durchgeführt werden, gegebenenfalls kann sie auch in geschlossenem System unter dem sich entwickelnden Eigendruck vorgenommen werden.
  • Häufig schließt sich der Herstellung der Copolymere noch eine chemische und/oder physikalische Desodorierung, d. h. eine Entfernung nicht umgesetzter Monomere, an. Bei der physikalischen Desodorierung werden die Monomere mit Wasserdampf, z. B. durch Abdestillieren eines Teils des wässrigen Polymerisationsmediums und/oder mittels Durchleiten von Heißdampf, aus der Polymerisationsmischung entfernt. Bei der chemischen Desodorierung werden nicht umgesetzte Monomere in der Reaktionsmischung durch Anwendung verschärfter Polymerisationsbedingungen entfernt, z. B. durch Zugabe von weiterem Polymerisationsinitiator, häufig durch Zusatz der oben erwähnten Redoxinitiatoren und speziell durch Zusatz von Hydroperoxiden, wie Wasserstoffperoxid und Alkylhydroperoxiden, z. B. tert.-Butylhydroperoxid, in Kombination mit Reduktionsmitteln, insbesondere schwefelhaltigen Reduktionsmitteln, wie Hydrogensulfit, Dithionit, Addukte von Hydrogensulfit an Ketone, wie das Aceton-Bisulfit-Addukt, Hydroxymethansulfinat und dergleichen, gegebenenfalls in Anwesenheit von Spuren an Übergangsmetallen, z.B. Fe2+ oder Fe3+.
  • Alternativ zu dem beschriebenen Verfahren können die erfindungsgemäßen Copolymere auch erhalten werden, indem man die Poly-C2-C4-Alkylenoxidgruppen Z der Monomereinheiten B durch Polymer-analoge Umsetzung geeigneter, in einem Vorläufercopolymer enthaltener funktioneller Gruppen, die an die Monomereinheiten X-CH=CR1-der Monomere B gebunden sind, mit dem Vorläuferpolymer verknüpft. Als Polymer-analoge Umsetzung kommen z. B. die Aminierung, Umamidierung, Umesterung bzw. Alkoxylierung im Polymermolekül enthaltener (Meth)Acrylsäure-Einheiten, (Meth)Acrylsäureester-Einheiten, (Meth)Acrylamid-Einheiten sowie Maleinsäure-Einheiten, Maleinsäure(halb)ester-Einheiten, Maleinsäure(halb)amid-Einheiten, Vinylalkohol-Einheiten, Allylalkohol-Einheiten, Vinylamin-Einheiten und Allylamin-Einheiten, insbesondere die Polymer-analoge Veresterung und Amidierung von (Meth)Acrylsäure-Einheiten enthaltenden Vorläuferpolymeren in Betracht.
  • Sollen dementsprechend die erfindungsgemäßen Copolymere auf (Meth)Acrylsäureestern oder -amiden als Komponenten der Monomereinheiten B basieren, kann man z. B. so vorgehen, dass man (Meth)Acrylsäure in einer zu der molaren Menge des Monomers B äquivalenten Menge mit dem Monomer A sowie gegebenenfalls dem Monomer C copolymerisiert und das gebildete Copolymer anschließend mit Polyalkylenglykolen, die nicht Endgruppen-verschlossen, einseitig durch Alkyl-, Phenyl- oder Alkylphenylreste Endgruppen-verschlossen bzw. einseitig aminiert oder einseitig durch Alkyl-, Phenyl- oder Alkylphenylreste Endgruppen-verschlossen und einseitig aminiert sind, verestert bzw. aminiert.
  • Kommt als Monomer A ein Vinylpyridin-N-oxid zum Einsatz, so hat es sich als vorteilhaft erwiesen, zunächst die gewünschte Menge der entsprechenden Vinylpyridin-Verbindung mit den übrigen Monomeren zu copolymerisieren und anschließend das einpolymerisierte Vinylpyridin zu Vinylpyridin-N-oxid-Einheiten zu oxidieren.
  • Die erfindungsgemäßen Copolymere eignen sich hervorragend als Farbstoffübertragungsinhibitoren beim Waschen von farbigen Textilien. Sie vermindern bzw. verhindern in wirksamer Weise eine Farbstoffübertragung zwischen den Textilien. Darüber hinaus sind sie universell in den verschiedensten Waschmitteln, wie flüssige und feste Waschmittel bzw. Waschmittelformulierungen, einsetzbar. Insbesondere weisen sie eine gute Verträglichkeit mit den üblichen Waschmittelkomponenten, speziell im Hinblick auf flüssige Waschmittel und Waschmittelformulierungen auf.
  • Eine gute Verträglichkeit bedeutet für die Zwecke der vorliegenden Erfindung, dass die erfindungsgemäßen Copolymere leicht in herkömmliche Komponenten enthaltende Waschmittelformulierungen eingearbeitet bzw. einformuliert werden können, ohne dass Entmischungsvorgänge auftreten, und dass die erhaltenen Waschmittel(-formulierungen) eine gute Stabilität, insbesondere gegenüber Entmischung, im Rahmen üblicher Standzeiten aufweise. Bei flüssigen Waschmittelformulierungen bedeutet dies insbesondere, dass vor und während der Verwendung keine signifikante Ausfällung der erfindungsgemäßen Copolymere stattfindet bzw. keine Trübungen auftreten.
  • Man nimmt an, dass die eine Farbübertragung inhibierende Wirkung der erfindungsgemäßen Copolymere auf die N-heterocyclischen Gruppen der Monomere A zurückzuführen ist. Demgegenüber wird im Hinblick auf die gute Verträglichkeit der erfindungsgemäßen Copolymere mit üblichen Waschmittelbestandteilen angenommen, dass diese auf die in den Monomeren B enthaltenen Alkylenoxid-Einheiten zurückzuführen ist. Dieser Effekt ist insbesondere deshalb überraschend, weil die aus dem Stand der Technik bekannten Pfropfpolymere (siehe z. B. DE 10156134 ), die z. T. ähnliche Strukturmerkmale umfassen, eine nicht vollständig zufriedenstellende Verträglichkeit aufweisen.
  • Die erfindungsgemäßen Copolymere werden in der Regel in Mengen im Bereich von 0,05 bis 5 Gew.-%, vorzugsweise 0,1 bis 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Waschmittel(-formulierungen), eingesetzt. Sie sind sowohl für Vollwaschmittel als auch für Spezialwaschmittel, wie Colorwaschmittel, geeignet. In farbschonenden Colorwaschmitteln kommen sie üblicherweise in Mengen im Bereich von 0,1 bis 1,5 Gew.-%, bevorzugt 0,1 bis 1 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Waschmittel(-formulierungen), zum Einsatz.
  • Die Waschmittel können in fester Form, z. B. in Pulver, Granulat-, Extrudat- oder Tablettenform, auch als sogenannte Kompaktwaschmittel mit einer Schüttdichte im Bereich von 500 bis 950 g/l, oder in flüssiger Einstellung vorliegen. Sie enthalten die üblicherweise verwendeten anionischen, nichtionischen und/oder kationischen Tenside in Mengen von 2 bis 50 Gew.-%, vorzugsweise 8 bis 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Waschmittel(-formulierungen). Besonders bevorzugt werden phosphatfreie oder phosphatreduzierte Waschmittel hergestellt, die einen Phosphatgehalt von höchstens 25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Waschmittel-(formulierungen), berechnet als Pentanatriumtripolyphosphat, enthalten.
  • Geeignete anionische Tenside sind beispielsweise C8-C22-, vorzugsweise C10-C18-Fettalkoholsulfate, z.B. C9/C11-Alkoholsulfat, C12/C14-Alkoholsulfate, Laurylsulfat, Cetylsulfat, Myristylsulfat, Palmitylsulfat, Stearylsulfat und Talgfettalkoholsulfat.
  • Weitere geeignete anionische Tenside sind sulfatierte alkoxylierte C8-C22-, vorzugsweise C10-C18-Alkohole bzw. deren lösliche Salze. Verbindungen dieser Art werden beispielsweise dadurch hergestellt, daß man zunächst den Alkohol alkoxyliert und das Alkoxylierungsprodukt anschließend sulfatiert. Für die Alkoxylierung verwendet man bevorzugt Ethylenoxid, wobei man pro mol Fettalkohol 2 bis 50 mol, insbesondere 3 bis 20 mol, Ethylenoxid einsetzt. Die Alkoxylierung kann jedoch auch mit Propylenoxid oder mit Butylenoxid durchgeführt werden. Selbstverständlich können die Alkylenoxide auch in Kombination zum Einsatz kommen. Die alkoxylierten Alkohole können die Ethylenoxid-, Propylenoxid- und/oder Butylenoxideinheiten dann in Form von Blöcken oder in statistischer Verteilung enthalten.
