EP1740302B1 - Teilchenförmige zusammensetzungen und ihre herstellung - Google Patents

Teilchenförmige zusammensetzungen und ihre herstellung Download PDF

Info

Publication number
EP1740302B1
EP1740302B1 EP20050735379 EP05735379A EP1740302B1 EP 1740302 B1 EP1740302 B1 EP 1740302B1 EP 20050735379 EP20050735379 EP 20050735379 EP 05735379 A EP05735379 A EP 05735379A EP 1740302 B1 EP1740302 B1 EP 1740302B1
Authority
EP
European Patent Office
Prior art keywords
weight
monomer
polymeric shell
particles
half height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20050735379
Other languages
English (en)
French (fr)
Other versions
EP1740302A1 (de
Inventor
Howard Roger Dungworth
Rachel Weston
Rebecca Kelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ciba Specialty Chemicals Water Treatments Ltd
Original Assignee
Ciba Specialty Chemicals Water Treatments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Specialty Chemicals Water Treatments Ltd filed Critical Ciba Specialty Chemicals Water Treatments Ltd
Publication of EP1740302A1 publication Critical patent/EP1740302A1/de
Application granted granted Critical
Publication of EP1740302B1 publication Critical patent/EP1740302B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric

Definitions

  • This invention relates to particulate compositions comprising particles having a core of hydrophobic material within a shell of polymeric material and a process of producing said compositions.
  • the invention relates to articles comprising said particles and also relates to coating compositions containing the particles, coated articles, in particular coated fabrics and a process for obtaining them.
  • the core may comprise an active ingredient such as ultra violet (UV) absorbers, flame retardants or phase change substances.
  • UV absorbers ultra violet
  • the particulate compositions can easily be incorporated into a variety of products such as coatings, sun-screens or a variety of textile products.
  • capsules comprising a shell surrounding a core material.
  • the core may comprise an active ingredient which is released slowly, such as fragrances, pesticides, medicaments and the like.
  • the core material encapsulated within the shell may remain substantially intact either permanently or at least until a suitable trigger induces the core to be released.
  • a suitable trigger induces the core to be released.
  • encapsulated phase change materials which can be used as thermal energy storage products.
  • Such products include fabrics and especially clothing.
  • Particles comprising encapsulated phase change hydrocarbon material may be applied to fabrics or incorporated into fibres forming the fabrics.
  • One way of incorporating such particulate capsules into fabrics is by combining the capsules into a fibre spinning dope, in which is then extruded to form filaments which are cured and then collected. Since the spinning process normally requires passing the extruded dope into an environment at temperatures often in excess of say 150 or 200°C and can be even as high as 350°C or higher, it is desirable for substantially all of the core material to be retained in the shell.
  • Fibres such as nylon and polyester fibres are produced by melt spun process, which generally involves very high temperatures, for instance in excess of 300 or 350°C.
  • melt spun process generally involves very high temperatures, for instance in excess of 300 or 350°C.
  • WO-A-01/54809 provides capsules which can easily be incorporated into fibres without suffering the loss of an active core material during the spinning process.
  • the capsules contain a polymeric shell which is formed from a monomer blend comprising A) 30 to 90% by weight methacrylic acid, B) 10 to 70% by weight alkyl ester of (meth)acrylic acid which is capable of forming a homopolymer of glass transition temperature in excess of 60°C and C) 0 to 40% by weight other ethylenically unsaturated monomer.
  • capsules containing phase change materials or other active ingredient such as UV absorbers to the surface of fabrics. This may be achieved by including the capsules in a coating composition, and coating the fabric and drying to form a coated fabric.
  • the coating process and post-treatment of the fabric often involves subjecting coated fabric to very high temperatures and pressures, for instance where coated fabric is subjected to calendaring.
  • coated fabric and capsules held in the coating may be exposed to temperatures in excess of 300°C or 350°C and to pressures in excess of 13.8 bar (200 psi). Therefore, it is not only essential that the capsules shells remain impervious to core material, but that the capsules shells are sufficiently strong to withstand the high pressures, especially when simultaneously exposed to high temperatures. If capsules shell walls are too weak, the shells will rupture and the core material would be released.
  • capsules have been proposed in the literature. For instance it is known to encapsulate hydrophobic liquids by dispersing the hydrophobic liquid into an aqueous medium containing a melamine formaldehyde pre-condensate and then reducing the pH resulting in an impervious aminoplast resin shell wall surrounding the hydrophobic liquid. Variations of this type of process are described in GB-A-2073132 , AU-A-27028/88 and GB-A-1507739 , in which the capsules are preferably used to provide encapsulated inks for use in pressure sensitive carbonless copy paper.
  • capsules based on melamine formaldehyde resins are both impervious and durable, they tend to suffer the disadvantage that they are less impermeable at elevated temperatures. In addition, there is also a risk that formaldehyde is evolved
  • WO-A-9924525 describes microcapsules containing as a core a lipophilic latent heat storage material with a phase transition at -20 to 120°C.
  • the capsules are formed by polymerizing 30 to 100 wt. % C1-24 alkyl ester of (meth)acrylic acid, up to 80 weight % of a di- or multifunctional monomer and up to 40 weight % of other monomers.
  • the microcapsules are said to be used in mineral molded articles.
  • the specific polymer compositions described would not be suitable for exposure to high temperatures since the lipophilic phase change material would be very quickly lost.
  • none of the specific polymer compositions are sufficiently strong to withstand high pressures.
  • particles that comprise a substantially impervious shell wall that retains a hydrophobic material under conditions of high pressures (generally in excess of 13.8 bar (200 psi), especially at elevated temperatures. It would be desirable to provide particles that do not release the hydrophobic core material during the harsh conditions of coating fabrics and after treatment of the coated fabrics.
  • composition comprising particles which comprise a core material within a polymeric shell, wherein the core material comprises a hydrophobic substance, in which the amount of the polymeric shell forms at least 8% of the total weight of the particles, wherein the polymeric shell comprises a copolymer formed from a monomer blend which comprises,
  • composition comprising particles which comprise a core material within a polymeric shell, wherein the core material comprises a hydrophobic substance, comprising the steps,
  • the process may employ an emulsifying system, for instance emulsifiers, other surfactants and/or polymerization stabilizers.
  • an emulsifier which may have a high HLB is dissolved into water prior to emulsification of the monomer solution.
