EP1740680B1 - Verwendung von polyalkyl(meth) acrylaten in schmierölzusammensetzungen - Google Patents
Verwendung von polyalkyl(meth) acrylaten in schmierölzusammensetzungen Download PDFInfo
- Publication number
- EP1740680B1 EP1740680B1 EP05707597.0A EP05707597A EP1740680B1 EP 1740680 B1 EP1740680 B1 EP 1740680B1 EP 05707597 A EP05707597 A EP 05707597A EP 1740680 B1 EP1740680 B1 EP 1740680B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- use according
- polyalkyl
- weight
- hydraulic fluid
- meth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/10—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
- C10M145/12—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
- C10M145/14—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/18—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/22—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
- C10M107/22—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M107/28—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
Definitions
- the present invention relates to the use of polyalkyl (meth) acrylates in lubricating oil compositions.
- Air - oil heat exchangers, convection and heat radiation of the system components counteract a temperature increase at the same time.
- the structural design of individual system components, ambient conditions, operating mode and duration affect the resulting operating temperature of the hydraulic fluid used.
- the structural design is based on the type of device intermittent operation with appropriate downtime and the resulting liquid cooling. Similarly, assumptions must be made when estimating the ambient temperature.
- EP 0 979 834 A describes polyalkyl methacrylates with outstanding low temperature properties for use in lubricating oil compositions.
- US 3,304,260 describes polyalkyl methacrylates with high relative syndiotacticity, which lead to low deposits.
- Mixtures from which the polyalkyl esters are obtainable contain from 2 to 40% by weight and more preferably from 10 to 30% by weight, based on the weight of the monomer compositions for the preparation of the polyalkyl esters, of one or more ethylenically unsaturated ester compounds of the formula (I) wherein R is hydrogen or methyl, R 1 is a linear or branched alkyl radical having 1 to 5 carbon atoms, R 2 and R 3 are independently hydrogen.
- component a) examples include (meth) acrylates derived from saturated alcohols, such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n Butyl (meth) acrylate, tert-butyl (meth) acrylate and pentyl (meth) acrylate; Cycloalkyl (meth) acrylates such as cyclopentyl (meth) acrylate; (Meth) acrylates derived from unsaturated alcohols, such as 2-propynyl (meth) acrylate, allyl (meth) acrylate and vinyl (meth) acrylate.
- saturated alcohols such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n But
- compositions to be polymerized for preparing the polyalkyl esters contain from 60 to 98% by weight and particularly preferably from 70 to 90% by weight, based on the weight of the monomer compositions for the preparation of the polyalkyl esters, of one or more ethylenically unsaturated ester compounds of the formula ( II) wherein R is hydrogen or methyl, R 4 is a linear or branched alkyl radical having 6 to 30 carbon atoms, R 5 and R 6 are independently hydrogen.
- acrylates derived from saturated alcohols, such as hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, 2-tert-butylheptyl (meth) acrylate, octyl (meth) acrylate, 3-iso-propylheptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, 5-methylundecyl (meth) acrylate, dodecyl (meth) acrylate, 2-methyldodecyl (meth) acrylate, Tridecyl (meth) acrylate, 5-methyltridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexyl (meth)
- oleyl (meth) acrylate For example, oleyl (meth) acrylate; Cycloalkyl (meth) acrylates, such as 3-vinylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, bornyl (meth) acrylate.
- ester compounds with a long-chain alcohol radical in particular the compounds according to component (b), can be obtained, for example, by reacting (meth) acrylates and / or the corresponding acids with long-chain fatty alcohols, generally a mixture of esters, such as, for example, (meth) acrylates With different long-chain alcohol residues arises.
- These fatty alcohols include Oxo Alcohol® 7911 and Oxo Alcohol® 7900, Oxo Alcohol® 1100 from Monsanto; Alphanol® 79 from ICI; Nafol® 1620, Alfol® 610 and Alfol® 810 from Sasol; Epal® 610 and Epal® 810 from Ethyl Corporation; Linevol® 79, Linevol® 911 and Dobanol® 25L from Shell AG; Lial 125 from Sasol; Dehydad® and Lorol® grades from Cognis.
- the mixture for the production of preferred polyalkyl esters at least 60 wt .-%, preferably at least 70 wt .-%, based on the weight of the monomer compositions for the preparation of the polyalkyl esters, monomers according to formula (II).
- the methacrylates are generally preferred over the acrylates.
- At least 50 wt .-%, particularly preferably at least 70 wt .-% of the radicals R 4 according to formula (II) are linear.
- the ratio of branched to linear side chains of the radicals R 4 according to formula (II) is preferably in the range from 0.0001 to 0.3, particularly preferably in the range from 0.001 to 0.1.
- a polyalkyl (meth) acrylate may be used wherein at least 60% by weight of the ethylenically unsaturated ester compounds of formula (II) are alkyl (meth) acrylates based on the total weight of the ethylenically unsaturated Ester compounds of the formula (II).