  • Außerdem als anionische Tenside geeignet sind Alkylsulfonate, insbesondere C8-C24- und vor allem C10-C18-Alkylsulfonate, sowie Seifen, z.B. die Salze von aliphatischen C8-C24-Carbonsäuren.
  • Weitere geeignete anionische Tenside sind lineare C9-C20-Alkylbenzolsulfonate (LAS).
  • Die anionischen Tenside werden dem Waschmittel vorzugsweise in Form von Salzen zugegeben. Geeignete Kationen sind Alkalimetallionen, wie Natrium-, Kalium- und Lithiumionen, und Ammoniumionen, z.B. Hydroxyethylammonium-, Di(hydroxyethyl)-ammonium- und Tri(hydroxyethyl)ammoniumionen.
  • Als nichtionische Tenside eignen sich beispielsweise alkoxylierte C8-C22-, insbesondere C10-C18-Alkohole, wie Fettalkoholalkoxylate, Oxoalkoholalkoxylate und Guerbetalkoholalkoxylate. Die Alkoxylierung kann mit Ethylenoxid, Propylenoxid und/oder Butylenoxid durchgeführt werden. Die alkoxylierten Alkohole können die Alkylenoxideinheiten dann in Form von Blöcken oder in statistischer Verteilung enthalten. Pro mol Alkohol verwendet man 2 bis 50, vorzugsweise 3 bis 20 mol, mindestens eines dieser Alkylenoxide. Bevorzugt setzt man als Alkylenoxid Ethylenoxid ein.
  • Weitere geeignete nichtionische Tenside sind Alkylphenolalkoxylate, insbesondere C6-C14-Alkylphenolethoxylate mit im Mittel 5 bis 30 Alkylenoxideinheiten enthalten.
  • Weitere geeignete nichtionische Tenside sind C8-C22-, insbesondere C10-C18-Alkylpolyglucoside. Diese Verbindungen enthalten 1 bis 20, vorzugsweise 1,1 bis 5 Glucosideinheiten.
  • Eine weitere Klasse geeigneter nichtionischer Tenside sind N-Alkylglucamide der Strukturen (NT1) und (NT2):
    Figure imgb0005
    bei denen D für C6-C22-Alkyl, bevorzugt C10-C18-Alkyl, E für Wasserstoff oder C1-C4-Alkyl, bevorzugt Methyl, und G für Polyhydroxy-C5-C12-alkyl mit mindestens 3 Hydroxylgruppen, bevorzugt Polyhydroxy-C5-C6-alkyl, stehen. Beispielsweise erhält man derartige Verbindungen durch Acylierung von reduzierend aminierten Zuckern mit Säurechloriden von C10-C18-Carbonsäuren.
  • Vorzugsweise enthalten die Waschmittelformulierungen mit 3 bis 12 mol Ethylenoxid ethoxylierte C10-C18-Alkohole als nichtionische Tenside.
  • Besonders geeignete kationische Tenside sind z.B. C7-C25-Alkylamine; C7-C25-N,N-Dimethyl-N-(hydroxyalkyl)ammoniumsalze; quaternisierte Mono- und Di-(C7-C25-)-alkyldimethylammoniumverbindungen; Esterquats, wie quaternäre veresterte Mono-, Di- oder Trialkanolamine, die mit C8-C22-Carbonsäuren verestert sind; und Imidazolinquats wie 1-Alkyl-imidazoliniumsalze der allgemeinen Formeln KT1 oder KT2:
    Figure imgb0006
    worin Raa für C1-C25-Alkyl oder C2-C25-Alkenyl, Rbb für C1-C4-Alkyl oder -Hydroxyalkyl und Rcc für C1-C4-Alkyl, -Hydroxyalkyl oder einen Rest Raa-(CO)-W2-(CH2)n- mit W2 = O oder NH und n = 2 oder 3 steht, wobei mindestens ein Rest Raa für C7-C22-Alkyl steht.
  • Die pulverförmigen und granulatförmigen Waschmittel sowie gegebenenfalls auch strukturierte (mehrphasige) Flüssigwaschmittel enthalten außerdem einen oder mehrere anorganische Builder. Als anorganische Builder eignen sich dabei alle üblicherweise verwendeten Verbindungen, wie Alumosilikate, Silikate, Carbonate und Polyphosphate.
  • Als Beispiele seien im einzelnen kristalline und amorphe Alumosilikate mit ionenaustauschenden Eigenschaften, wie Zeolithe, z.B. Zeolith A, X, B, P, MAP und HS in ihrer Na-Form und in Formen, in denen Na teilweise gegen andere Kationen, wie Li, K, Ca, Mg oder Ammonium ausgetauscht ist, genannt.
  • Bei den Silikaten eignen sich z.B. amorphe und kristalline Silikate, wie amorphe Disilikate, Natriummetasilikat, kristalline Disilikate und Schichtsilikate, z.B. das Schichtsilikat SKS-6 (Clariant AG). Die Silikate können in Form ihrer Alkali-, Erdalkali- oder Ammoniumsalze eingesetzt werden. Vorzugsweise werden Na-, Li- und Mg-Silikate verwendet.
  • Als anorganische Builder geeignete Carbonate und Hydrogencarbonate können ebenfalls in Form ihrer Alkali-, Erdalkali- und Ammoniumsalze zum Einsatz kommen. Bevorzugt sind Na-, Li- und Mg-Carbonate und -Hydrogencarbonate, besonders bevorzugt sind Natriumcarbonat und/oder Natriumhydrogencarbonat. Als geeignetes Phosphat sei insbesondere Pentanatriumtriphosphat genannt.
  • Die anorganischen Builder können in den Waschmitteln in Mengen von 5 bis 60 Gew.-% enthalten sein. Sie können allein oder in beliebigen Kombinationen miteinander in das Waschmittel eingearbeitet werden. In pulver- und granulatförmigen Waschmitteln werden sie in Mengen von 10 bis 60 Gew.-%, vorzugsweise 20 bis 50 Gew.-%, zugesetzt. In strukturierten Flüssigwaschmittein werden anorganische Builder in Mengen bis zu 40 Gew.-%, vorzugsweise bis zu 20 Gew.-%, eingesetzt. Sie werden dabei in den flüssigen Formulierungsbestandteilen suspendiert.
  • Die Waschmittel enthalten zusätzlich zu den anorganischen Buildern einen oder mehrere organische Cobuilder.
  • Als organische Cobuilder eignen sich vor allem:
    • Niedermolekulare Carbonsäuren, wie Citronensäure, hydrophob modifizierte Citronensäure, z. B. Agaricinsäure, Äpfelsäure, Weinsäure, Gluconsäure, Glutarsäure, Bernsteinsäure, Imidodibernsteinsäure, Oxyddibernsteinsäure, Propantricarbonsäure, Butantetracarbonsäure, Cyclopentantetracarbonsäure, Alkyl- und Alkenylbernsteinsäuren und Aminopolycarbonsäuren, z.B. Nitrilotriessigsäure, β-Alanindiessigsäure, Ethylendiamintetraessigsäure, Serindiessigsäure, Isoserindiessigsäure, N-(2-Hydroxyethyl)iminodiessigsäure, Ethylendiamindibernsteinsäure und Methyl- und Ethylglycindiessigsäure.
    • Oligomere und polymere Carbonsäuren, wie Homopolymere von Acrylsäure und Asparaginsäure, Oligomaleinsäuren, Copolymere der Maleinsäure mit Acrylsäure, Methacrylsäure oder C2-C22-Olefinen, z.B. Isobuten oder langkettigen α-Olefinen, Vinyl-C1-C3-alkylether, Vinylacetat, Vinylpropionat, (Meth)Acrylsäureester von C1-C8-Alkoholen und Styrol. Bevorzugt sind die Homopolymere der Acrylsäure und Copolymere von Acrylsäure mit Maleinsäure. Die oligomeren und polymeren Carbonsäuren werden in Säureform oder als Natriumsalz eingesetzt.
  • Die organischen Cobuilder sind in den pulver- und granulatförmigen sowie in den strukturierten flüssigen Waschmittelformulierungen in Mengen von 0,1 bis 15 Gew.-%, vorzugsweise 0,25 bis 8 Gew.-%, enthalten. In flüssigen Waschmittelformulierungen sind sie in Mengen von 0,1 bis 20 Gew.-% und bevorzugt 0,25 bis 10 Gew.-% enthalten.
  • Die pulver- und granulatförmigen Vollwaschmittel können außerdem ein Bleichsystem, bestehend aus mindestens einem Bleichmittel, gegebenenfalls in Kombination mit einem Bleichaktivator und/oder einem Bleichkatalysator enthalten.
  • Geeignete Bleichmittel sind beispielsweise Addukte von Wasserstoffperoxid an anorganische Salze, wie Natriumperborat-Monohydrat, Natriumperborat-Tetrahydrat und Natriumcarbonat-Perhydrat, sowie anorganische und organische Persäuren in Form ihrer Alkalimetall- oder Magnesiumsalze oder teilweise auch in Form der freien Säuren. Beispiele für geeignete organische Percarbonsäuren und deren Salze sind Mg-Monoperphthalat, Phthalimidopercapronsäure und Dodecan-1,10-dipersäure. Beispiel für ein anorganisches Persäuresalz ist K-Peroxomonosulfat (Oxon).