  • the monomer solution may be emulsified into water with a polymerization stabilizer dissolved therein.
  • the polymerization stabilizer can be a hydrophilic polymer, for example a polymer containing pendant hydroxyl groups, for instance a polyvinyl alcohol and hydroxyethylcellulose. Generally it is preferred to use polyvinyl alcohol.
  • the polyvinyl alcohol stabiliser may be derived from polyvinyl acetate, and preferably between 85 and 95%, especially 90% of the vinyl acetate groups are hydrolyzed to vinyl alcohol units.
  • the polymerization step may be effected by subjecting the aqueous monomer solution to any conventional polymerization conditions.
  • the monomer is subjected to free radical polymerization.
  • polymerization is effected by the use of suitable initiator compounds. Desirably this may be achieved by the use of redox initiators and/or thermal initiators.
  • redox initiators include a reducing agent such as sodium sulphite, sulphur dioxide and an oxidizing compound such as ammonium persulphate or a suitable peroxy compound, such as tertiary butyl hydroperoxide etc.
  • Redox initiation may employ up to 1000 ppm, typically in the range 1 to 100 ppm, normally in the range 4 to 50 ppm.
  • the polymerization step is effected by employing a thermal initiator alone or in combination with other initiator systems, for instance redox initiators.
  • Thermal initiators would include any suitable initiator compound that releases radicals at an elevated temperature, for instance azo compounds, such as azobisisobutyronitrile (AZDN), 4,4'-azobis-(4-cyanovalereic acid) (ACVA) or t-butyl perpivilate.
  • thermal initiators are used in an amount of up 50,000 ppm, based on weight of monomer. In most cases, however, thermal initiators are used in the range 5,000 to 15,000 ppm, preferably around 10,000 ppm.
  • a suitable thermal initiator is combined with the monomer prior to emulsification and polymerization is effected by heating the emulsion to a suitable temperature, for instance at least 50 or 60°C or higher for sufficient time to effect polymerization. More preferably, the process is effected in by maintaining the emulsion at a temperature of between 50 and 80°C for a period of between 90 and 150 minutes. In such cases it may be desirable to subsequently subject the emulsion to a temperature of at least 80°C for a period of at least 30 minutes, for instance up to 90 minutes.
  • the half height value of the capsule is measured by thermo gravimetric analysis, by applying heat to the dry capsules at a rate of 20°C/min and measuring the weight loss.
  • the half height value is the temperature at which half the weight of the capsule is lost.
  • the composition of the present invention may comprise particles in which the average particle size diameter is less than 100 microns.
  • the average particle size diameter tends to be much smaller, often less than 50 microns and typically the average particle diameter will be between 200 nm and 40 microns.
  • the average particle size diameter is in the range 500 nm and 30 microns, particularly between 1 and 20 microns, especially 1 to 2 microns.
  • Average particle size is determined by a Coulter particle size analyzer according to standard procedures well documented in the literature.
  • the polymeric shell In addition to the special combinations of water soluble ethylenically unsaturated monomer with multifunctional monomer and optionally other monomer and a half height of at least 350°C, it is also essential for the polymeric shell to form at least 8% of the total weight of the particles. If the polymeric shell forms less than 8%, the strength of the capsule is significantly impaired. Preferably in the polymeric shell forms a greater proportion of the total weight of particle. The amount of polymeric shell may be as much as 50% or more although it is preferred that the shell forms between 10 and 50% of the total weight of the particles. Normally, it would be unnecessary for the proportion of polymeric shell to be significantly higher than 50% in order to achieve the optimum strength characteristics and in addition this could impair the activity of the core material. In order to achieve optimum strength of the capsule it is particularly preferred that the shell forms between 10 and 20% of total weight particles, in particular 12.5 to 15%.
  • the water-soluble ethylenically unsaturated monomer component A desirably has a solubility in water of at least 5g/100 cc at 25°C. Preferably it is at least partially soluble in or at least miscible with the hydrocarbon substance of the core. It may be a non-ionic monomer, such as acrylamide, methacrylamide, hydroxy ethyl acrylate or N-vinyl pyrrolidone. Preferably though, the water-soluble monomer is ionic.
  • the ionic water-soluble monomer is an anionic monomer, and desirably contains a suitable acid moiety, for instance carboxylic acid or sulfonic acid.
  • the anionic monomer is selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acid, vinyl sulfonic acid, allyl sulfonic acid and 2-acrylamido-2-methylpropane sulfonic acid, in the form of the free acid or water soluble salts thereof.
  • Methacrylic acid is a particularly preferred anionic monomer.
  • the ionic water-soluble monomer may also be a cationic monomer, having a suitable cationic functionality such as a quaternary ammonium group or a potentially cationic such as a tertiary amine group which can be ionised at low pH.
  • the cationic monomer is selected from the group consisting of dialkyl amino alkyl acrylates, dialkyl amino alkyl methacrylates, dialkyl amino alkyl acrylamides, dialkyl amino alkyl methacrylamides and diallyl dialkyl ammonium halides, in the form of acid salts or quaternary ammonium salts.
  • Particularly suitable cationic monomers include diallyl dimethyl ammonium chloride and the methyl chloride quaternary ammonium salts of dimethyl amino ethyl acrylate, dimethyl amino ethyl methacrylate, t-butylaminoethyl methacrylate, dimethyl amino propyl acrylamide, dimethyl amino propyl methacrylamide.
  • the multifunctional monomer, component B should readily react with the water-soluble monomer to provide a cross linked structure.
  • the multifunctional monomer contains at least two ethylenically unsaturated groups or alternatively may contain one ethylenically unsaturated group and one reactive group capable of reacting with other functional groups in any of the monomer components.
  • the multifunctional monomer is insoluble in water or at least has a low water-solubility, for instance below 5g/100 cc at 25°C, but usually less than 2 or 1g/100 cc.
  • the multifunctional monomer should be soluble or at least miscible with the hydrocarbon substance of the core material.
  • Suitable multifunctional monomers include divinyl benzene, ethoxylated bisphenol A diacrylate, propoxylated neopentyl glycol diacrylate, tris(2-hydroxyethyl) isocyanurate triacrylate, trimethylolpropane triacrylate and an alkane diol diacrylate, for instance 1,3-butylene glycol diacrylate, 1,6-hexanediol diacrylate but preferably 1,4-butanediol diacrylate.
  • the monomer blend used to form the polymeric shell may also include up to 55% by weight other monomer (component C).
  • component C may be any suitable ethylenically unsaturated monomer that will readily copolymerising with the water-soluble monomer (component A) and the multifunctional monomer (component B).
  • the other monomer is insoluble in water or at least has a low water-solubility, for instance below 5g/100 cc at 25°C, but usually less than 2 or 1g/100 cc.