- the proportion of (meth) acrylates having 6 to 15 carbon atoms in the alcohol moiety is in the range of 20 to 95 wt .-%, based on the weight of the monomer composition for the preparation of the polyalkyl esters.
- the proportion of (meth) acrylates having 16 to 30 carbon atoms in the alcohol residue is preferably in the range of 0.5 to 60 wt .-%, based on the weight of the monomer composition for the preparation of the polyalkyl esters.
- the proportion of olefinically unsaturated esters having 8 to 14 carbon atoms is preferably greater than or equal to the proportion of olefinically unsaturated esters having 16 to 18 carbon atoms.
- the polyalkyl ester has a specific viscosity ⁇ sp / c measured in chloroform at 25 ° C. in the range from 5 to 30 ml / g, preferably in the range from 10 to 25 ml / g, measured according to ISO 1628-6.
- the preferred polyalkyl esters which can be obtained by polymerization of unsaturated ester compounds preferably have a polydispersity M w / M n in the range of 1.2 to 4.0. This size can be determined by gel permeation chromatography (GPC).
- polyalkyl esters from the above-described compositions.
- ATRP atom transfer radical polymerization
- RAFT reversible addition fragmentation chain transfer
- Useful initiators include the azo initiators well known in the art, such as AIBN and 1,1-azobiscyclohexanecarbonitrile, and peroxy compounds such as methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, tert-butyl per-2-ethylhexanoate, ketone peroxide, tert-butyl peroctoate, methyl isobutyl ketone peroxide , Cyclohexanone peroxide, dibenzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, 2,5-bis (2-ethylhexanoylperoxy) -2,5-dimethylhexane, tert -butylperoxy-2-ethylhexanoate, tert -butylperoxy-3,5,5-trimethylhexanoate
- chain transfer agents are oil-soluble mercaptans such as, for example, tert-dodecyl mercaptan or 2-mercaptoethanol or chain transfer agents from the class of terpenes, such as, for example, terpinolene.
- the ATRP method is known per se. It is believed that this is a "living" radical polymerization without any limitation to the description of the mechanism.
- a transition metal compound is reacted with a compound having a transferable atomic group.
- the transferable atomic group is transferred to the transition metal compound, whereby the metal is oxidized.
- This reaction forms a radical that adds to ethylenic groups.
- the transfer of the atomic group to the transition metal compound is reversible so that the atomic group is re-transferred to the growing polymer chain, forming a controlled polymerization system. Accordingly, the structure of the polymer, the molecular weight and the molecular weight distribution can be controlled.
- polymers according to the invention can also be obtained, for example, by RAFT methods. This method is for example in WO 98/01478 which is expressly referred to for purposes of the disclosure.
- the polymerization can be carried out at atmospheric pressure, lower or higher pressure.
- the polymerization temperature is not critical. In general, however, it is in the range of -20 ° - 200 ° C, preferably 0 ° - 130 ° C and particularly preferably 60 ° - 120 ° C.
- the polymerization can be carried out with or without solvent.
- the term of the solvent is to be understood here broadly.
- the polymerization is carried out in a nonpolar solvent.
- nonpolar solvent include hydrocarbon solvents such as aromatic solvents such as toluene, benzene and xylene, saturated hydrocarbons such as cyclohexane, heptane, octane, nonane, decane, dodecane, which may also be branched.
- hydrocarbon solvents such as aromatic solvents such as toluene, benzene and xylene, saturated hydrocarbons such as cyclohexane, heptane, octane, nonane, decane, dodecane, which may also be branched.
- solvents can be used individually or as a mixture.
- Particularly preferred solvents are mineral oils, natural oils and synthetic oils and mixtures thereof. Of these, mineral oils are most preferred.
- a lubricating oil composition comprises at least one lubricating oil.
- the lubricating oils include, in particular, mineral oils, synthetic oils and natural oils.
- Mineral oils are known per se and commercially available. They are generally obtained from petroleum or crude oil by distillation and / or refining and, if appropriate, further purification and refining processes, the term "mineral oil” in particular falling to the relatively high-boiling fractions of crude oil or crude oil. In general, the boiling point of mineral oil is higher than 200 ° C, preferably higher than 300 ° C, at 5000 Pa. The production by smoldering of shale oil, coking of hard coal, distillation under exclusion of lignite and hydration of coal or lignite is also possible. To a small extent, mineral oils are also produced from raw materials of plant origin (eg from jojoba, rapeseed) or animal (eg claw oil) of origin. Accordingly, mineral oils, depending on the origin of different proportions of aromatic, cyclic, branched and linear hydrocarbons.
- mineral oils depending on the origin of different proportions of aromatic, cyclic, branched and linear hydrocarbons.
- paraffin-based, naphthenic and aromatic fractions in crude oils or mineral oils, the terms paraffin-based fraction being longer-chain or highly branched isoalkanes and naphthenic fraction being cycloalkanes.
- mineral oils depending on their origin and refinement, have different proportions of n-alkanes, isoalkanes with a low degree of branching, so-called monomethyl-branched paraffins, and compounds with heteroatoms, in particular O, N and / or S, which are attributed to polar properties .