  • Falls Bleichmittel eingesetzt werden, so sind sie in Mengen von 5 bis 30 Gew.-%, vorzugsweise 10 bis 25 Gew.-%, in den Formulierungen enthalten.
  • Als Bleichaktivatoren eignen sich z.B.: Acylamine, wie N,N,N',N'-Tetraacetylethylendiamin (TAED), Tetraacetylglycoluril, N,N'-Diacetyl-N,N'-dimethylharnstoff und 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin; acylierte Lactame, wie Acetylcaprolactam, Octanoylcaprolactam und Benzoylcaprolactam; substituierte Phenolester von Carbonsäuren, wie Na-Acetoxybenzolsulfonat, Na-Octanoyloxybenzolsulfonat und Natrium-p-nonanoyloxybenzolsulfonat; N-Methylmorpholiniumacetonitrilmethylsulfat und -hydrogensulfat; acylierte Zucker, wie Pentaacetylglucose; Anthranilderivate, wie 2-Methylanthranil und 2-Phenylanthranil; Enolester, wie Isopropenylacetat; Oximester, wie o-Acetylacetonoxim; darbonsäureanhydride, wie Phthalsäureanhydrid und Essigsäureanhydrid.
  • Vorzugsweise werden Tetraacetylethylendiamin, Natrium-nonanoyloxybenzolsulfonate und N-Methylmorpholiniumacetonitrilmethylsulfat und -hydrogensulfat als Bleichaktivatoren eingesetzt.
  • Falls die Bleichaktivatoren in Waschmitteln eingesetzt werden, sind diese in Mengen von 0,1 bis 15 Gew.-%, vorzugsweise in Merigen von 1 bis 8 Gew.-%, besonders bevorzugt in Mengen von 1,5 bis 6 Gew.-% enthalten.
  • Geeignete Bleichkatalysatoren sind quaternisierte Imine und Sulfonimine und Mn- bzw. Co-Komplexe. Falls Bleichkatalysatoren in den Waschmittelformulierungen eingesetzt werden, sind sie in Mengen von bis zu 1,5 Gew.-%, vorzugsweise bis zu 0,5 Gew.-%, im Fall der sehr aktiven Mn-Komplexe in Mengen bis zu 0,1 Gew.-% enthalten.
  • Die Waschmittel enthalten vorzugsweise ein Enzymsystem. Dabei handelt es sich üblicherweise um Proteasen, Lipasen, Amylasen oder Cellulasen. Das Enzymsystem kann auf ein einzelnes Enzym beschränkt sein oder eine Kombination verschiedener Enzyme beinhalten. Von den handelsüblichen Enzymen werden den Waschmitteln in der Regel Mengen von 0,1 bis 1,5 Gew.-%, vorzugsweise 0,2 bis 1 Gew.-%, des konfektionierten Enzyms zugesetzt. Geeignete Proteasen sind z.B. Savinase und Esperase (Hersteller Novo Nordisk), eine geeignete Lipase ist z.B. Lipolase (Hersteller Novo Nordisk), eine geeignete Cellulase ist z.B. Celluzym (Hersteller ebenfalls Novo Nordisk).
  • Die Waschmittel enthalten vorzugsweise außerdem Soil-Release-Polymere und/oder Vergrauungsinhibitoren. Dabei handelt es sich z.B. um Polyester aus einseitig mit zwei- und/oder mehrwertigen Alkoholen, insbesondere Ethylenglykol und/oder Propylenglykol, verschlossenen Polyethylenoxiden (Alkoholkomponente) und aromatischen Dicarbonsäuren oder aromatischen und aliphatischen Dicarbonsäuren (Säurekomponente). Weitere geeignete Soil-Release-Polymere sind amphiphile Pfropf- und Copolymerisate von Vinyl- und/oder Acrylestern auf bzw. mit Polyalkylenoxiden und modifizierte Cellulosen, z.B. Methylcellulose, Hydroxypropylcellulose und Carboxymethylcellulose.
  • Bevorzugt eingesetzte Soil-Release-Polymere sind Pfropfpolymerisate von Vinylacetat auf Polyethylenoxid des mittleren Molekulargewichts Mw 2500 bis 8 000 im Gewichtsverhältnis 1,2:1 bis 3:1, sowie handelsübliche Polyethylenterephthalat/Polyoxyethylenterephthalate des mittleren Molekulargewichts Mw 3000 bis 25000 aus Polyethylenoxiden des mittleren Molekulargewichts Mw 750 bis 5000 mit Terephthalsäure und Ethylenoxid und einem Molverhältnis von Polyethylenterephthalat zu Polyoxyethylenterephthalat von 8:1 bis 1:1 und Blockpolykondensate, die Blöcke aus (a) Ester-Einheiten aus Polyalkylenglykolen eines mittleren Molekulargewichts Mw von 500 bis 7500 und aliphatischen Dicarbonsäuren und/oder Monohydroxymonocarbonsäuren und (b) Ester-Einheiten aus aromatischen Dicarbonsäuren und mehrwertigen Alkoholen enthalten. Diese amphiphilen Blockpolymerisate haben mittlere Molekulargewichte Mw von 1500 bis 25000.
  • Vergrauungsinhibitoren und Soil-Release-Polymere sind in den Waschmittetformutierungen in Mengen von 0 bis 2,5 Gew.-%, bevorzugt 0,2 bis 1,5 Gew.-%, besonders bevorzugt 0,3 bis 1,2 Gew.-%, enthalten.
  • Ein weiterer Gegenstand der Erfindung ist eine feste Waschmittelformulierung, enthaltend
    1. a) 0,05 bis 5 Gew.-%, vorzugsweise 0,1 bis 2 Gew.-%, des erfindungsgemäßen farbübertragungsinhibierenden Copolymers;
    2. b) 0,5 bis 40 Gew.-% mindestens eines nichtionischen, anionischen und/oder kationischen Tensids;
    3. c) 0,5 bis 50 Gew.-% mindestens eines anorganischen Builders;
    4. d) 0 bis 10 Gew.-% mindestens eines organischen Cobuilders; und
    5. e) 0 bis 60 Gew.-% anderer üblicher Inhaltsstoffe wie Stellmittel, Enzyme, Parfüm, Komplexbildner, Korrosionsinhibitoren, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, weitere Farbübertragungsinhibitoren, Vergrauungsinhibitoren, Soil-Release-Polyester, Faser- und Farbschutzadditive, Silicone, Farbstoffe, Bakterizide, Auflösungsverbesserer und/oder Sprengmittel;
    wobei die Summe der Komponenten a) bis e) 100 Gew.-% ergibt.
  • Gegenstand der Erfindung ist weiterhin eine flüssige Waschmittelformulierung enthaltend
    1. a) 0,05 bis 5 Gew.-%, vorzugsweise 0,1 bis 2 Gew.-%, des erfindungsgemäßen farbübertragungsinhibierenden Copolymers;
    2. b) 0,5 bis 40 Gew.-% mindestens eines nichtionischen, anionischen und/oder kationischen Tensids;
    3. c) 0 bis 20 Gew.-% mindestens eines anionischen Builders;
    4. d) 0 bis 10 Gew.-% mindestens eines organischen Cobuilders;
    5. e) 0 bis 60 Gew.-% anderer üblicher Inhaltsstoffe wie Soda, Enzyme, Parfum, Komplexbildner, Korrosionsinhibitoren, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, weitere Farbübertragungsinhibitoren, Vergrauungsinhibitoren, Soil-Release-Polyester, Faser- und Farbschutzadditive, Silicone, Farbstoffe, Bakterizide, Löslichkeitsvermittler, Hydrotrope, Verdicker und/oder Alkanolamine; und
    6. f) 0 bis 99,45 Gew.-% Wasser, und/oder mehrwertige mit Wasser mischbare Alkohole, wie Monopropylenglycol, Dipropylenglycol und Glycerin, sowie Mischungen davon.
  • Eine detaillierte Beschreibung der Waschmittelinhaltsstoffe findet man z. B. in der WO 99/06524 oder WO 99/04313 und in Liquid Detergents, Editor: Kuo-Yann Lai, Surfactant Sci. Ser.; Bd. 67, Marcel Decker, New York, 1997, S. 272-304.
  • Des Weiteren sind die erfindungsgemäßen Copolymere geeignet für die folgenden Anwendungen: Als Glanzbildner in Reinigungsmitteln, Hilfsmittel in der Textilherstellung, Hilfsmittel in kosmetischen Formulierungen, Adjuvans in Agroformulierungen, Additiv in der Wasserbehandlung, Hilfsmittel in Metallbearbeitungsmitteln und Kühlschmierstoffen sowie als Gashydratinhibitoren und bei anderen Anwendungsgebieten im Bereich Ölfeld.
  • Die folgenden Beispiele dienen der Erläuterung der Erfindung.
  • Beispiele Polymerisation Beispiel 1:
  • In einem Reaktor wurden 800 g destilliertes Wasser unter Stickstoffzufuhr auf ca. 82°C (T) Innentemperatur erhitzt. Dann wurden 360 g Vinylpyrrolidon (VP) und parallel dazu eine Mischung von 20,8 g Methacrylsäure (MAS), 19,2 g α-Methoxy-ωmethacryloylpolyethylenglykol (mit einem zahlenmittleren Molekulargewicht des Polyethylenglykols (PEG) von ca. 1000) (MPEGMA) und 60 g Wasser (W1) innerhalb von 3 h kontinuierlich (d. h. mit gleich bleibender Geschwindigkeit) zudosiert. Gleichzeitig wurden innerhalb 4 h kontinuierlich 8 g 2,2'-Azobis(2-methylpropionamidin)-dihydrochlorid (V-50, Wako Chemicals) (V50) in 80 g Wasser (W2) zudosiert. Dann wurde eine weitere Stunde bei 82°C unter Stickstoffatmosphäre gerührt. Innerhalb von 30 min wurden 2 g 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid in 20 g Wasser zugegeben. Nach weiteren 2 h Rühren bei 82°C wurde die Lösung mit 50%iger wässriger Natronlauge auf einen pH-Wert von 7,2 eingestellt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt (F.G.) von 28 % und einem K-Wert (1 Gew.-% in wässriger Lösung) von 28,0 erhalten.
  • Die Beispiele 2 bis 10 wurden analog Beispiel 1 durchgeführt, wobei jeweils die in Tabelle 1 unten angegebenen Mengen an Vinylpyrrolidon (VP), gegebenenfalls als Mischung mit der jeweils angegebenen Menge an Vinylimidazol (VI), sowie an Methacrylsäure (MAS), α-Metoxy-ω-methacryloylpolyethylenglykol (MPEGMA), Wasser (W1 und W2) bzw. 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid (V50) eingesetzt wurden.
    Figure imgb0007
    Figure imgb0008
  • Beispiele 11 bis 20: Beispiel 11:
  • In einem Reaktor wurden 385 g destilliertes Wasser und 80 g Allyletherethoxylat (Allylalkohol mit 10 Ethylenoxid(EO)-Einheiten) unter Stickstoffzufuhr auf 87°C (T) Innentemperatur erhitzt. Dann wurden 320 g Vinylpyrrolidon (VP) innerhalb von 3 h kontinuierlich zudosiert. Zeitlich um ca. 5 Minuten verschoben wurde eine Lösung von 6,4 g 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid (V50) in 58 g Wasser innerhalb von 3 h kontinuierlich zudosiert. Dann wurde eine weitere Stunde bei 87°C unter Stickstoffatmosphäre gerührt. Es wurde anschließend auf eine Innentemperatur von 60°C abgekühlt, dann wurden 2,3 g tert.-Butylhydroperoxid (70%ig), gelöst in 14 g Wasser (W3), auf einmal zugegeben. Anschließend wurden innerhalb von 30 Minuten 1,6 g Natriumdisulfit, gelöst in 50 g VE-Wasser, zugegeben. Der Ansatz wurde noch eine weitere Stunde bei 60°C gerührt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt von 46,2 % und einem K-Wert (1 Gew.-% in 3 Gew.-%iger wässriger NaCI-Lösung) von 33,7 erhalten.
  • Die Beispiele 13, 15 und 16 wurden analog Beispiel 11 durchgeführt.
  • Beispiel 12:
  • In einem Reaktor wurden 385 g dest. Wasser und 80 g Allyletherethoxylat (Allylalkohol mit 10 EO-Einheiten) unter Stickstoffzufuhr auf 87°C Innentemperatur erhitzt. Dann wurden 320 g Vinylpyrrolidon (VP) innerhalb von 2 h kontinuierlich zudosiert. Zeitlich um ca. 5 Minuten verschoben wurde eine Lösung von 6,4 g 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid (V50) in 58 g Wasser innerhalb von 2 h kontinuierlich zudosiert. Dann wurde eine weitere Stunde bei 87 °C unter Stickstoffatmosphäre gerührt. Es wurde anschließend auf eine Innentemperatur von 60°C abgekühlt; dann wurden 2,3 g tert.-Butylhydroperoxid (70%ig), gelöst in 14 g Wasser, auf einmal zugegeben. Anschließend wurden innerhalb von 30 Minuten 1,6 g Natriumdisulfit, gelöst in 50g VE-Wasser, zugegeben. Der Ansatz wurde noch eine weitere Stunde bei 60°C gerührt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt von 46,7 % und einem K-Wert (1 Gew.-% in 3 Gew.%iger NaCl-Lösung) von 36,7 erhalten.
  • Die Beispiele 14 und 17 wurden analog Beispiel 12 durchgeführt.
  • Beispiel 18:
  • In einem Reaktor wurden 385 g destilliertes Wasser und 80 g Allyletherethoxylat (Allylalkohol mit 16,6 EO-Einheiten) unter Stickstoffzufuhr auf 87°C (T) Innentemperatur erhitzt. Dann wurden zeitgleich 220 g Vinylpyrrolidon (VP) sowie 100 g Vinylimidazol (VI) innerhalb von 3 h kontinuierlich zudosiert. Zeitlich um ca. 5 Minuten verschoben wurde eine Lösung von 6,4 g 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid (V50) in 58 g Wasser innerhalb von 3 h kontinuierlich zudosiert. Dann wurde eine weitere Stunde bei 87°C unter Stickstoffatmosphäre gerührt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt von 48,7 % und einem K-Wert (1 Gew.-% in 3 Gew.-%iger wässriger NaCl-Lösung) von 41,5 erhalten.
  • Das Beispiel 19 wurde analog Beispiel 18 durchgeführt.
  • Beispiel 20:
  • In einem Reaktor wurden 385 g dest. Wasser und 80 g Allyletherethoxylat (Allylalkohol mit 16,6 EO-Einheiten) unter Stickstoffzufuhr auf 87°C (T) Innentemperatur erhitzt. Dann wurden zeitgleich 220 g Vinylpyrrolidon (VP) sowie 100 g Vinylimidazol (VI) innerhalb von 3 h kontinuierlich zudosiert. Zeitlich um ca. 5 Minuten verschoben wurde eine Lösung von 6,4 g 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid (V50) in 58 g Wasser sowie eine weitere Lösung von 1,2 g Mercaptoethanol (ME), gelöst in 11 g Wasser, innerhalb von 3 h kontinuierlich zudosiert. Dann wurde eine weitere Stunde bei 87° C unter Stickstoffatmosphäre gerührt. Es wurde anschließend auf eine Innentemperatur von 60°C abgekühlt, dann wurden 2,3 g tert.-Butylhydroperoxid (70%ig), gelöst in 14 g Wasser, auf einmal zugegeben. Anschließend wurden innerhalb von 30 Minuten 1,6 g Natriumdisulfit, gelöst in 50 g VE-Wasser, zugegeben. Der Ansatz wurde noch eine weitere Stunde bei 60°C gerührt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt von 45,8% und einem K-Wert (1 Gew.-% in 3 Gew.-%iger wässriger NaCl-Lösung) von 34,4 erhalten.
  • Das Beispiel 21 wurde analog Beispiel 20 durchgeführt.
  • Beispiel 23:
  • In einem Reaktor wurden 385 g destilliertes Wasser und 80 g Allyletherethoxylat (Allylalkohol mit 16,6 EO-Einheiten) unter Stickstoffzufuhr auf 87°C Innentemperatur erhitzt. Dann wurden 320 g Vinylpyrrolidon (VP) innerhalb von 3 h kontinuierlich zudosiert. Zeitlich um ca. 5 Minuten verschoben wurde eine Lösung von 6,4 g 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid (V50) in 58 g Wasser sowie eine weitere Lösung von 1,6 g Mercaptoethanol (ME), gelöst in 14,4 g Wasser, innerhalb von 3 h kontinuierlich zudosiert. Dann wurde eine weitere Stunde bei 87 °C unter Stickstoffatmosphäre gerührt. Es wurde anschließend auf eine Innentemperatur von 60°C abgekühlt; dann wurden 2,3 g tert.-Butylhydroperoxid (70%ig), gelöst in 14 g Wasser, auf einmal zugegeben. Anschließend wurden innerhalb von 30 Minuten 1,6 g Natriumdisulfit, gelöst in 50 g VE-Wasser, zugegeben. Der Ansatz wurde noch eine weitere Stunde bei 60°C gerührt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt von 32% und einem K-Wert (1 Gew.-% in 3 Gew.-%iger NaCl-Lösung) von 31 erhalten.
  • Das Beispiel 22 wurde analog Beispiel 23 durchgeführt, wobei jedoch kein Mercaptoethanol (ME) zudosiert wurde.
  • Beispiel 24:
  • In einem Reaktor wurden 385 g destilliertes Wasser und 80 g Allyletheralkoxylat (Allylalkohol mit 1 EO- und 42 Propylenoxid(PO)-Einheiten) unter Stickstoffzufuhr auf 87°C Innentemperatur erhitzt. Dann wurden zeitgleich 160 g Vinylpyrrolidon (VP) sowie 160 g Vinylimidazol (VI) innerhalb von 3 h kontinuierlich zudosiert. Zeitlich um ca. 5 Minuten verschoben wurde eine Lösung von 6,4 g 2,2'-Azobis(2-methylpropionamidin)-dihydrochlorid (V50) in 50 g Wasser innerhalb von 3 h kontinuierlich zudosiert. Dann wurde eine weitere Stunde bei 87°C unter Stickstoffatmosphäre gerührt. Es wurde anschließend auf eine Innentemperatur von 60°C abgekühlt; dann wurden 2,3 g tert.-Butylhydroperoxid (70%ig), gelöst in 14 g Wasser, auf einmal zugegeben. Anschließend werden innerhalb von 30 Minuten 9,6 g Natriumdisulfit, gelöst in 50 g VE-Wasser, zugegeben. Der Ansatz wurde noch eine weitere Stunde bei 60°C gerührt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt von 39,8% und einem K-Wert (1 Gew.-% in 3 Gew.-%iger NaCl-Lösung) von 40,5 erhalten.