  • the other monomer should preferably be soluble or at least miscible with the hydrocarbon substance of the core material.
  • Particularly suitable monomers for use as component C include monomers selected from the group consisting of C 1-30 alkyl esters of ethylenically unsaturated carboxylic acid, styrene, vinyl acetate, acrylonitrile, vinyl chloride and vinylidene chloride. Particularly suitable monomers are C 1-8 alkyl esters of acrylic or methacrylic acid, preferably methyl methacrylate.
  • the monomer blend is combined with the hydrophobic substance and emulsified into an aqueous medium and therefore forming a dispersed hydrophobic phase (preferably organic) in a continuous aqueous phase.
  • a dispersed hydrophobic phase preferably organic
  • the multifunctional monomer (component B) and, where included, the other monomer (component C) will preferentially partition into the dispersed hydrophobic phase while the water-soluble monomer may exist both in the dispersed organic phase and also the aqueous continuous phase.
  • the combination of hydrophobic monomer in the dispersed hydrophobic phase and water-soluble monomer in the continuous phase the shell wall to be constructed from both inside and outside the dispersed phase.
  • the polymeric shell comprises a copolymer formed from a monomer blend which comprises, 10 to 75% by weight of component A, 10 to 75% by weight of component B, and 10 to 50% by weight of component C. More preferably, the monomer blend comprises 20 to 70%, especially 40 or 45 to 60% by weight component A, 20 to 70%, especially 40 to 60% by weight component B and 10 or 15 to 20% by weight of component C.
  • a particularly suitable copolymer is formed from a monomer blend in which comprises 10 to 75% by weight (preferably 20 to 70%, especially 40 to 60%) of methacrylic acid, 10 to 75% (preferably 20 to 70%, especially 40 to 60%) by weight of butane diol diacrylate, and 10 to 50% (preferably 10 or 15 to 20%) by weight of methyl methacrylate.
  • the composition of the present invention provides a particulate composition comprising core material within a polymeric shell, wherein the core material comprises a hydrophobic substance polymeric material. Desirably a substantial proportion of the core consists of the hydrophobic substance.
  • Other materials may be included in the core, for instance additives which modify the properties of the hydrophobic substance.
  • the other materials present in the core material may be hydrophilic and suspended in the hydrophobic substance, for instance inorganic salt hydrates.
  • the other additives may be polymeric additives which are miscible or soluble in the hydrophobic substance. Generally where included in the core these other materials will form no more than 10% by weight of the total core material.
  • the core will generally comprise at least 90% of the hydrophobic substance.
  • the amount of hydrophobic substance comprised in the core will be more than 95% by weight, more preferably more than 98%, in particular 98.5 to 99.5%.
  • the core material may comprise an active ingredient selected from the group consisting of UV absorbers, UV reflectors, flame retardants, active dye tracer materials, pigments, dyes, colorants, enzymes, detergent builders and fragrances.
  • active ingredient selected from the group consisting of UV absorbers, UV reflectors, flame retardants, active dye tracer materials, pigments, dyes, colorants, enzymes, detergent builders and fragrances.
  • encapsulated pigments may be used in pigmented articles, such as ceramics, where it would be important for the pigment not to be released.
  • encapsulated colorants i.e. dyes and pigments for many other applications, for instance in preparing textile products.
  • the particles comprising a pigment or dye can be incorporated into or adhered to a fibre or textile article. The color would be held by the particle and there would be no risk of color leaching.
  • the encapsulated colorant may be applied to packaging materials, for instance food packaging.
  • shaded paper or board used in food packaging may be prepared by including the encapsulated pigments or dyes into the paper making process.
  • the colorants can be C.I. Pigment Violet 19, C.I. Pigment Blue 15, C.I. Pigment Blue 60, C.I. Pigment Red 177 as described in WO-A-00/61689
  • encapsulated pigments includes cosmetics, for instance as described in U.S. Pat. No. 5,382,433 , U.S. Pat. No. 5,320,835 or WO-A-98/50002 .
  • the colorants can be mica, talc, D&C Red 7 Calcium Lake, D&C Red 6 Barium Lake, Iron Oxide Red, Iron Oxide Yellow, D&C Red 6 Barfum Lake, Timiron MP-1001, Mineral (Carnation White), Helindon Pink, Red 218, Japan Blue No.1 Al lake, Polysiloxane-treated Titanium mica.
  • the active ingredient may be for instance a lipophilic compound that is soluble in refined or crude oil, and examples of oil containing environments into which it is to be released include downhole and pipeline.
  • lipophilic compounds are selected from wax deposition inhibitors, pour point depressants, demulsifiers, scale inhibitors corrosion inhibitors, biocides, enzymes, surfactants, antioxidants.
  • the particles will desirably release the active ingredient upon increasing the pH to above pH 10.
  • the capsules may release the active ingredient upon subsequent injection of aqueous alkali, for example as part of an alkali flooding process.
  • the active ingredient may also be a substance that is to be released in to an aqueous environment. This may be recirculating water such as in cooling water systems, which are normally operated under alkali conditions. Suitable actives for release into aqueous systems include antiscalents, corrosion inhibitors, biocides, dispersants, and antioxidants.
  • the hydrophobic substance comprised in the core may be an organic material.
  • the hydrophobic substance may be a hydrocarbon such as an oil or a wax.
  • the hydrophobic substance is a non-polymeric material.
  • the oil or wax may contain active materials, such as UV absorbers, UV reflectors, or flame retardants dispersed or dissolved therein.
  • the core material may a homogenous or alternatively may comprise a dispersion of solid active material dispersed throughout a continuous core medium of hydrophobic substance.
  • the phase change material is an oil or a wax which is liquid at a temperature between -30°C and 150°C.
  • Typical examples of flame retardants suitable for the present invention include bromobenzoates as described in U.S. Pat. No. 5,728,760 and halogenated phosphates, thiophosphates orthiophosphoryl chlorides as given in U.S. Pat. No. 3,912,792 .
  • Suitable ultra violet light absorbers of the present invention include naphthalene-methylenemalonic diesters, for instance as mentioned in U.S. Pat. No. 5,508,025 or compositions comprising mixtures of benzotriazoles and 2-hydroxy benzophenones as claimed by U.S. Pat. No. 5,498,345 .
  • phase change substance When the core material is a phase change substance it may be for instance any known hydrocarbon that melts at a temperature of between -30 and 150°C. Generally the substance is a wax or an oil and preferably has a melting point at between 20 and 80°C, often around 30°C. Desirably the phase change substance may be a C8-40 alkane or may be a cycloalkane. Suitable phase change materials includes all isomers of the alkanes or cycloalkanes. In addition it may also be desirably to use mixtures of these alkanes or cycloalkanes.