- the assignment is difficult, however, since individual alkane molecules can have both long-chain branched groups and cycloalkane radicals and aromatic moieties.
- the assignment can be made, for example, according to DIN 51 378.
- Polar proportions may also be determined according to ASTM D 2007.
- the proportion of n-alkanes in preferred mineral oils is less than 3 wt .-%, the proportion of O, N and / or S-containing compounds less than 6 Wt .-%.
- the proportion of aromatics and monomethyl branched paraffins is generally in the range of 0 to 40 wt .-%.
- mineral oil mainly comprises naphthenic and paraffinic alkanes, which generally have more than 13, preferably more than 18 and most preferably more than 20 carbon atoms.
- the proportion of these compounds is generally ⁇ 60 wt .-%, preferably ⁇ 80 wt .-%, without this being a restriction.
- a preferred mineral oil contains from 0.5 to 30% by weight of aromatic fractions, from 15 to 40% by weight of naphthenic fractions, from 35 to 80% by weight of paraffinic fractions, up to 3% by weight of n-alkanes and 0.05% to 5 wt .-% polar compounds, each based on the total weight of the mineral oil.
- Synthetic oils include, but are not limited to, organic esters such as diesters and polyesters, polyalkylene glycols, polyethers, synthetic hydrocarbons, especially polyolefins, of which polyalphaolefins (PAO) are preferred, silicone oils and perfluoroalkyl ethers. They are usually slightly more expensive than the mineral oils, but have advantages in terms of their performance.
- Natural oils are animal or vegetable oils, such as claw oils or jojoba oils.
- lubricating oils can also be used as mixtures and are often commercially available.
- the concentration of the polyalkyl ester in the lubricating oil composition is preferably in the range of 2 to 40% by weight, more preferably in the range of 4 to 20% by weight, based on the total weight of the composition.
- a lubricating oil composition may contain other additives and additives.
- additives include, but are not limited to, antioxidants, corrosion inhibitors, anti-foaming agents, anti-wear components, dyes, color stabilizers, detergents, pour point depressants, and / or DI additives.
- the lubricating oil composition comprising at least one polyalkyl ester is preferably used as the hydraulic fluid.
- the lubricating oil composition can be used in a vane pump, a gear pump, a radial piston pump or an axial piston pump.
- the lubricating oil composition can preferably be used at a pressure of 50 to 450 bar, in particular in a pressure range of 100 to 350 bar and very particularly preferably in a pressure range of 120 to 200 bar.
- polyalkyl esters in particular of the new compounds leads to an improvement in hydraulic performance at elevated temperature, which is at least 60, preferably at least 80 ° C and most preferably at least 90 ° C.
- Preferred lubricating oil compositions have a viscosity measured in accordance with ASTM D 445 at 40 ° C in the range of 10 to 120 mm 2 / s, more preferably in the range of 22 to 100 mm 2 / s.
- preferred lubricating oil compositions have a viscosity index in the range of from 120 to 350, especially from 140 to 200, determined according to ASTM D 2270.
- the dynamometer construction is in FIG. 1
- the meaning of the numbers and components used therein can be found in the first two columns of the following table No. naming Type Technical specifications 1 hydraulic pump Denison T6C-06 displacement 21.3 cm 3 / turn print 320 bar max. operating pressure rotation speed 750 u. 1500 1 / min 2 drive motor EMK tension 400V power 22 kW rotation speed 1500 1 / min 3 mud motor Elektra tension 400V power 0.75 kW rotation speed 1400 1 / min 4 irrigation pump hp-art flow 100 l / h print 9 bar max.
- step 6 and 9 of the test program described above were in step 6 and 9 of the test program described above. These are in each case test phases, which took place with shutdown of the cooling. Thus, the temperature increase in the pump could be determined. A lower temperature increase, which has a hydraulic fluid with an additive, is therefore a reduction in temperature compared to a hydraulic fluid without additive equate.
- Step 6 was carried out at a pressure of 150 bar, step 9 at a pressure of 250 bar.
- the hydraulic power can be derived directly from the current flow rate of a hydraulic pump.
- the current flow rate could be read directly in the hydraulic circuit described above with the mentioned flow meter.
- the tests consisted of determining the actual flow rates as a function of the measured liquid temperatures at a pressure of 150 or 250 bar (pump outlet). The above relationship makes it possible to directly deduce the hydraulic performance at a given liquid temperature.
- the synthesis of the polymer solutions AD was carried out in each case in a mineral oil by means of customary free-radical polymerization as in, inter alia Ullmann's Encyclopedia of Industrial Chemistry, Sixth Editi is set forth on.
- the polymerization initiator used was tert-butyl peroctoate and the chain transfer agent dodecylmercaptan.
- the mineral oil used as solvent was a 100 solvent neutral oil from Kuwait Petroleum. It was polymerized at a temperature of 100 ° C, nach hypottert with tert-butyl peroctoate and thereafter polymerized until the residual monomer content of the polymer solutions prepared were less than 2 wt .-%. This was usually the case after a total process time of 6h.