  • Beispiel 25:
  • In einem Reaktor wurden 385 g destilliertes Wasser und 80 g Allyletheralkoxylat (Allylalkohol mit 1 EO- und 42 Propylenoxid(PO)-Einheiten) unter Stickstoffzufuhr auf 87°C (T) Innentemperatur erhitzt. Dann wurden 160 g Vinylpyrrolidon (VP) sowie parallei 160 g Vinylimidazol (VI) innerhalb von 3 h kontinuierlich zudosiert. Zeitlich um ca. 5 Minuten verschoben wurden je eine Lösung von 6,4 g 2,2'-Azobis(2-methylpropionamidin)-dihydrochlorid (V50) in 50 g Wasser sowie von 1,2 g Mercaptoethanol (ME) in 11 g destilliertem Wasser innerhalb von 3 h kontinuierlich zudosiert. Dann wurde eine weitere Stunde bei 87°C unter Stickstoffatmosphäre gerührt. Es wurde eine leicht gelbliche, klare Lösung mit einem Feststoffgehalt von 38,4 % und einem K-Wert (1 Gew.-% in 3 Gew.-%iger wässriger NaCl-Lösung) von 31,8 erhalten.
  • In den nachstehenden Tabellen 2a und 2b sind die Parameter der Versuchsdurchführungen der Beispiele 11 bis 25 zusammengefasst. Tabelle 2a:
    Bei spiel VP [g] VP [mol %] VI [g] VI [mol-%] Allylalkoholethoxylat [g] / [Anzahl EO-Einheiten] / [mol.-%] V50 [g] K-Wert F.G. [%]
    11 320 94,7 - - 80/10/5,3 6,4 33,7 46,2
    12 320 94,7 - - 80/10/5,3 4,0 36,7 46,7
    13 320 94,7 - - 80/10/5,3 4,0 32,8 46,9
    14 320 94,7 - - 80/10/5,3 4,0 31,5 45,9
    15 340 96,3 - - 60/10/3,8 6,4 32,6 52,3
    16 340 96,3 - - 60/10/3,8 4,0 35 53,2
    17 340 96,3 - - 60/10/3.8 4,0 39,6 52,3
    18 220 63,0 100 33,8 80/16,6/3,2 6,4 41,5 48,7
    19 160 44,4 160 52,5 80 / 16,6 3,1 6,4 43,3 48,9
    Tabelle 2b:
    Bei spiel VP [g] VP [mol-%] VI [g] VI [mol-%] Allylalkoholetho xylat [g] / EO-Anteil# / PO-Anteil# / [mol%] V50 [g] ME [g] K-Wert F.G. [%]
    20 220 63,0 100 33,8 80/16,6/-/3,2 6,4 1,2 34,4 45,8
    21 160 44,4 160 52,5 80/16,6/-/3,1 6,4 1,6 32,7 45,1
    22 320 94,7 - - 80/10/-/5,3 6,4 - 35,4 28
    23 320 96,6 - - 80/16,6/-/3,4 6,4 1,6 31 32
    24 160 45,4 160 53,6 80/1/42/1,0 6,4 - 40,5 39,8
    25 160 45,4 160 53,6 80/1/42/1,0 6,4 1,2 31,8 38,4
    # Anzahl EO- bzw. PO-Einheiten (Zahlenmittel)
  • Anwendungstechnische Beispiele Prüfung erfindungsgemäßer Copolymerisate als Farbübertragungsinhibitoren in Waschmitteln
  • Die erfindungsgemäßen Copolymere wurden als Farbübertragungsinhibitoren in Waschmitteln geprüft. Dafür wurden beispielhaft zwei granuläre Waschmittel (WM 1, WM2) und zwei Flüssigwaschmittel (WM 3, WM4) der in Tabelle 3 aufgeführten Zusammensetzungen hergestellt, wobei sich WM1 und WM2 bzw. WM3 und WM4 jeweils durch den Gehalt an erfindungsgemäßem Copolymer (WM1 = 0,15 Gew.-%; WM2 = 0,25 Gew.-%; WM3 = 0,15 Gew.-%; WM4 = 1 Gew.-%) unterschieden. Dann wurde weißes Baumwoll-Prüfgewebe unter den in Tabelle 4 genannten Waschbedingungen in Gegenwart von Farbstoff, der der Waschflotte als 0,03 bzw. 0,06 Gew.%ige wässrige Lösung zugesetzt wurde, gewaschen.
  • Die Messung der Anfärbung des Prüfgewebes erfolgte photometrisch mit dem Photometer Elrepho 2000 (Datacolor). Die Remission (in %) wurde bei der Wellenlänge der jeweiligen maximalen Absorption der verschiedenen Farbstoffe gemessen. Der Weißgrad des Testgewebes nach der Wäsche diente zur Beurteilung der Anfärbung. Die in Tabelle 5 a - c angegebenen Messwerte wurden durch mehrfache Wiederholung und Mittelwertbildung gesichert.
  • In Tabelle 5 a - c sind die Ergebnisse der Waschversuche mit erfindungsgemäßen Copolymeren im Vergleich zu Waschversuchen ohne Farbstoffübertragungsinhibitor aufgeführt. Tabelle 3: Zusammensetzungen der Waschmittel WM1 bis WM4 (Angaben in Gew.-%)
    WM 1 [%] WM 2 [%] WM 3 [%] WM 4 [%]
    C12/C14-Fettalkoholsulfat 24 24
    C12/C14-Fettalkoholethoxylat 2 2
    C12/C14-Alkylbenzolsulfonat 9 9
    C13/C15- Talgfettalkohol, umgesetzt mit 7 EO-Einheiten 6,6 6,6 6 6
    Kokosfettsäure 5 5
    Seife 1,8 1,8 0,7 0,7
    Borax 2,2 2,2
    Zeolith A 45 45
    Polycarboxylat (Acrylsäure /Maleinsäure-Copolymerisat; w/w 70:30, Mw 70000) 5 5
    Natriumcarbonat 7 7
    Trinatriumcitrat x 2 H2O 12 12 2,1 2,1
    Magnesiumsilikat 0,8 0,8
    Carboxymethylcellulose 0,8 0,8
    Propylenglykolmonomethylether 10 10
    Copolymerisat (ber. 100%) 0,15 0,25 0,15 1
    Wasser ad 100 ad 100 ad 100 ad 100
    Tabelle 4: Waschbedingungen
    WM1 WM2
    Gerät Lauder-o-meter Lauder-o-meter
    Zyklen 1 1
    Dauer 30 min 30 min
    Wasserhärten 3,0 mmol Ca2+/l, Molverhältnis Ca:Mg:HCO3:4:1:8 3,0 mmol Ca2+/l, Molverhältnis Ca:Mg:HCO3: 4:1:8
    Temperatur 60°C 60°C
    Farbstoffeintrag Farbstofflösung Farbstofflösung
    Prüfgewebe Baumwollläppchen Baumwollläppchen
    Flottenmenge 250 ml 250 ml
    Flottenverhältnis 1:12,5 1:12,5
    Waschmittelkonzentration 4,5 g/l 6 g/l
    Tabelle 5a: Waschergebnisse WM1
    Copolymerisat aus Bsp. % Remission Direktblau 71 % Remission Direktrot 212 % Remision Direktschwarz 22
    1 69,5 56,1 64,6
    2 70,2 57,3 62,6
    3 68,9 55,7 64,8
    4 69,2 56,1 64,4
    5 70,1 56,6 65,5
    6 68,5 56,0 66,5
    7 70,0 57,4 67,3
    8 68,8 56,6 68,1
    9 72,5 60,4 67,0
    10 74,7 64,6 70,3
    ohne 63,4 54,3 59,7
    Weißgrad vor der Wäsche 79,8 78,8 80
    Tabelle 5b: Waschergebnisse WM2
    Copolymerisat aus Bsp. % Remission Direktblau 71 % Remission Direktrot 212 % Remision Direktschwarz 22
    11 71,48 58,14 67,71
    12 73,07 58,34 69,11
    13 72,89 58,83 68,31
    18 76,27 65,46 74,69
    19 76,58 68,31 76,44
    20 76,50 65,57 75,00
    21 76,70 68,26 76,94
    22 73,07 58,34 69,11
    23 72,89 58,83 68,31
    24 76,83 69,27 76,83
    25 76,68 68,98 77,23
    ohne 63,6 53,98 65,54
    Weißgrad vor der Wäsche 79,8 78,8 80
    Tabelle 5c: Waschergebnisse WM3:
    Copolymerisat aus Bsp. % Remission Direktblau 71 % Remission Direktrot 212 % Remision Direktschwarz 22
    1 69,8 57,0 70,5
    2 69,8 56,9 70,1
    3 69,0 57,0 70,0
    4 68,2 56,4 69,8
    5 69,4 55,7 69,1
    6 67,6 55,8 69,9
    7 69,1 56,3 69,7
    8 68,1 55,9 70,5
    ohne 64,5 53,7 69,8
    Weißgrad vor der Wäsche 79,8 78,8 80
  • Die erhaltenen Waschergebnisse belegen die sehr gute Wirksamkeit der erfindungsgemäßen Copolymere als Farbübertragungsinhibitoren, die unabhängig von der Art des Farbstoffes ist.
  • Prüfung auf Kompatibilität in Flüssigwaschmitteln
  • Zur Beurteilung der Stabilität der Copolymere in unterschiedlichen Flüssigwaschmittelformulierungen wurde jeweils 1 Gew.-% Copolymer in das Flüssigwaschmittel einformuliert und eine visuelle Beurteilung hinsichtlich Phasenseparation, Trübung, Inkompatibilitäten, usw. vorgenommen.
  • Die Stablitätstests wurden mit der flüssigen Waschmittelformulierung WM4 durchgeführt.
  • In Tabelle 6 sind die visuellen Beurteilungen nach 4 Wochen Lagerung bei 40°C zusammengestellt. Tabelle 6:
    Copolymer Beispiel Nr. WM 4
    ohne klar
    Copolymer 1 klar
    Copolymer 3 klar
    Copolymer 9 klar
    Copolymer 10 klar
    Copolymer 11 klar
    Copolymer 22 klar
    Copolymer 23 klar