  • the phase change material may be for instance any of the compounds selected from n-octadecane, n-tetradecane, n-pentadecance, n-heptadecane, n-octadecane, n-nonadecane, n-docosane, n-tricosane, n-pentacosane, n-hexacosane, cyclohexane, cyclooctane, cyclodecane and also isomers and/or mixtures thereof.
  • the core consists essentially of a hydrophobic substance, for instance at least 90%, which is a non-polymeric material, preferably a hydrocarbon, for instance an oil or wax, in particular a phase change material.
  • a hydrophobic substance is a phase change material which is essentially non-polymeric
  • polymeric additives it is within the scope of the present invention for a smaller amounts of polymeric additives to be included within the phase change non-polymeric material. Usually this will be in amounts of less than 10% by total weight of core and often will be less than 5, for instance 0.5 to 1.5 or 2% by weight.
  • a particularly desirable polymeric additive is a substance that will modify the properties of the phase change material.
  • phase change material melts on absorbing heat
  • temperature at which it solidifies when losing heat can be significantly different from the temperature at which it solidifies when losing heat.
  • a particularly desirable polymeric additive would be a substance which will bring the melting and solidifying temperatures closer together. This minimization of the shift in melting/freezing point of the phase change material may be important in various domestic applications or for garments.
  • the phase change material comprised in the core could be a substance other than a hydrocarbon.
  • the phase change material could be an inorganic substance that absorbs and desorbs latent heat during a liquefying and solidifying phase transition.
  • the inorganic substance may be a compound which releases or absorbs heat during a dissolving/crystallization transition.
  • Such inorganic compounds include for instance sodium sulphate decahydrate or calcium chloride hexahydrate.
  • the inorganic phase change material may be any inorganic substance that can absorb or desorb thermal energy during a transition at a particular temperature.
  • the inorganic phase change material may be in the form of finely dispersed crystals which are dispersed throughout the core matrix which comprises a hydrophobic substance.
  • the inorganic phase change material is dispersed throughout a solid hydrophobic substance such as a wax.
  • the hydrophobic substance comprised in the core remains substantially liquid and contains crystals of the inorganic phase change material dispersed throughout the liquid.
  • the hydrophobic liquid is a hydrocarbon.
  • a suitable surfactant such as a water in oil emulsifier into the hydrophobic liquid in order to prevent coalescence of the dispersed droplets of liquid.
  • the inorganic phase change material is dispersed throughout a matrix of hydrocarbon phase change material which is a wax or an oil.
  • the hydrocarbon and inorganic materials may both absorb or desorb heat.
  • the hydrocarbon phase may be a carrier oil that is not necessarily a phase change material.
  • the carrier oil may be a process aid. It is possible to incorporate the particles of the present invention into any suitable article, for instance fibres, textile products, ceramics, coatings etc.
  • a particulate composition comprising a polymeric shell, in which the core material comprises a hydrophobic substance, in which the amount of the polymeric shell forms at least 8% of the total weight of the particles, wherein the polymeric shell comprises a copolymer formed from a monomer blend which comprises,
  • the article may be a textile product or a paper or board packaging material or a shaped mineral article. Furthermore, it is possible to provide an article which comprises encapsulated flame retardants, UV absorbers, active dye tracer materials or phase change material.
  • encapsulated flame retardants it would be desirable for the flame retardant to be retained during any processing steps such as fibre formation, involving temperatures of for instance, between 150°C to about 350°C but then released when exposed to the excessive temperatures in excess of say above 400 or 500°C.
  • the polymer particles comprise a core material that contains both a phase change material, which is a wax or an oil and dispersed or dissolved therein a flame retarding substance.
  • the presence of the flame retardant in the capsule would prevent or reduce the risk of phase change material from igniting if released under excessive temperatures.
  • a coating composition comprising a particulate composition which comprises a core material within a polymeric shell, wherein the core material comprises a hydrophobic substance, in which the amount of the polymeric shell forms at least 8% of the total weight of the particles, wherein the polymeric shell comprises a copolymer formed from a monomer blend which comprises,
  • the coating composition may be used for any suitable substrate, such as paper, wood, metal, plastics, ceramics and the like.
  • the composition is for coating a textile and can for instance be a polyurethane or polyacrylic textile coating composition.
  • the coating composition of the present invention is prepared by combining the particulate composition of the present invention with a conventional coating composition (e.g. acrylic or polyurethane textile coating composition) which comprises conventional ingredients used in conventional amounts.
  • the coating composition is a formulation which is desirably prepared by mixing between 30 and 90% by weight of the dry particulate capsules of the present invention and between 10 and 70% by weight of a conventional polyurethane or polyacrylic textile coating composition.
  • the coating formulation comprises between 60 and 80% by weight dry capsules and between 20 and 40 % by weight of the conventional polyurethane or polyacrylic textile coating composition.
  • a particularly preferred coating formulation is prepared containing 70% of the dry capsule and 30% of a polyurethane or polyacrylic textile coating.
  • polymeric shell comprises a copolymer formed from a monomer blend which comprises,
  • the composition comprising the dry capsules of the invention and conventional textile coating, for instance as described above, is prepared and where required stirred for sufficient time to distribute the particles throughout the coating composition, for example 10 minutes, and then substantially immediately coated onto the fabric.
  • the fabric may be a woven fabric or alternatively can be a non-woven fabric.
  • the coating applied to the fabric would be at least 50g/m 2 and may be as much as 180g/m 2 .
  • a coat weight of 80 to 120 gm 2 especially around 100gm 2 is usually desired.
  • the coating can be applied using many different well known techniques used in industry.
  • the coating can be applied using a k-bar.
  • the coated fabric can then be dried in a suitable drying apparatus, for instance at a temperature of between 100°C and 200°C for up to 10 minutes to dry and cure the coating.
  • a suitable drying apparatus for instance at a temperature of between 100°C and 200°C for up to 10 minutes to dry and cure the coating.
  • the coated fabric may be calendared using in excess of 13.8 bar (200 psi) (e.g. 17.2 bar (250 psi)) pressure
  • capsules can be incorporated into a textile coating.
  • formulation coated on to fabric and then calendared using in excess of 13.8 bar (200 psi) (e.g. 17.2 bar (250 psi)) pressure then subjected to continuous heating and cooling (thermocycling) above and below the melting temperature of the wax, and for instance for octadecane this can be from 10°C to 60°C for 50 times.