- the polymers AD contained between 11 and 27 wt .-% of methyl methacrylate and between 63 and 89 wt .-% of a mixture of long-chain alkyl-substituted C 12-18 methacrylates, each based on the total weight of the monomers used.
- the specific viscosity n sp / c measured in chloroform at 25 ° C. was 17 ml / g for polymer A, 21 ml / g for polymer B, 25 ml / g for polymer C and 40 ml for polymer D /G.
- composition of monomer mixture 54.375 kg C12-18-alkyl methacrylate mixture 18.125 kg methyl methacrylate Template: 27.5 kg 100N mineral oil 4.1 kg monomer 0.01 kg dodecyl 0.026 kg tert-butyl per-2-ethylhexanoate 68.4 kg monomer 0.20 kg tert-butyl per-2-ethylhexanoate 0.86 kg dodecyl 0.126 kg tert-butyl per-2-ethylhexanoate
- composition of monomer mixture 62.35 kg C12-18-alkyl methacrylate mixture 10.15 kg methyl methacrylate Template: 27.5 kg 100N mineral oil 4.1 kg monomer 0.01 kg dodecyl 0.026 kg tert-butyl per-2-ethylhexanoate Intake: 68.4 kg monomer 0.19 kg tert-butyl per-2-ethylhexanoate 0.53 kg dodecyl Nach spatter-step: 0.126 kg tert-butyl per-2-ethylhexanoate
- composition of monomer mixture 60.9 kg C12-18-alkyl methacrylate mixture 9.1 kg methyl methacrylate Template: 30.0 kg 100N mineral oil 4.1 kg monomer 0.01 kg dodecyl 0.026 kg tert-butyl per-2-ethylhexanoate Intake: 65.9 kg monomer 0.22 kg tert-butyl per-2-ethylhexanoate 0.27 kg dodecyl Nach spatter-step: 0.126 kg tert-butyl per-2-ethylhexanoate
- composition of monomer mixture 54.8 kg C12-18-alkyl methacrylate mixture 8.2 kg methyl methacrylate Template: 37.0 kg 100N mineral oil 4.1 kg monomer 0.01 kg dodecyl 0.026 kg tert-butyl per-2-ethylhexanoate Intake: 58.9 kg monomer 0.15 kg tert-butyl per-2-ethylhexanoate 0.12 kg dodecyl Nach spatter-step: 0.126 kg tert-butyl per-2-ethylhexanoate
- polymer solutions in Tab. 1 precursors dissolved in mineral oil (referred to as polymer solutions in Tab. 1) were used.
- the polymer concentrations of the polymer solutions used were 72.5% by weight in the case of polymers A and B, 70% by weight in the case of polymer C and 63% by weight in the case of polymer D.
- Oloa 4992 As a DI package, the commercially available product Oloa 4992 from Oronite was used for all the formulations shown in Table 1. The concentration of Oloa 4992 was kept constant at 0.6% by weight for all the formulations investigated.
- the oils used were all mineral oils whose viscosity index is within a narrow range of about 100 (+/- 5).
- the mineral oils used can be obtained commercially.
- Esso 80 is a SN 80 oil from ExxonMobil
- KPE100 is a SN 100 oil from Kuwait Petroleum
- Esso 600 is a SN 600 oil from ExxonMobil.
- the Nexbase 3020 is a hydro- treated oil from Fortum.
- the choice of the oil or oil mixtures in the preparation of the formulations plays no role in this context, as long as oils in a tightly stained VI- Range are used and all formulations are set to identical kinematic viscosities.
- the choice of different oil compositions as shown in Table 1 was merely based on the kinematic viscosities measured at 40 ° C at constant values of 46 mm2 / s (+/- 10%) for ISO 46 fluids and 68 mm2 / s (+ / - 10%) for ISO 68 fluids. This was necessary because formulations with different polymer concentrations and polymers of different molecular weights were used.