Claims (18)

  1. Verwendung eines Copolymers, umfassend in polymerisierter Form (a) 80 bis 99,9 mol %, bezogen auf die Gesamtmenge der zur Herstellung des Copolymeren polymerisierten Monomere, wenigstens eines Monomers A, das jeweils einen mindestens 1 N-Atom aufweisenden Heterocyclus aus 3 bis 10 Ringgliedern und eine an ein C- oder N-Ringatom des Heterocyclus gebundene C2-C6-Alkenylgruppe umfasst; und (b) 0,1 bis 20 mol %, bezogen auf die Gesamtmenge der zur Herstellung des Copolymeren polymerisierten Monomere, wenigstens eines mit dem Monomer A copolymerisierbaren Monomers B, das eine monoethylenisch ungesättigte Doppelbindung sowie eine lineare oder verzweigte Poly-C2-C4-Alkylenoxidgruppe mit im Mittel 4 bis 500 C2-C4-Alkylenoxideinheiten aufweist,
    in flüssigen und in festen Waschmittelformulierungen.
  2. Verwendung nach Anspruch 1, wobei das Monomer A wenigstens ein N-Vinyllactam und gegebenenfalls wenigstens ein N-Vinylimidazol umfasst, wobei sowohl erstere als auch letztere jeweils 1, 2, 3, oder 4 unabhängig voneinander unter C1-C4-Alkyl, C3-C6-Cycloalkyl und Phenyl ausgewählte Substituenten aufweisen können.
  3. Verwendung nach Anspruch 2, wobei das Monomer A ausgewählte ist unter N-Vinylpyrrolidon und Gemischen aus N-Vinylpyrrolidon mit N-Vinylimidazol.
  4. Verwendung nach einem der vorhergehenden Ansprüche, wobei der Anteil an Ethylenoxid-Einheiten im Monomer B mindestens 50% bezüglich der im Monomer B enthaltenen C2-C4-Alkylenoxid-Einheiten beträgt.
  5. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Poly-C2-C4-Alkylenoxidgruppe in Monomer B 1 oder 2 Endgruppen aufweist, die unabhängig voneinander unter H, C1-C10-Alkyl und Benzyl ausgewählt sind.
  6. Verwendung nach Anspruch 5, wobei die Endgruppen ausgewählt sind unter C1-C2-Alkyl.
  7. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Monomer B die allgemeine Formel 1 aufweist:

            X-CH=CR1-Y-Z     (I),

    worin
    X für H oder COOH steht;
    R1 für H oder Methyl steht;
    Y für O, CH2-O, C(O)O, C(O)NH, NHC(O) oder CH2-NHC(O) steht; und
    Z für eine lineare oder verzweigte Poly-C2-C4-Alkylenoxidgruppe, umfassend im Mittel 4 bis 500 C2-C4-Alkylenoxideinheiten und 1 oder 2 endständige, unabhängig voneinander unter H, C1-C10-Alkyl und Benzyl ausgewählte Res- te, steht.
  8. Verwendung nach Anspruch 7, wobei in Formel I die Variable X für H und Y für C(O)O oder C(O)NH steht.
  9. Verwendung nach Anspruch 8, worin der(die) endständige(n) Rest(e) in Z für C1-C2-Alkyl steht(stehen).
  10. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Monomer B ausgewählt ist unter den Methylpolyethylenglykolestem der (Meth)Acrylsäure und Allyletherethoxylaten.
  11. Verwendung nach Anspruch 7, wobei in Formel I die Variable X für H und Y für CH2-O steht.
  12. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer des Weiteren in polymerisierter Form 0 bis 20 mol.-% mindestens eines mit den Monomeren A und B copolymerisierbaren Monomers C umfasst, das unter monoethylenisch ungesättigten C3-C10-Mono- und -Dicarbonsäuren, Vinylestern gesättigter C1-C10-Carbonsäuren, Vinyl- und Allylethern von C1-C10-Alkoholen, Vinylformamiden, quaternären Produkten von N-Vinyl- und N-Allylaminen und deren Derivaten sowie Mischungen davon ausgewählt ist.
  13. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet; dass der Anteil an Monomer C höchstens 20 mol.% beträgt.
  14. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer einen K-Wert im Bereich von 10 bis 150 aufweist.
  15. Copolymer, umfassend in polymerisierter Form (a) 80 bis 99,9 mol%, bezogen auf die Gesamtmenge der zur Herstellung des Copolymeren polymerisierten Monomere, wenigstens eines Monomers A, das jeweils einen mindestens 1 N-Atom aufweisenden Heterocyclus aus 3 bis 10 Ringgliedern und eine an ein C- oder N-Ringatom des Heterocyclus gebundene C2-C6-Alkenylgruppe umfasst; (b) 0,1 bis 20 mol-%, bezogen auf die Gesamtmenge der zur Herstellung des Copolymeren polymerisierten Monomere, wenigstens eines mit dem Monomer A copolymerisierbaren Monomers B, das eine monoethylenisch ungesättigte Doppelbindung sowie eine lineare oder verzweigte Poly-C2-C4-Alkylenoxidgruppe mit im Mittel 4 bis 500 C2-C4-Alkylenoxideinheiten aufweist, mit der Maßgabe dass die Endgruppe der Poly-C2-C4-Alkylenoxidgruppe in den Monomeren B unter C1-C2-Alkyl ausgewählt ist, wenn es sich bei dem Monomer B um einen Ester einer ethylenisch ungesättigten Carbonsäure mit einem linearen Poly-C2-C4-alkylenoxid handelt, und gegebenenfalls (c) 0 bis 20 mol.%, bezogen auf die Gesamtmenge der zur Herstellung des Copolymeren polymerisierten Monomere, wenigstens eines mit den Monomeren A und B copolymerisierbaren Monomers C,
    wobei die Gesamtmenge der Monomere (a), (b) und (c) 100 mol.% beträgt.
  16. Verfahren zur Herstellung eines Copolymers gemäß Anspruch 15, dadurch gekennzeichnet, dass man das mindestens eine Monomer A mit dem mindestens einen Monomer B sowie gegebenenfalls mit den Monomeren C radikalisch polymerisiert.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass man eine Lösungspolymerisation in wässrigem und/oder alkoholischem Reaktionsmedium durchführt.
  18. Flüssige oder feste Waschmittelformulierung, umfassend mindestens ein Copolymer, wie in einem der Ansprüche 1 bis 14 definiert, und übliche waschaktive Substanzen.
EP05734132A 2004-04-27 2005-04-26 Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln Not-in-force EP1743018B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004020544A DE102004020544A1 (de) 2004-04-27 2004-04-27 Copolymere mit N-heterocyclischen Gruppen und deren Verwendung als Additiv in Waschmitteln
PCT/EP2005/004467 WO2005105968A1 (de) 2004-04-27 2005-04-26 Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln

Publications (2)

Publication Number Publication Date
EP1743018A1 EP1743018A1 (de) 2007-01-17
EP1743018B1 true EP1743018B1 (de) 2009-02-25

Family

ID=34965176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05734132A Not-in-force EP1743018B1 (de) 2004-04-27 2005-04-26 Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln

Country Status (11)

Country Link
US (1) US7728063B2 (de)
EP (1) EP1743018B1 (de)
JP (1) JP2007534816A (de)
CN (1) CN100537736C (de)
AT (1) ATE423835T1 (de)
BR (1) BRPI0510240B1 (de)
CA (1) CA2564812A1 (de)
DE (2) DE102004020544A1 (de)
ES (1) ES2321313T3 (de)
MX (1) MXPA06012026A (de)
WO (1) WO2005105968A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041349A1 (de) * 2005-08-31 2007-03-01 Basf Ag Reinigungsformulierungen für die maschinelle Geschirrreinigung enthaltend hydrophil modifizierte Polycarboxylate
DE102011119332A1 (de) * 2011-11-25 2013-05-29 Centrum Für Angewandte Nanotechnologie (Can) Gmbh Verwendung von über radikalische Emulsionspolymerisation erhältlichen Polymeren als Verdicker für Reinigungsmittel
DE102014017964A1 (de) 2014-12-05 2016-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wasch- und Reinigungsmittel mit polymerem Wirkstoff
JP6990062B2 (ja) * 2017-08-04 2022-01-12 株式会社日本触媒 グラフト重合体
US11130879B2 (en) * 2017-12-28 2021-09-28 Axalta Coating Systems Ip Co., Llc Dispersants, coating compositions including dispersants, and methods of forming the same
US11186805B2 (en) * 2019-12-20 2021-11-30 The Procter & Gamble Company Particulate fabric care composition

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892916A (en) * 1984-08-15 1990-01-09 Allied Colloids Limited Polymeric thickeners and their production
DE4235798A1 (de) 1992-10-23 1994-04-28 Basf Ag Verwendung von Vinylpyrrolidon- und Vinylimidazol-Copolymerisaten als Waschmitteladditiv, neue Polymerisate des Vinylpyrrolidons und des Vinylimidazols und Verfahren zu ihrer Herstellung
DE19621509A1 (de) 1996-05-29 1997-12-04 Basf Ag Verwendung von wasserlöslichen, N-Vinylimidazol-Einheiten enthaltenden Copolymerisaten als Farbübertragungsinhibitoren in Waschmitteln
CA2277484A1 (en) 1997-01-10 1998-07-16 Robert Polywka Detergent compositions and copolymers for inhibiting dye transfer
DE19731764A1 (de) * 1997-07-24 1999-01-28 Basf Ag Vernetzte kationische Copolymere
DE19805232A1 (de) 1998-02-10 1999-08-12 Basf Ag Verwendung von Copolymerisaten aus wasserlöslichen, nichtionischen N-Vinylgruppen enthaltenden Monomeren und hydrophoben ethylenisch ungesättigten Monomeren in Waschmitteln und als Wäschenachbehandlungsmittel
JP2002206088A (ja) * 2000-11-08 2002-07-26 Hitachi Maxell Ltd 蛍光錯体およびインク組成物
DE10059816C1 (de) * 2000-12-01 2002-04-18 Clariant Gmbh Verwendung von Additiven zur Inhibierung der Gashydratbildung
DE10156135A1 (de) * 2001-11-16 2003-06-05 Basf Ag Pfropfpolymerisate mit Stickstoffheterocyclen enthaltenden Seitenketten
DE10156133A1 (de) 2001-11-16 2003-05-28 Basf Ag Pfropfpolymerisate mit Stickstoffheterocyclen enthaltenden Seitenketten
DE10156134A1 (de) 2001-11-16 2003-05-28 Basf Ag Pfropfpolymerisate mit cyclische N-Vinylamide enthaltenden Seitenketten
JP3879844B2 (ja) * 2001-12-26 2007-02-14 ライオン株式会社 洗浄性防汚剤組成物及び洗浄性防汚物品
EP1569971A1 (de) 2002-12-02 2005-09-07 Basf Aktiengesellschaft Copolymere auf n-vinylamid-basis als adjuvans und mittel für den agrotechnischen bereich

Also Published As

Publication number Publication date
BRPI0510240A (pt) 2007-10-23
ES2321313T3 (es) 2009-06-04
EP1743018A1 (de) 2007-01-17
US7728063B2 (en) 2010-06-01
DE502005006696D1 (de) 2009-04-09
JP2007534816A (ja) 2007-11-29
WO2005105968A1 (de) 2005-11-10
CN1950493A (zh) 2007-04-18
DE102004020544A1 (de) 2005-11-24
BRPI0510240B1 (pt) 2016-02-10
ATE423835T1 (de) 2009-03-15
CN100537736C (zh) 2009-09-09
US20070244023A1 (en) 2007-10-18
CA2564812A1 (en) 2005-11-10
MXPA06012026A (es) 2007-11-20

Similar Documents

Publication Publication Date Title
EP1448643B1 (de) Pfropfpolymerisate mit stickstoffheterocyclen enthaltenden seitenketten
EP1448645B1 (de) Pfropfpolymerisate mit stickstoffheterocyclen enthaltenden seitenketten
EP2126020B1 (de) Hydrophob modifizierte polyalkylenimine als farbübertragungsinhibitoren
EP2106413A1 (de) Thermosensitiver polymerer farbübertragungsinhibitor
EP0451508B1 (de) Verfahren zur Herstellung von Homo- und Copolymerisaten monoethylenisch ungesättigter Dicarbonsäuren und ihre Verwendung
EP2454296B1 (de) Copolymere, ihre verwendung als verdicker, und verfahren zu ihrer herstellung
EP1743018B1 (de) Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln
DE112014006990T5 (de) Sulfonatgruppenhaltiges polymer und verfahren zur herstellung hiervon
EP0603236B1 (de) Copolymerisate von hydroxyalkylvinylethern und verwendung von homo- und copolymerisaten von hydroxyalkylvinylethern in wasch- und reinigungsmitteln
EP1687347B1 (de) Wasserlösliche copolymere von monoethylenisch ungesätti gten polyalkylenoxidmonomeren und mindestens ein stickstoffatom enthaltenden dipolaren monomeren
EP1761622B1 (de) Verfahren zur herstellung von granulären oder pulverförmigen waschmittelzusammensetzungen
EP1587848B1 (de) Partiell veresterte copolymere von monoethylenisch ungesättigten dicarbonsäureanhydriden, vinylaromatischen verbindungen und weitere heteroatome enthaltenden monoethylenisch ungesättigten monomeren
DE10257279A1 (de) Flüssige Bleichmittelkomponenten enthaltend amphiphile Polymere
EP0848723B1 (de) Pulverförmige, poröse, n-vinylimidazol-einheiten enthaltende polymere, verfahren zu ihrer herstellung und ihre verwendung
EP1448642B1 (de) Pfropfpolymerisate mit cyclische n-vinylamide enthaltenden seitenketten
EP1941016B1 (de) Verfahren zur herstellung von granulären oder pulverförmigen waschmittelzusammensetzungen
EP0541588B1 (de) Verwendung von n-(alkyloxy-polyalkoxymethyl) carbonamid-gruppen aufweisenden polymerisaten als zusatz zu wasch- und reinigungsmitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006696

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321313

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

26N No opposition filed

Effective date: 20091126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100413

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100414

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110502

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 423835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110426

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150429

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170427

Year of fee payment: 13

Ref country code: FR

Payment date: 20170427

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170421

Year of fee payment: 13

Ref country code: ES

Payment date: 20170530

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170630

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006696

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180426

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180427