  • the coated fabric can then be washed using a hydrocarbon solvent e.g. hexane and the enthalpy of the coated capsules is measured using Differential Scanning Calorimetry. This is compared to the enthalpy of the original coated capsules before calendaring and continuous heating and cooling has taken place.
  • fibres and fabrics formed from said fibres wherein the fibres comprise particles of the present invention composition each comprising core material within a polymeric shell, wherein the core material comprises a hydrophobic substance
  • a fibre containing particles comprising a core material within a polymeric shell, wherein the core material comprises a hydrophobic substance, in which the amount of the polymeric shell forms at least 8% of the total weight of the particles, wherein the polymeric shell comprises a copolymer formed from a monomer blend which comprises,
  • the fibres comprise said particles distributed within the matrix of the fibre.
  • the diameters of the particles should be less than half of the cross-sectional diameter of the fibre.
  • the particles will have a particle size diameter less than 30%, preferably less than 10% of the diameter of the fibre.
  • the fibres comprising the particles of the present invention can be made by incorporating the particles into the spinning dope.
  • the spinning dope can then be spun according to standard spinning techniques, for instance as described in EP-A-269393 .
  • the spinning dope is then passed through an orifice into a heated atmosphere where the extruded dope is cured to form a fibre, which is then collected.
  • the particles comprised in the composition of the present invention are suitable for incorporating into any fibres, for instance acrylics, polyesters, nylon, polypropylene.
  • the polymeric particles are sufficiently impermeable to the hydrophobic substance contained in the core so that during the formation of the fibre the high temperature conditions do not result in any significant loss of the hydrophobic substance.
  • the core material is able to retain most or all of the core material even when the polymeric particles are exposed to a spinning temperature in excess of 150°C. This has also been found to be the case even when the spinning temperature is much higher, for instance in excess of 200°C.
  • the particles retain at least 98% by weight, preferably 99%, of the hydrophobic substance when passed though the spinning process.
  • a particularly important application of the present invention relates to incorporation of particles in fibres, which particles contain a phase change substance as the core material.
  • the durability and impermeability of the polymeric shell towards the phase change material enables the particles to be incorporated into fibres without any significant loss of the phase change material.
  • the impregnated fibres containing phase change material can then be woven into textile products.
  • the textile products can include items of clothing and other fabrics.
  • An oil phase was prepared by mixing together 27g methacrylic acid, 24g butane diol diacrylate and 9g methyl methacrylate with 140g octadecane and 0.5g tertiary butyl perpivalate (thermal initiator).
  • the oil phase was homogenised into water containing 6g polyvinyl alcohol using a silverson mixer until a stable emulsion was formed.
  • the emulsion was then transferred into a reactor with a stirrer and thermometer. The content of the reactor was then heated to 60°C and maintained at this temperature for 2 hours after which the contents are heated to 80°C and maintained at this temperature for a further hour before cooling.
  • the resulting emulsion contained polymeric particles each comprising a polymeric shell encapsulating the octacdecane wax having a solids content of 45% and particle size of 1.5 microns.
  • the two phases were dispersed using a high-speed mixer. After 5 minutes of dispersing, a stable, oil in water emulsion with a particle size of approximately 2 ⁇ m was obtained.
  • the emulsion was degassed with nitrogen and heated to 75°C while stirring with an anchor stirrer. Polymerisation was allowed to take place over 1 hour after which 2.4 g of an 5% aqueous solution of ammonium persulphate was added and the contents held for a further 1 hour at 85°C.
  • the composition was then cooled and the resulting microcapsule dispersion had a solids content of 45.0% and an average particle size of 1 .63 ⁇ m and Brookfield viscosity (spindle 3, 20rpm) of 250cPs.
  • the TGA half height was measured at 376°C.
  • Example 2 was repeated using a monomer blend of 45/40/15 methacrylic acid/butane diol diacrylate/methyl methacrylate (MAA/BDDA/MMA) having various amounts of wall.
  • TGA Half height is determined in each case and is measured by thermo gravimetric analysis, by applying heat to the dry capsules at a rate of 20C/min and measuring the weight loss. The half height value is the temperature at which half the weight of the capsule is lost.
  • the ability for the capsules to retain the wax after subjecting to heat and pressure was determined by the following method.
  • the capsules are incorporated into a textile coating formulation and coated on to fabric.
  • the fabric is calendared using 250psi pressure then subjected to continuous heating and cooling (thermocycling) from 10 °C to 60 °C for 50 times.
  • the coated fabric is then washed using a hydrocarbon solvent and the enthalpy of the coated capsules is measured using Differential Scanning Calorimetry. This is compared to the enthalpy of the original coated capsules before calendaring and continuous heating and cooling has taken place.
  • the capsules should retain at least half of the wax
  • Table 1 Sample Number % Wall Half Height C Wax Loss % 2 2 226 3 4 284 4 6 319 70 5 8 350 46 6 10 408 28 7 12.5 388 8 15 385 9 20 380 0 10 30 377 0 11 40 369 3 12 50 370 0
  • Example 2 was repeated but varying the monomer blend to demonstrate the effect of different levels of multifunctional monomer.
  • the half height and wax loss results are shown in Table 2.
  • Example 2 was repeated but varying the monomer blend to demonstrate the effect of varying the levels of multifunctional monomer and other monomer in the absence of water-soluble monomer.
  • the half height results are shown in Table 3.
  • Example 2 was repeated but varying the monomer blend to demonstrate the effect of using different water-soluble monomers.
  • the half height and wax loss results are shown in Table 4.
  • Table 4 Sample number Wall Composition % Wall Half Height 38 40:45:15, BDDA:IA: MMA 12.5 347 39 55:45, BDDA: tBAEMA 12.5 359 40 40:45:15, BDDA: tBAEMA: MMA 12.5 347 41 80:20, BDDA: DMAEMAqMeCl 12.5 355 BDDA: butane diol diacrylate MMA: methyl methacrylate
  • the polymer contains not only a relatively high level of multifunctional monomer, but also a water-soluble monomer such as acrylic acid (AA), methacrylic acid (MAA), itaconic acid (IA), t-butylamino ethyl methacrylate (tBAEMA), and dimethylaminoethyl methacrylate, methyl chloride quaternary ammonium salt (DMAEMAqMeCl).
  • AA acrylic acid
  • MAA methacrylic acid
  • IA itaconic acid
  • tBAEMA t-butylamino ethyl methacrylate
  • DMAEMAqMeCl dimethylaminoethyl methacrylate, methyl chloride quaternary ammonium salt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Medicinal Preparation (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Paints Or Removers (AREA)