- Examples 7 and 8 show, in comparison with Comparative Example 4, that an unexpected increase in performance can also be achieved with ISO 68 fluids (see Comparative Example 4 and Examples 7 and 8 in Table 3). This could be shown both at 150 bar and at 250 bar.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004021778A DE102004021778A1 (de) | 2004-04-30 | 2004-04-30 | Verwendung von Polyalkyl(meth)acrylaten in Schmierölzusammensetzungen |
PCT/EP2005/001907 WO2005108531A2 (de) | 2004-04-30 | 2005-02-24 | Verwendung von polyalkyl(meth) acrylaten in schmierölzusammensetzungen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1740680A2 EP1740680A2 (de) | 2007-01-10 |
EP1740680B1 true EP1740680B1 (de) | 2018-06-06 |
Family
ID=34960531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05707597.0A Not-in-force EP1740680B1 (de) | 2004-04-30 | 2005-02-24 | Verwendung von polyalkyl(meth) acrylaten in schmierölzusammensetzungen |
Country Status (10)
Country | Link |
---|---|
US (1) | US8754018B2 (ko) |
EP (1) | EP1740680B1 (ko) |
JP (1) | JP5452863B2 (ko) |
KR (1) | KR101129881B1 (ko) |
CN (1) | CN101142303B (ko) |
BR (1) | BRPI0510456A (ko) |
CA (1) | CA2560125C (ko) |
DE (1) | DE102004021778A1 (ko) |
MX (1) | MXPA06011984A (ko) |
WO (1) | WO2005108531A2 (ko) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004006612A1 (de) * | 2004-02-10 | 2005-08-25 | Degussa Ag | Keramischer Wandverkleidungsverbund |
US9096041B2 (en) | 2004-02-10 | 2015-08-04 | Evonik Degussa Gmbh | Method for coating substrates and carrier substrates |
DE102004018930A1 (de) * | 2004-04-20 | 2005-11-17 | Degussa Ag | Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält |
DE102004036073A1 (de) * | 2004-07-24 | 2006-02-16 | Degussa Ag | Verfahren zur Versiegelung von Natursteinen |
US7829242B2 (en) * | 2004-10-21 | 2010-11-09 | Evonik Degussa Gmbh | Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries |
JP2006124586A (ja) * | 2004-10-29 | 2006-05-18 | Sanyo Chem Ind Ltd | 粘度指数向上剤組成物および潤滑油組成物 |
DE102005015931A1 (de) | 2005-04-06 | 2006-10-12 | Rohmax Additives Gmbh | Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften |
US7648950B2 (en) * | 2005-04-22 | 2010-01-19 | Rohmax Additives Gmbh | Use of a polyalkylmethacrylate polymer |
DE102005031244A1 (de) * | 2005-07-01 | 2007-02-15 | Rohmax Additives Gmbh | Öllösliche Kammpolymere |
DE102005041528A1 (de) * | 2005-08-31 | 2007-03-01 | Rohmax Additives Gmbh | Öllösliche Polymere |
DE102006001639A1 (de) * | 2006-01-11 | 2007-07-12 | Degussa Gmbh | Keramische Wandverkleidungsverbände mit elektromagnetisch abschirmenden Eigenschaften |
DE102006001640A1 (de) * | 2006-01-11 | 2007-07-12 | Degussa Gmbh | Keramische Wandverkleidungsverbände mit IR-Strahlung reflektierenden Eigenschaften |
DE102006001641A1 (de) * | 2006-01-11 | 2007-07-12 | Degussa Gmbh | Substrate mit bioziden und/oder antimikrobiellen Eigenschaften |
US20070197410A1 (en) * | 2006-02-21 | 2007-08-23 | Rohmax Additives Gmbh | Energy efficiency in hydraulic systems |
DE102006016588A1 (de) * | 2006-04-06 | 2007-10-18 | Rohmax Additives Gmbh | Kraftstoffzusammensetzungen umfassend nachwachsende Rohstoffe |
DE102006039420A1 (de) * | 2006-08-23 | 2008-02-28 | Evonik Rohmax Additves Gmbh | Verfahren zur Herstellung von Methacrylatestern |
US20080302422A1 (en) * | 2007-06-07 | 2008-12-11 | Rohmax Additives Gmbh | Power output in hydraulic systems |
KR101492289B1 (ko) | 2007-07-09 | 2015-02-12 | 에보니크 오일 아디티페스 게엠베하 | 연료 소비를 감소시키기 위한 콤 중합체의 용도 |
DE102007036856A1 (de) * | 2007-08-06 | 2009-02-26 | Evonik Rohmax Additives Gmbh | Verwendung von Estergruppen-umfassenden Polymeren als Antifatigue-Additive |
WO2009024610A1 (en) * | 2007-08-23 | 2009-02-26 | Shell Internationale Research Maatschappij B.V. | Use of a lubricating oil composition |
DE102007045146A1 (de) * | 2007-09-20 | 2009-05-28 | Evonik Degussa Gmbh | Einachsfahrzeug mit einer Plattform und/oder einem Sitz für einen Fahrer |
DE102007059805A1 (de) | 2007-12-11 | 2009-06-25 | Evonik Degussa Gmbh | Batteriepack |
US20100162693A1 (en) | 2008-12-31 | 2010-07-01 | Michael Paul W | Method of reducing torque ripple in hydraulic motors |
DE102009001447A1 (de) | 2009-03-10 | 2010-09-16 | Evonik Rohmax Additives Gmbh | Verwendung von Kammpolymeren zur Verbesserung des Lasttragevermögens |
CA2765300A1 (en) | 2009-06-12 | 2010-12-16 | Evonik Rohmax Additives Gmbh | A fluid having improved viscosity index |
DE102010028195A1 (de) * | 2010-04-26 | 2011-10-27 | Evonik Rohmax Additives Gmbh | Schmiermittel für Getriebe |
CN102295972B (zh) * | 2010-06-24 | 2013-06-05 | 中国石油化工股份有限公司 | 聚甲基丙烯酸酯型粘度指数改进剂及制备方法 |
JP5584049B2 (ja) * | 2010-08-17 | 2014-09-03 | 株式会社Adeka | 潤滑油用極圧剤及びそれを含有する潤滑油組成物 |
CA2827548A1 (en) | 2011-03-25 | 2012-10-04 | Basf Se | Lubricant composition having improved non-newtonian viscometrics |
CN105294431B (zh) * | 2015-09-14 | 2017-08-11 | 宁波蓝润能源科技股份有限公司 | 一种合成酯类稠化剂、及利用其半合成齿轮油的制备方法 |
JP7050754B6 (ja) * | 2016-08-15 | 2023-12-20 | エボニック オペレーションズ ゲーエムベーハー | 高められた抗乳化性能を有する官能性ポリアルキル(メタ)アクリレート |
CN109642180B (zh) | 2016-08-31 | 2021-11-30 | 赢创运营有限公司 | 用于改进发动机油配制剂的Noack蒸发损失的梳形聚合物 |
DE102021000567A1 (de) | 2021-02-04 | 2022-08-04 | Mercedes-Benz Group AG | Schmierölzusammensetzung für ein Fahrzeuggetriebe |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3304260A (en) | 1960-12-30 | 1967-02-14 | Monsanto Co | Compositions of improved viscosity index containing alkyl polymethacrylate of high relative syndiotacticity |
IT1181905B (it) * | 1984-06-15 | 1987-09-30 | Anic Spa | Additivo multifunzionale per oli lubrificanti e procedimento per la sua preparazione |
FR2642435B1 (fr) * | 1989-01-27 | 1994-02-11 | Organo Synthese Ste Fse | Additif de viscosite pour huiles lubrifiantes, son procede de preparation et compositions lubrifiantes a base dudit additif |
FR2701036B1 (fr) * | 1993-02-04 | 1995-04-21 | Great Lakes Chemical France | Additif de viscosité stable au cisaillement pour huiles lubrifiantes. |
HUT69323A (en) | 1993-07-23 | 1995-09-28 | Rohm & Haas | Copolymer useful as viskosity index improving additive for hydraulic fluid |
HUT69298A (en) * | 1993-07-23 | 1995-09-28 | Rohm & Haas | Method of making a copolymer useful as viscosity index improving additive for hydraulic fluids |
JPH0948988A (ja) * | 1995-08-02 | 1997-02-18 | Sanyo Chem Ind Ltd | 粘度指数向上剤 |
US5817606A (en) | 1996-08-08 | 1998-10-06 | Rohm And Haas Company | Viscosity index improving additives for phosphate ester-containing hydraulic fluids |
US5939365A (en) * | 1996-12-20 | 1999-08-17 | Exxon Chemical Patents Inc. | Lubricant with a higher molecular weight copolymer lube oil flow improver |
FR2762005B1 (fr) * | 1997-04-11 | 2000-03-31 | Chevron Res & Tech | Utilisation de surfactants de bas poids moleculaires comme agents ameliorant la filtrabilite dans des lubrifiants hydrauliques |
DE19754982A1 (de) | 1997-12-11 | 1999-06-17 | Degussa | Verfahren zur Herstellung von Blausäure |
JP4338807B2 (ja) * | 1998-02-18 | 2009-10-07 | ザ ルブリゾル コーポレイション | 潤滑油組成物用の粘度改良剤 |
US6124249A (en) | 1998-12-22 | 2000-09-26 | The Lubrizol Corporation | Viscosity improvers for lubricating oil compositions |
US5955405A (en) * | 1998-08-10 | 1999-09-21 | Ethyl Corporation | (Meth) acrylate copolymers having excellent low temperature properties |
US6458750B1 (en) | 1999-03-04 | 2002-10-01 | Rohmax Additives Gmbh | Engine oil composition with reduced deposit-formation tendency |
US6458789B1 (en) * | 1999-09-29 | 2002-10-01 | Lion Bioscience Ag | 2-aminopyridine derivatives and combinatorial libraries thereof |
US6391996B1 (en) | 1999-11-30 | 2002-05-21 | Rohmax Additives Gmbh | Copolymers obtainable by the ATRP method and a method for their preparation and their use |
US6403745B1 (en) * | 1999-11-30 | 2002-06-11 | Rohmax Additives Gmbh | Gradient copolymers, as well as a method for their preparation and their use |
CA2340836A1 (en) | 2000-03-18 | 2001-09-18 | Degussa Ag | Granular product |
US20010036437A1 (en) | 2000-04-03 | 2001-11-01 | Andreas Gutsch | Nanoscale pyrogenic oxides |
DE10120484A1 (de) | 2001-04-25 | 2002-10-31 | Degussa | Verfahren und Vorrichtung zur thermischen Behandlung von pulverförmigen Stoffen |
HUE030226T2 (en) | 2002-03-01 | 2017-04-28 | Evonik Oil Additives Gmbh | Copolymers as dewaxing additives |
DE10235758A1 (de) | 2002-08-05 | 2004-02-26 | Degussa Ag | Dotiertes Zinkoxidpulver, Verfahren zu seiner Herstellung und Verwendung |
DE10238943B4 (de) | 2002-08-24 | 2013-01-03 | Evonik Degussa Gmbh | Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung und Verwendung in Lithium-Batterien sowie eine Batterie, aufweisend die Separator-Elektroden-Einheit |
DE10249295A1 (de) | 2002-10-22 | 2004-05-13 | Rohmax Additives Gmbh | Polymerdispersionen mit hoher Stabilität und Verfahren zur Herstellung |
DE10249294A1 (de) | 2002-10-22 | 2004-05-13 | Rohmax Additives Gmbh | Stabile Polymerdispersionen und Verfahren zur Herstellung |