Claims (33)

  1. Zusammensetzung, umfassend Teilchen, die ein Kern-Material innerhalb einer Polymer-Schale umfassen, wobei das Kern-Material eine hydrophobe Substanz umfasst, wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  2. Zusammensetzung nach Anspruch 1, wobei die Polymer-Schale zwischen 10 und 50 % von dem Gesamt-Gewicht der Teilchen bildet.
  3. Zusammensetzung nach Anspruch 1 oder Anspruch 2, wobei Komponente A ein anionisches Monomer darstellt, vorzugsweise ausgewählt aus der Gruppe, bestehend aus Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, Vinylsulfonsäure, Allylsulfonsäure und 2-Acrylamido-2-methyl-propan-sulfonsäure in Form von der freien Säure oder in Wasser löslichen Salzen davon.
  4. Zusammensetzung nach Anspruch 1 oder Anspruch 2, wobei Komponente A ein kationisches Monomer darstellt, vorzugsweise ausgewählt aus der Gruppe, bestehend aus Dialkyl-amino-alkyl-acrylaten, Dialkyl-amino-alkyl-methacrylaten, Dialkyl-amino-alkyl-acrylamiden, Dialkyl-amino-alkyl-methacrylamiden und Diallyl-dialkyl-ammonium-halogeniden in Form von Säuresalzen oder quaternären Ammonium-Salzen.
  5. Zusammensetzung nach einem der Ansprüche 1 bis 4, wobei Komponente B ein vernetzendes Monomer darstellt, das mindestens zwei ethylenisch ungesättigte Gruppen trägt.
  6. Zusammensetzung nach Anspruch 5, wobei Komponente B ein Alkan-diol-diacrylat, vorzugsweise 1,4-Butan-diol-diacrylat, ist.
  7. Zusammensetzung nach einem der Ansprüche 1 bis 6, wobei Komponente C ausgewählt ist aus der Gruppe, bestehend aus C1-30-Alkyl-estern von ethylenisch ungesättigter Carbonsäure, Styrol, Vinyl-acetat, Acrylnitril, Vinylchlorid und Vinyliden-chlorid, vorzugsweise Methyl-methacrylat.
  8. Zusammensetzung nach einem der Ansprüche 1 bis 7, wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das 10 bis 75 Gew.-% von Komponente A, 10 bis 75 Gew.-% von Komponente B, und 10 bis 50 Gew.-% von Komponente C umfasst.
  9. Zusammensetzung nach einem der Ansprüche 1 bis 8, wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das 10 bis 75 Gew.-% von Methacrylsäure, 10 bis 75 Gew.-% von 1,4-Butan-diol-diacrylat, und 10 bis 50 Gew.-% von Methyl-methacrylat umfasst.
  10. Zusammensetzung nach einem der Ansprüche 1 bis 9, wobei der Kern mindestens 90 Gew.-% von der hydrophoben Substanz umfasst.
  11. Zusammensetzung nach einem der Ansprüche 1 bis 10, wobei die hydrophobe Substanz ein nicht-polymeres Material, vorzugsweise ein Kohlenwasserstoff, ist.
  12. Zusammensetzung nach einem der Ansprüche 1 bis 11, wobei die hydrophobe Substanz ein Öl oder Wachs ist, das einen Schmelzpunkt bei einer Temperatur zwischen -30°C und 150°C aufweist.
  13. Zusammensetzung nach einem der Ansprüche 1 bis 12, wobei das Kern-Material einen aktiven Bestandteil umfasst, ausgewählt aus der Gruppe, bestehend aus UV-Absorptionsmitteln, UV-Reflektoren, Flamm-Hemmungsmitteln, aktiven Farbstoff-Tracer-Materialien, Pigmenten, Farbstoffen, Färbemitteln, Kesselstein-Hemmern, Korrosions-Hemmern, Antioxidantien, Pour-Point-Erniedrigern, Wachs-Abscheidungs-Hemmern, Dispersantien, Bioziden, Enzymen, Waschmittel-Buildern, Duftstoffen, Phasen Änderungs-Materialien und Siliconölen.
  14. Verfahren zur Herstellung einer Zusammensetzung, umfassend Teilchen, die ein Kern-Material innerhalb einer Polymer-Schale umfassen, wobei das Kern-Material eine hydrophobe Substanz umfasst, umfassend die Schritte
    1) Bilden einer Lösung von Monomer in einer hydrophoben Flüssigkeit,
    2) Homogenisieren der Monomer-Lösung in einer wässrigen Phase zur Bildung von einer Emulsion,
    3) Unterziehen der Emulsion Polymerisations-Bedingungen, und
    4) Bilden einer Dispersion von Polymer-Teilchen in der wässrigen Phase,
    wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  15. Verfahren nach Anspruch 14, das beliebige der in einem der Ansprüche 1 bis 13 definierten Merkmale einschließt.
  16. Verfahren nach einem der Ansprüche 14 bis 15, wobei das Monomer freier Radikal-Polymerisation unterzogen wird.
  17. Verfahren nach einem der Ansprüche 14 bis 16, wobei ein Wärme-Starter mit dem Monomer kombiniert wird und die Emulsion auf eine Temperatur von mindestens 50°C für einen ausreichenden Zeitraum erhitzt wird, um Polymerisation zu bewirken.
  18. Verfahren nach Anspruch 17, wobei die Emulsion bei einer Temperatur von zwischen 50 und 80°C für einen Zeitraum von zwischen 90 und 150 Minuten gehalten wird und dann einer Temperatur von mindestens 80°C für einen Zeitraum von mindestens 30 Minuten unterzogen wird.
  19. Gegenstand, umfassend eine teilchenförmige Zusammensetzung, umfassend eine Polymer-Schale, wobei das Kern-Material eine hydrophobe Substanz umfasst,
    wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  20. Gegenstand nach Anspruch 19, der beliebige der in einem der Ansprüche 1 bis 13 definierten Merkmale einschließt.
  21. Gegenstand nach Anspruch 19 oder Anspruch 20, der ein Textil-Produkt oder ein Papier oder Karton-VerpackungsMaterial oder einen geformten Mineral-Gegenstand einschließt.
  22. Beschichtungs-Zusammensetzung, umfassend eine teilchenförmige Zusammensetzung, die ein Kern-Material innerhalb einer Polymer-Schale umfasst, wobei das Kern-Material eine hydrophobe Substanz umfasst,
    wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  23. Beschichtungs-Zusammensetzung nach Anspruch 22, die beliebige der in einem der Ansprüche 1 bis 13 definierten Merkmale einschließt.
  24. Zusammensetzung nach Anspruch 22 oder Anspruch 23, die eine textile Beschichtungs-Zusammensetzung darstellt.
  25. Zusammensetzung nach Anspruch 24, die eine textile Polyurethan- oder Polyacryl-Beschichtungs-Zusammensetzung darstellt.
  26. Verfahren zur Beschichtung eines Textilgewebes, umfassend die Schritte von
    i) Bereitstellen einer textilen Beschichtungs-Zusammensetzung,
    ii) Auftragen der Beschichtungs-Zusammensetzung auf eine Oberfläche von dem Textilgewebes, und
    iii) Trocknen der Beschichtung, um ein beschichtetes Textilgewebe bereitzustellen,
    wobei die Beschichtungs-Zusammensetzung eine teilchenförmige Zusammensetzung umfasst, die ein Kern-Material innerhalb einer Polymer-Schale umfasst, wobei das Kern-Material eine hydrophobe Substanz umfasst,
    wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  27. Verfahren nach Anspruch 26, das beliebige der in einem der Ansprüche 1 bis 13 definierten Merkmale einschließt.
  28. Beschichtetes Textilgewebe, umfassend ein Textilgewebe mit einer Beschichtung, die auf mindestens eine von den Oberflächen aufgetragen wurde, wobei die Beschichtung eine teilchenförmige Zusammensetzung umfasst, die ein Kern-Material innerhalb einer Polymer-Schale umfasst, wobei das Kern-Material eine hydrophobe Substanz umfasst,
    wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  29. Beschichtetes Textilgewebe nach Anspruch 28, das beliebige der in einem der Ansprüche 1 bis 13 definierten Merkmale einschließt.
  30. Faser, enthaltend Teilchen, umfassend ein Kern-Material innerhalb einer Polymer-Schale, wobei das Kern-Material eine hydrophobe Substanz umfasst,
    wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  31. Faser nach Anspruch 30, die beliebige der in einem der Ansprüche 1 bis 13 definierten Merkmale einschließt.
  32. Verfahren zum Bilden einer Faser, enthaltend Teilchen, umfassend ein Kern-Material innerhalb einer Polymer-Schale, wobei das Kern-Material eine hydrophobe Substanz umfasst, umfassend die Schritte von
    1) Vereinigen der Teilchen mit einem flüssigen Spinnfluid bzw. einer flüssigen Spinning-Dope,
    2) Extrudieren des Spinnfluids bzw. der Spinning-Dope,
    3) Durchleiten von extrudierter Dope durch eine Atmosphäre bei einer Temperatur von mindestens 150°C und
    4) Sammeln von gebildeten Fasern,
    wobei die Menge von der Polymer-Schale mindestens 8 % von dem Gesamt-Gewicht der Teilchen bildet,
    wobei die Polymer-Schale ein aus einem Monomer-Blend gebildetes Copolymer umfasst, das umfasst
    A) 5 bis 90 Gew.-% von einem ethylenisch ungesättigten in Wasser löslichen Monomer,
    B) 5 bis 90 Gew.-% von einem multifunktionellen Monomer, und
    C) 0 bis 55 Gew.-% anderes Monomer,
    und wobei die Menge von der Polymer-Schale und die Anteile von A, B und C derart sind, dass die Teilchen eine halbe Höhe von mindestens 350°C zeigen,
    wobei der Wert der halben Höhe der Kapsel durch Thermogravimetrische Analyse durch Anwenden von Wärme auf die trockenen Kapseln bei einer Rate von 20°C/min und Messen des Gewichts-Verlustes gemessen wird und der Wert der halben Höhe die Temperatur ist, bei der die Hälfte des Gewichts der Kapsel verschwunden ist.
  33. Verfahren nach Anspruch 32, das beliebige der in einem der Ansprüche 1 bis 13 definierten Merkmale einschließt.
EP20050735379 2004-04-29 2005-04-18 Teilchenförmige zusammensetzungen und ihre herstellung Not-in-force EP1740302B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0409570A GB0409570D0 (en) 2004-04-29 2004-04-29 Particulate compositions and their manufacture
PCT/EP2005/004116 WO2005105291A1 (en) 2004-04-29 2005-04-18 Particulate compositions and their manufacture

Publications (2)

Publication Number Publication Date
EP1740302A1 EP1740302A1 (de) 2007-01-10
EP1740302B1 true EP1740302B1 (de) 2010-06-23

Family

ID=32408244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050735379 Not-in-force EP1740302B1 (de) 2004-04-29 2005-04-18 Teilchenförmige zusammensetzungen und ihre herstellung

Country Status (12)

Country Link
US (1) US7932191B2 (de)
EP (1) EP1740302B1 (de)
JP (1) JP5026955B2 (de)
KR (1) KR101142823B1 (de)
CN (1) CN1946475B (de)
AT (1) ATE471758T1 (de)
DE (1) DE602005021963D1 (de)
DK (1) DK1740302T3 (de)
ES (1) ES2348029T3 (de)
GB (1) GB0409570D0 (de)
TW (1) TW200609035A (de)
WO (1) WO2005105291A1 (de)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2656717A1 (en) 2006-07-06 2008-01-10 Ciba Holding Inc. Encapsulated dispersions comprising electrophoretically mobile organic colorants
GB0622894D0 (en) * 2006-11-17 2006-12-27 Ciba Sc Holding Ag Microcapsules, their use and processes for their manufacture
CA2669239A1 (en) * 2006-11-17 2008-05-22 Ciba Holding Inc. Microcapsules, their use and processes for their manufacture
GB0623110D0 (en) * 2006-11-21 2006-12-27 Ciba Sc Holding Ag Microcapules, their use and processes for their manufacture
GB0623748D0 (en) * 2006-11-28 2007-01-10 Ciba Sc Holding Ag Microcapsules, their use and processes for their manufacture
ES2573254T3 (es) 2006-12-13 2016-06-06 Basf Se Microcápsulas
WO2008151941A1 (en) * 2007-06-12 2008-12-18 Basf Se Microcapsules, their use and processes for their manufacture
EP2198340B1 (de) 2007-09-07 2019-03-13 Basf Se Verkapselte dispersionen mit elektrophoretisch mobilen organischen farbstoffen
JP5693238B2 (ja) * 2008-01-15 2015-04-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 改良された放出特性を有する芳香物質含有マイクロカプセル
US20090209679A1 (en) * 2008-02-14 2009-08-20 Conocophillips Company Core-shell flow improver
CN101970096B (zh) * 2008-03-11 2014-10-01 巴斯夫欧洲公司 辐射引发释放或热释放的微胶囊
WO2011075541A1 (en) 2009-12-15 2011-06-23 Pcm Innovations Llc Phase change material fire resistant blanket and method of making
US20110108758A1 (en) * 2009-01-20 2011-05-12 Driscoll Joseph A Method for Making Phase Change Aggregates From a Microencapsulated Phase Change Material Liquid Emulsion
ES2612582T3 (es) 2009-04-17 2017-05-17 Basf Se Sistema portador para sustancias odorizantes
GB0911350D0 (en) * 2009-07-01 2009-08-12 Basf Se Particulate composition
GB0911562D0 (en) 2009-07-03 2009-08-12 Basf Se Foam composition
WO2011133487A1 (en) * 2010-04-19 2011-10-27 Benjamin Moore &Co. Faints with improved water staining and color rub-off qualities
US11717471B2 (en) * 2010-12-01 2023-08-08 Isp Investments Llc Hydrogel microcapsules
EP2620211A3 (de) 2012-01-24 2015-08-19 Takasago International Corporation Neue Mikrokapseln
US9422505B2 (en) 2012-08-28 2016-08-23 Givaudan S.A. Carrier system for fragrances
JP6105067B2 (ja) * 2012-08-28 2017-03-29 ジボダン エスエイ 芳香剤用担体系
KR101492433B1 (ko) 2012-11-12 2015-02-10 국립대학법인 울산과학기술대학교 산학협력단 다공성의 폴리(스티렌-코-메타크릴산) 구형 입자의 제조방법 및 이로부터 제조된 구형 입자, 그래핀 및 수퍼캐퍼시터
BR112016002148A2 (pt) * 2013-07-29 2017-08-01 Takasago Perfumery Co Ltd microcápsulas
US20170072604A1 (en) * 2014-03-10 2017-03-16 Empire Technology Development Llc Composite foam and methods of preparation and use
EP2963103A1 (de) * 2014-07-04 2016-01-06 Henkel AG & Co. KGaA pH-sensitive Nanokapseln
US10485739B2 (en) * 2014-10-16 2019-11-26 Encapsys Llc High strength microcapsules
US9714397B2 (en) 2014-10-16 2017-07-25 Encapsys Llc Controlled release microcapsules
US9714396B2 (en) 2014-10-16 2017-07-25 Encapsys Llc Controlled release dual walled microcapsules
CA2966181C (en) 2014-10-30 2022-09-13 Ecogensus, Llc Process for forming a solid fuel composition from mixed solid waste
CN105176509A (zh) * 2015-08-04 2015-12-23 新疆科力新技术发展有限公司 油田用针对钡锶垢的中性防垢剂及其制备方法
CA2992554A1 (en) 2015-09-02 2017-03-09 Halliburton Energy Services, Inc. Wrinkled capsules for treatment of subterranean formations
WO2017040759A1 (en) 2015-09-04 2017-03-09 Encapsys, Llc Aqueous microcapsule slurry
AU2017207981B2 (en) * 2016-01-14 2020-10-29 Isp Investments Llc Friable shell microcapsules, process for preparing the same and method of use thereof
EP3406690A1 (de) 2016-01-22 2018-11-28 Natura Cosméticos S.A. Verfahren zur herstellung eines nanoverkapselten temperaturregelungsmittels (ntra) durch grenzflächenpolymerisation
US20200108367A1 (en) 2016-04-12 2020-04-09 Croda International Plc Microcapsules
CN106397675B (zh) * 2016-06-23 2019-02-01 华南师范大学 一种核壳型纳米香精胶囊的制备方法
EP3662974A1 (de) 2018-12-07 2020-06-10 The Procter & Gamble Company Zusammensetzungen mit verkapselungen
CN112770713B (zh) 2019-01-11 2024-05-28 恩盖普有限公司 将壳聚糖并入微胶囊壁中
US20210106909A1 (en) 2019-06-27 2021-04-15 Benchmark Games International, Llc Arcade game with floor controller
CN116472332A (zh) 2020-11-19 2023-07-21 宝洁公司 包含可生物降解递送颗粒的消费产品
FR3122180B1 (fr) * 2021-04-21 2024-06-28 Daito Kasei Europe Sas Polymère réticulé obtenu par polymérisation d'au moins un monomère éthylénique dicarboxylique particulier en présence d'un agent de réticulation particulier de type diester avec deux insaturations.

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912792A (en) 1972-08-04 1975-10-14 M & T Chemicals Inc Flame retardant compositions
GB1507739A (en) 1975-11-26 1978-04-19 Wiggins Teape Ltd Capsules
GB2073132B (en) 1980-04-08 1983-12-14 Wiggins Teape Group Ltd Production of microcapsules
DE3784027T3 (de) 1986-11-20 2000-11-23 Allied Colloids Ltd., Bradford Absorbierende Produkte und deren Herstellung.
ES2017536T5 (es) 1987-12-21 1995-08-01 Koehler August Papierfab Procedimiento para la fabricacion de microcapsulas, microcapsulas obtenidas y su utilizacion.
US5081166A (en) * 1988-04-21 1992-01-14 S. C. Johnson & Son, Inc. Process for producing a stabilized latex emulsion adhesive
US5320835A (en) 1989-10-25 1994-06-14 Avon Products, Inc. Cosmetic formulation having a palette of color shades renewable by mechanical action
EP0490819B1 (de) 1990-12-13 1995-09-13 Ciba-Geigy Ag Wässrige Dispersion schwerlöslicher UV-Absorber
JP3659979B2 (ja) * 1992-04-15 2005-06-15 松本油脂製薬株式会社 熱膨張性マイクロカプセルとその製法
EP0663206B1 (de) 1993-12-24 1999-07-14 Kao Corporation Naphthalenmethylenmalonsäurediester und UV-Absorber und diese enthaltende kosmetische Zusammensetzungen
US5728760A (en) 1995-04-11 1998-03-17 Great Lakes Chemical Corporation Use of ring-brominated benzoate compounds as flame retardants and/or plasticizers
US5626856A (en) 1995-06-30 1997-05-06 Safe & Dry Company, Inc. Cosmetic delivery vehicles and related compositions
EP0755946A3 (de) * 1995-07-24 1997-10-01 Basf Corp Verfahren zur Herstellung von hydrophobierten Emulsionspolymeren, die so hergestellten Polymere und wässrige Anstrichzusammensetzungen aus diesen Polymeren
ES2350721T3 (es) 1996-12-23 2011-01-26 Givaudan Nederland Services B.V. Composiciones que contienen perfume.
AU6781198A (en) 1997-05-09 1998-11-27 Avon Products Inc. Cosmetic sticks containing microcapsules
DE19749731A1 (de) 1997-11-11 1999-05-12 Basf Ag Verwendung von Mikrokapseln als Latentwärmespeicher
JP4172871B2 (ja) * 1998-02-24 2008-10-29 松本油脂製薬株式会社 熱膨張性マイクロカプセルとその製造方法
GB9907878D0 (en) 1999-04-08 1999-06-02 Ciba Geigy Ag Process of shading
GB0001752D0 (en) 2000-01-27 2000-03-15 Ciba Spec Chem Water Treat Ltd Particulate compositions and their manufacture
JP2002069438A (ja) * 2000-06-15 2002-03-08 Sekisui Chem Co Ltd 蓄熱用マイクロカプセル

Also Published As

Publication number Publication date
DE602005021963D1 (de) 2010-08-05
JP5026955B2 (ja) 2012-09-19
EP1740302A1 (de) 2007-01-10
KR20070012682A (ko) 2007-01-26
WO2005105291A1 (en) 2005-11-10
CN1946475B (zh) 2013-04-10
DK1740302T3 (da) 2010-09-27
TW200609035A (en) 2006-03-16
ES2348029T3 (es) 2010-11-26
US7932191B2 (en) 2011-04-26
JP2007534855A (ja) 2007-11-29
GB0409570D0 (en) 2004-06-02
KR101142823B1 (ko) 2012-05-08
ATE471758T1 (de) 2010-07-15
US20070224899A1 (en) 2007-09-27
CN1946475A (zh) 2007-04-11

Similar Documents

Publication Publication Date Title
EP1740302B1 (de) Teilchenförmige zusammensetzungen und ihre herstellung
US8784984B2 (en) Microcapsules, their use and processes for their manufacture
US6716526B2 (en) Particulate compositions and their manufacture
EP2097165B1 (de) Mikrokapseln, ihre verwendung und herstellungsverfahren dafür
US8679629B2 (en) Microcapsules, their use and processes for their manufacture
CN101541416B (zh) 微胶囊、其用途及其制造方法
WO2007141123A2 (en) Polymeric particles and their preparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071030

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005021963

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005021963

Country of ref document: DE

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20120423

Year of fee payment: 8

Ref country code: CH

Payment date: 20120430

Year of fee payment: 8

Ref country code: NL

Payment date: 20120501

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120425

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20130430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 471758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190621

Year of fee payment: 15

Ref country code: ES

Payment date: 20190524

Year of fee payment: 15

Ref country code: IT

Payment date: 20190419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190426

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190429

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005021963

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419