DE10249292A1 (de) | 2002-10-22 | 2004-05-13 | Rohmax Additives Gmbh | Polymerdispersionen mit geringer Viskosität und Verfahren zur Herstellung |
US20040092409A1 (en) | 2002-11-11 | 2004-05-13 | Liesen Gregory Peter | Alkyl (meth) acrylate copolymers |
DE10311645A1 (de) | 2003-03-14 | 2004-09-23 | Degussa Ag | Nanoskaliges Indium-Zinn-Mischoxidpulver |
DE10314776A1 (de) | 2003-03-31 | 2004-10-14 | Rohmax Additives Gmbh | Schmierölzusammensetzung mit guten Reibeigenschaften |
DE10347568A1 (de) | 2003-10-14 | 2005-05-12 | Degussa | Kondensator mit keramischer Separationsschicht |
DE102004006612A1 (de) | 2004-02-10 | 2005-08-25 | Degussa Ag | Keramischer Wandverkleidungsverbund |
DE102004018930A1 (de) | 2004-04-20 | 2005-11-17 | Degussa Ag | Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält |
US7429555B2 (en) | 2004-04-30 | 2008-09-30 | Rohmax Additives Gmbh | Lubricating grease with high water resistance |
DE102004036073A1 (de) | 2004-07-24 | 2006-02-16 | Degussa Ag | Verfahren zur Versiegelung von Natursteinen |
US7829242B2 (en) | 2004-10-21 | 2010-11-09 | Evonik Degussa Gmbh | Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries |
US7648950B2 (en) | 2005-04-22 | 2010-01-19 | Rohmax Additives Gmbh | Use of a polyalkylmethacrylate polymer |
DE102006001640A1 (de) | 2006-01-11 | 2007-07-12 | Degussa Gmbh | Keramische Wandverkleidungsverbände mit IR-Strahlung reflektierenden Eigenschaften |
DE102006001639A1 (de) | 2006-01-11 | 2007-07-12 | Degussa Gmbh | Keramische Wandverkleidungsverbände mit elektromagnetisch abschirmenden Eigenschaften |
DE102006001641A1 (de) | 2006-01-11 | 2007-07-12 | Degussa Gmbh | Substrate mit bioziden und/oder antimikrobiellen Eigenschaften |
US20070197410A1 (en) | 2006-02-21 | 2007-08-23 | Rohmax Additives Gmbh | Energy efficiency in hydraulic systems |
DE102006039420A1 (de) | 2006-08-23 | 2008-02-28 | Evonik Rohmax Additves Gmbh | Verfahren zur Herstellung von Methacrylatestern |
DE202006015495U1 (de) | 2006-10-09 | 2007-02-01 | Degussa Ag | Elektrolumineszent ausgestattete Artikel |
US20080302422A1 (en) | 2007-06-07 | 2008-12-11 | Rohmax Additives Gmbh | Power output in hydraulic systems |
DE102007045146A1 (de) | 2007-09-20 | 2009-05-28 | Evonik Degussa Gmbh | Einachsfahrzeug mit einer Plattform und/oder einem Sitz für einen Fahrer |
-
2004
- 2004-04-30 DE DE102004021778A patent/DE102004021778A1/de not_active Ceased
-
2005
- 2005-02-24 EP EP05707597.0A patent/EP1740680B1/de not_active Not-in-force
- 2005-02-24 WO PCT/EP2005/001907 patent/WO2005108531A2/de not_active Application Discontinuation
- 2005-02-24 BR BRPI0510456-4A patent/BRPI0510456A/pt not_active IP Right Cessation
- 2005-02-24 MX MXPA06011984A patent/MXPA06011984A/es active IP Right Grant
- 2005-02-24 CN CN2005800058073A patent/CN101142303B/zh not_active Expired - Fee Related
- 2005-02-24 US US11/547,612 patent/US8754018B2/en active Active
- 2005-02-24 JP JP2007509895A patent/JP5452863B2/ja not_active Expired - Fee Related
- 2005-02-24 KR KR1020067022505A patent/KR101129881B1/ko active IP Right Grant
- 2005-02-24 CA CA2560125A patent/CA2560125C/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
KR101129881B1 (ko) | 2012-03-28 |
KR20070015557A (ko) | 2007-02-05 |
BRPI0510456A (pt) | 2007-11-06 |
JP5452863B2 (ja) | 2014-03-26 |
CA2560125C (en) | 2014-04-29 |
WO2005108531A3 (de) | 2007-05-10 |
EP1740680A2 (de) | 2007-01-10 |
CN101142303B (zh) | 2011-08-17 |
US20070219101A1 (en) | 2007-09-20 |
CN101142303A (zh) | 2008-03-12 |
WO2005108531A2 (de) | 2005-11-17 |
US8754018B2 (en) | 2014-06-17 |
CA2560125A1 (en) | 2005-11-17 |
MXPA06011984A (es) | 2007-04-16 |
JP2007535596A (ja) | 2007-12-06 |
DE102004021778A1 (de) | 2005-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1740680B1 (de) | Verwendung von polyalkyl(meth) acrylaten in schmierölzusammensetzungen | |
EP1240218B1 (de) | Gradientencopolymere sowie verfahren zur herstellung und verwendung | |
EP2526135B1 (de) | (meth)acrylat-polymer zur verbesserung des viskositätsindexes | |
EP1240219A1 (de) | Mittels atrp-verfahren erhältliche copolymere sowie verfahren zur herstellung und verwendung | |
WO2004087850A1 (de) | Schmierölzusammensetzung mit guten reibeigenschaften | |
DE2554117C2 (de) | Veredeltes Copolymer | |
EP1733011A1 (de) | Polymere mit h-brücken bilden funktionalitäten zur verbesserung des verschleisschutzes | |
EP0088904B1 (de) | Konzentrierte Emulsionen von Olefincopolymerisaten | |
EP1753847A1 (de) | Schmierfett mit hoher wasserresistenz | |
DE102005015931A1 (de) | Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften | |
EP1558713B1 (de) | Polymerdispersionen mit hoher stabilität und verfahren zur herstellung | |
EP1235870B1 (de) | Blockcopolymere sowie verfahren zur herstellung und verwendung | |
EP2152801B1 (de) | Verbesserte polymerdispersionen | |
DE10249294A1 (de) | Stabile Polymerdispersionen und Verfahren zur Herstellung | |
DE102004037929A1 (de) | Verfahren zur radikalischen Polymerisation ethylenisch-ungesättigter Verbindungen | |
DE10249292A1 (de) | Polymerdispersionen mit geringer Viskosität und Verfahren zur Herstellung | |
EP2714871B1 (de) | Schmiermittelzusammensetzung mit phosphorfunktionalisierten polymeren | |
DE3207292A1 (de) | Konzentrierte emulsionen von olefincopolymerisaten | |
WO2012156256A1 (de) | Reibungsverbessernde polymere für dlc-beschichtete oberflächen | |
WO2012107372A1 (de) | Verfahren zur entparaffinierung von mineralölzusammensetzungen | |
DE1925826C (de) | Kraftübertragungsflüssigkeiten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060612 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
PUAK | Availability of information related to the publication of the international search report |
Free format text: ORIGINAL CODE: 0009015 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EVONIK ROHMAX ADDITIVES GMBH |
|
17Q | First examination report despatched |
Effective date: 20120123 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EVONIK OIL ADDITIVES GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502005015843 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C10M0145000000 Ipc: C10M0145140000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10M 145/14 20060101AFI20171121BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005015843 Country of ref document: DE Owner name: EVONIK OPERATIONS GMBH, DE Free format text: FORMER OWNER: ROHMAX ADDITIVES GMBH, 64293 DARMSTADT, DE |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1006082 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005015843 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180906 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181006 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005015843 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190224 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1006082 Country of ref document: AT Kind code of ref document: T Effective date: 20190224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181008 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005015843 Country of ref document: DE Owner name: EVONIK OPERATIONS GMBH, DE Free format text: FORMER OWNER: EVONIK OIL ADDITIVES GMBH, 64293 DARMSTADT, DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: EVONIK OPERATIONS GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: EVONIK DEGUSSA GMBH Effective date: 20210209 Ref country code: NL Ref legal event code: PD Owner name: EVONIK DEGUSSA GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: EVONIK OIL ADDITIVES GMBH Effective date: 20210209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: EVONIK OPERATIONS GMBH, DE Free format text: FORMER OWNER: EVONIK OIL ADDITIVES GMBH, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20210325 AND 20210331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210217 Year of fee payment: 17 Ref country code: FR Payment date: 20210224 Year of fee payment: 17 Ref country code: NL Payment date: 20210217 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: HC Owner name: EVONIK OPERATIONS GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: EVONIK DEGUSSA GMBH Effective date: 20210223 Ref country code: BE Ref legal event code: PD Owner name: EVONIK DEGUSSA GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: EVONIK OIL ADDITIVES GMBH Effective date: 20210223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210217 Year of fee payment: 17 Ref country code: BE Payment date: 20210217 Year of fee payment: 17 Ref country code: GB Payment date: 20210219 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005015843 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220301 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220224 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220901 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |