EP1732927A2 - 6-(2-fluorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel - Google Patents

6-(2-fluorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel

Info

Publication number
EP1732927A2
EP1732927A2 EP05716387A EP05716387A EP1732927A2 EP 1732927 A2 EP1732927 A2 EP 1732927A2 EP 05716387 A EP05716387 A EP 05716387A EP 05716387 A EP05716387 A EP 05716387A EP 1732927 A2 EP1732927 A2 EP 1732927A2
Authority
EP
European Patent Office
Prior art keywords
formula
methyl
compounds
alkyl
triazolo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05716387A
Other languages
German (de)
English (en)
French (fr)
Inventor
Carsten Blettner
Markus Gewehr
Wassilios Grammenos
Thomas Grote
Udo HÜNGER
Bernd Müller
Matthias NIEDENBRÜCK
Joachim Rheinheimer
Peter Schäfer
Frank Schieweck
Anja Schwögler
Oliver Wagner
Michael Rack
Barbara Nave
Maria Scherer
Siegfried Strathmann
Ulrich Schöfl
Reinhard Stierl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1732927A2 publication Critical patent/EP1732927A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to 6- (2-fluorophenyl) triazolopyrimidines of the formula I.
  • RC 4 -C 8 -AIRyl C -C 8 -halogenoalkyl, C 3 -C 6 -cycloalkyl, substituted by at least one group R a , C 3 -C 8 -halo-cycloalkyl, C 3 -C 6 -cycloalkyl-C C 6 - alkyl, C 5 -C 8 alkenyl, C 2 -C 8 - .
  • Haloalkenyl C 3 -C 6 cycloalkenyl, C 3 -C 6 halocycloalkenyl, C 2 -C 8 alkynyl, C 2 -C 8 haloalkynyl or phenyl, naphthyl, or a five- or six-membered saturated, partially unsaturated or aromatic Heterocycle containing one to four heteroatoms from the group O, N or S,
  • R 2 is hydrogen, CC 3 alkyl or one of the groups mentioned for R 1 ,
  • R 1 and R 2 also together with the nitrogen atom to which they are attached form a five- to eight-membered saturated or partially unsaturated heterocyclyl or five- or six-membered heteroaryl which is bonded via N and one to three further heteroatoms from the group O, N and S as ring member and / or one or more substituents from the group halogen, C ⁇ -C 6 -alkyl, C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 1 -C 6 -alkoxy, d-Ce-haloalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -haloalkenyloxy, (exo) -CC 6 -alkylene and oxy-C 3 -C -alkyleneoxy can carry, where Piperidin-1-yl, which is unsubstituted or substituted by one or more methyl groups, remains excluded;
  • R 1 and / or R 2 can carry one to four identical or different groups R a :
  • R a halogen, cyano, nitro, hydroxy, Ci-Ce-alkyl, CC 6 -haloalkyl, dC 6 -AI- alkylcarbonyl, C 3 -C 6 -cycloalkyl, C ⁇ -C 6 -alkoxy, d-Ce-haloalkoxy, C r C 6 - alkoxycarbonyl, CC 6 -alkylthio, -C-C 6 -alkylamino, di-C C 6 -alkylamino, C 2 -C 8 alkenyl, C 2 -C 8 haloalkenyl, C 2 -C 6 alkenyloxy, C 2 -C 8 alkynyl, C 2 -C 8 haloalkynyl, C 3 -C 6 alkynyloxy, oxy-C C 3 alkyleneoxy, C 3 -C 8 cycloalkenyl, phenyl, naphthyl,
  • L 2 is hydrogen, if L 1 is fluorine, additionally fluorine;
  • the invention relates to a process for the preparation of these compounds, compositions containing them and their use for controlling phytopathogenic harmful fungi.
  • 5-alkyl-6-halophenyl-triazolopyrimidines are generally known from US Pat. No. 5,994,360.
  • Triazolopyrimidines with optically active amino substituents in the 7-position are generally proposed in WO 02/38565.
  • the present invention is based on the object of providing compounds with improved activity and / or broadened activity spectrum.
  • the compounds according to the invention differ from those described in the abovementioned publication by the specific combination of the substitution in the 5-position and the substitution of the 6-phenyl group with 7-amino groups of the triazolopyrimidine skeleton.
  • the compounds of the formula I have an increased activity or a broader spectrum of activity against harmful fungi than the known compounds.
  • the compounds according to the invention can be obtained in various ways.
  • Compounds of the formula I can advantageously be obtained by the following synthetic route:
  • the 5-alkyl-7-hydroxy-6-phenyltriazolopyrimidines IV are obtained.
  • X represents dC 4 alkyl.
  • the starting compounds III are advantageously prepared under the conditions described in EP-A 1002788.
  • the 5-alkyl-7-hydroxy-6-phenyltriazolopyrimidines IV are reacted with halogenating agents [HAL] under the conditions described above to give the 7-halotriazolopyrimidines of the formula V, in which Y represents a halogen atom.
  • Chlorination or bromination agents such as phosphorus oxybromide, phosphorus oxychloride, thionyl chloride, thionyl bromide or sulfuryl chloride are preferably used.
  • the reaction can be carried out in bulk or in the presence of a solvent. Usual reaction temperatures are from 0 to 150 ° C or preferably from 80 to 125 ° C.
  • reaction of V with amines VI is advantageously carried out at 0 ° C. to 70 ° C., preferably 10 ° C. to 35 ° C., preferably in the presence of an inert solvent, such as ether, e.g. B. dioxane, diethyl ether or in particular tetrahydrofuran, halogenated hydrocarbons such as dichloromethane and aromatic hydrocarbons such as toluene [cf. WO-A 98/46608].
  • ether e.g. B. dioxane, diethyl ether or in particular tetrahydrofuran
  • halogenated hydrocarbons such as dichloromethane
  • aromatic hydrocarbons such as toluene [cf. WO-A 98/46608].
  • a base such as tertiary amines, for example triethylamine or inorganic amines, such as potassium carbonate, is preferred; Excess amine of the formula VI can also serve as the base.
  • the subsequent saponification of the ester IX takes place under generally customary conditions, depending on the various structural elements, the alkaline or acid saponification of the compounds IX can be advantageous.
  • the decarboxylation to I can already take place in whole or in part.
  • the decarboxylation is usually carried out at from 20 ° C. to 180 ° C., preferably from 50 ° C. to 120 ° C., in an inert solvent, optionally in the presence of an acid, which can also serve as a solvent.
  • Suitable acids are hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, p-toluenesulfonic acid.
  • Suitable solvents are water, aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • the reaction mixtures are usually worked up, for example by mixing with water, separating the phases and, if appropriate, purifying the crude products chromatographically.
  • the intermediate and end products are obtained in the form of colorless or slightly brownish, viscous oils, which are freed or purified from volatile components under reduced pressure and at a moderately elevated temperature. If the intermediate and end products are obtained as solids, they can also be purified by recrystallization or digesting. If individual compounds I are not accessible in the ways described above, they can be prepared by derivatizing other compounds I.
  • isomer mixtures occur during the synthesis, however, a separation is generally not absolutely necessary, since the individual isomers can partially convert into one another during preparation for use or during use (e.g. under the action of light, acid or base). Corresponding conversions can also take place after use, for example in the treatment of plants in the treated plant or in the harmful fungus to be controlled.
  • Halogen fluorine, chlorine, bromine and iodine
  • Alkyl saturated, straight-chain or branched hydrocarbon radicals having 1 to 4, 6 or 8 carbon atoms, for example dC 6 -alkyl such as methyl, ethyl, propyl, 1-methyl, butyl, 1-methyl-propyl, 2-methyl-propyl, 1.1 -Dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1 -ethyl propyl, hexyl, 1,1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1, 2-dimethylIbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-eth
  • Haloalkyl straight-chain or branched alkyl groups with 1 to 2, 4, 6 or 8 carbon atoms (as mentioned above), it being possible for part or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above: in particular C 1 -C 4 -haloalkyl such as chloromethyl, Bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2- Trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-t
  • Alkenyl unsaturated, straight-chain or branched hydrocarbon radicals with 2 to 4, 6, 8 or 10 carbon atoms and one or two double bonds in any position, for example C 2 -C 6 alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl , 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2nd -Pentenyl, 3-pentenyl, 4-pentenyl, 1-Me- thyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl- 3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1
  • Haloalkenyl unsaturated, straight-chain or branched hydrocarbon radicals with
  • Alkynyl straight-chain or branched hydrocarbon groups with 2 to 4, 6 or 8 carbon atoms and one or two triple bonds in any position, for example C 2 -C 6 -alkynyl such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl , 3-butynyl,
  • Cycloalkyl mono- or bicyclic, saturated hydrocarbon groups with 3 to 6 or 8 carbon ring members, for example C 3 -C 8 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl;
  • 5- or 6-membered heterocyclyl containing one to three nitrogen atoms and / or one oxygen or sulfur atom or one or two oxygen and / or sulfur atoms, for example 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2 -Pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 4-oxazolidinyl , 5-oxazolidinyl, 2-thiazolidinyl, 4-thi
  • 5-membered heteroaryl containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom
  • 5-ring heteroaryl groups which in addition to carbon atoms can contain one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members, eg 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4- Oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl, 1, 3,4-triazol-2-yl;
  • 6-membered heteroaryl containing one to three or one to four nitrogen atoms 6-ring heteroaryl groups which, in addition to carbon atoms, can contain one to three or one to four nitrogen atoms as ring members, e.g. 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl and 2-pyrazinyl;
  • Oxyalkyleneoxy divalent unbranched chains of 1 to 3 CH 2 groups, both valences being bound to the skeleton via an oxygen atom, for example OCH 2 O, OCH 2 CH 2 O and OCH 2 CH 2 CH 2 O;
  • the scope of the present invention includes the (R) and (S) isomers and the racemates of compounds of the formula I which have chiral centers.
  • Z 1 is hydrogen, fluorine or dC 6 fluoroalkyl
  • Z 2 , Z 3 is hydrogen or fluorine, or Z 1 and Z 2 together form a double bond
  • q is 1, 2 or 3; and R 3 is hydrogen or methyl.
  • R 1 is C 4 -C 8 alkyl or C 4 -C 8 haloalkyl.
  • compounds I are preferred in which R 1 3 -C 6 cycloalkyl or C 3 -C 8 -halocycloalkyl or C 6 -C substituted by at least one group R a C - C cycloalkyl-C -alkyl.
  • R 1 is C 3 -C 6 cycloalkyl, which is substituted by CC alkyl, in particular methyl, are particularly preferred.
  • R 1 and / or R 2 contain haloalkyl or haloalkenyl groups with a chiral center, the (S) isomers are preferred for these groups.
  • the (R) -configured isomers are preferred.
  • a preferred embodiment of the invention relates to compounds of the formula 1.1:
  • GC 2 -C 6 alkyl especially ethyl, n- and i-propyl, n-, sec-, tert-butyl, and dC - alkoxymethyl, especially ethoxymethyl, or C 3 -C 6 cycloalkyl, especially cyclopropyl, cyclopentyl or cyclohexyl; and R 2 is hydrogen or methyl; mean.
  • Another preferred embodiment of the invention relates to compounds of the formula I.2.
  • Y is C 2 -C 4 alkyl, in particular ethyl and propyl.
  • a further preferred embodiment of the invention relates to compounds in which R 1 and R 2 together with the nitrogen atom to which they are attached form a five- or six-membered heterocyclyl or heteroaryl which is bonded via N and a further hetero atom from the group O , N and S contain as a ring member and / or one or more substituents from the group halogen, dC 6 -alkyl, d-Ce-haloalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, dC 6 -alkoxy , d-Ce-haloalkoxy, C 3 -C 6 alkenyloxy, C 3 -C 6 haloalkenyloxy, CC 6 alkylene and oxy-C C 3 - alkyleneoxy can wear.
  • These compounds correspond in particular to formula I.3,
  • D together with the nitrogen atom forms a five- or six-membered heterocyclyl or heteroaryl which is bonded via N and contains a further heteroatom from the group O, N and S as a ring member and / or one or more substituents from the group halogen, dC 6 - Alkyl, CC 6 -haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, dC 6 alkoxy, CC 6 haloalkoxy, C 3 -C 6 alkenyloxy, C 3 -C 6 haloalkenyloxy , (exo) -dC 6 -alkylene and oxy-C r C 3 - alkyleneoxy can carry; mean.
  • Compounds of the formula I are particularly preferred, in particular those of the formula I.3 in which the groups L and L 2 have the following meanings: L 1 and L 2 fluorine,
  • R 1 and R 2 together with the nitrogen atom to which they are attached form a morpholinyl or thiomorpholinyl ring, in particular a ring which may be halogenated by one to three groups, dC 4 -alkyl or dC 4 haloalkyl is substituted.
  • the compounds in which R 1 and R 2 together with the nitrogen atom to which they are attached form a morpholinyl or a pyrrolidinyl ring, in particular a pyrrolidinyl ring, are particularly preferred.
  • R 1 and R 2 together with the nitrogen atom to which they are attached form a pyrazole ring which may be halogen, CC 4 alkyl or dC through one or two groups - Haloalkyl, in particular substituted by 3,5-dimethyl or 3,5-di (trifluoromethyl).
  • R 2 is hydrogen or methyl; or
  • R 1 and R 2 together mean - (CH 2 ) 2 CH (CF 3 ) (CH 2 ) 2- or - (CH 2 ) 2 O (CH 2 ) 2 -.
  • the compounds I are suitable as fungicides. They are characterized by excellent activity against a broad spectrum of phytopathogenic fungi, in particular from the class of the Ascomycetes, Deuteromycetes, Oomycetes and Basidiomycetes. Some of them are systemically effective and can be used in plant protection as foliar, stain and soil fungicides.
  • the compounds I are also suitable for combating harmful fungi such as Pacilomyces variot in the protection of materials (for example wood, paper, dispersions for painting, fibers or fabrics) and in the protection of stored products.
  • the compounds I are used by treating the fungi or the plants, seeds, materials or the soil to be protected against fungal attack with a fungicidally active amount of the active compounds.
  • the application can take place both before and after the infection of the materials, plants or seeds by the fungi.
  • the fungicidal compositions generally contain between 0.1 and 95, preferably between 0.5 and 90% by weight of active ingredient.
  • the application rates in crop protection are between 0.01 and 2.0 kg of active ingredient per ha.
  • amounts of active compound of 1 to 1000 g / 100 kg, preferably 5 to 100 g, are generally required per 100 kg of seed.
  • the amount of active ingredient applied depends on the type of application and the desired effect. Usual application rates in material protection are, for example, 0.001 g to 2 kg, preferably 0.005 g to 1 kg of active ingredient per cubic meter of treated material.
  • the compounds I can be converted into the usual formulations, e.g. Solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the form of application depends on the respective purpose; in any case, it should ensure a fine and uniform distribution of the compound according to the invention.
  • the formulations are prepared in a known manner, for example by stretching the active ingredient with solvents and / or carriers, if desired using emulsifiers and dispersants.
  • solvents / auxiliaries water, aromatic solvents (for example Solvesso products, xylene), paraffins (for example petroleum fractions), alcohols (for example methanol, butanol, pentanol, benzyl alcohol), ketones (for example cyclohexanone, gamma -Butryolactone), pyrrolidones (NMP, NOP), acetates (glycol diacetate), glycols, dimethyl fatty acid amides, fatty acids and fatty acid esters.
  • aromatic solvents for example Solvesso products, xylene
  • paraffins for example petroleum fractions
  • alcohols for example methanol, butanol, pentanol, benzyl alcohol
  • ketones for example cyclohexanone, gamma -But
  • solvent mixtures can also be used, - Carriers such as natural stone powder (eg kaolins, clays, talc, chalk) and synthetic stone powder (eg highly disperse silica, silicates); Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • natural stone powder eg kaolins, clays, talc, chalk
  • synthetic stone powder eg highly disperse silica, silicates
  • Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • mineral oil fractions from medium to high boiling points such as kerosene or diesel oil, furthermore coal tar oils as well as oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, strongly polar solvents, e.g. Dimethyl sulfoxide, N-methylpyrrolidone or water into consideration.
  • mineral oil fractions from medium to high boiling points such as kerosene or diesel oil
  • coal tar oils as well as oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coating, impregnation and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are e.g. Mineral earths, such as silica gels, silicates, talc, kaolin, attack clay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers, e.g. Ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products, such as cereal flour, tree bark, wood and nutshell flour, cellulose powder and other solid carriers.
  • Mineral earths such as silica gels, silicates, talc, kaolin, attack clay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics
  • the formulations generally contain between 0.01 and 95% by weight, preferably between 0.1 and 90% by weight, of the active ingredient.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum). Examples of formulations are: 1. Products for dilution in water
  • a compound according to the invention 10 parts by weight of a compound according to the invention are dissolved in water or a water-soluble solvent. Alternatively, wetting agents or other aids are added. The active ingredient dissolves when diluted in water.
  • a compound according to the invention 20 parts by weight of a compound according to the invention are dissolved in cyclohexanone with the addition of a dispersant e.g. Dissolved polyvinyl pyrrolidone. When diluted in water, a dispersion results.
  • a dispersant e.g. Dissolved polyvinyl pyrrolidone.
  • a compound according to the invention 40 parts by weight of a compound according to the invention are dissolved in xylene with the addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (5% each).
  • This mixture is introduced into water using an emulsifying machine (Ultraturax) and brought to a homogeneous emulsion. Dilution in water results in an emulsion.
  • a compound according to the invention 20 parts by weight of a compound according to the invention are comminuted in a stirred ball mill to form a fine active ingredient suspension with the addition of dispersing and wetting agents and water or an organic solvent. Dilution in water results in a stable suspension of the active ingredient.
  • Water-dispersible and water-soluble granules 50 parts by weight of a compound according to the invention are finely ground with the addition of dispersants and wetting agents and are prepared as water-dispersible or water-soluble granules by means of technical equipment (e.g. extrusion, spray tower, fluidized bed). Dilution in water results in a stable dispersion or solution of the active ingredient.
  • Water-dispersible and water-soluble powders 75 parts by weight of a compound according to the invention are ground in a rotor-strator mill with the addition of dispersing and wetting agents and silica gel. at dilution in water results in a stable dispersion or solution of the active ingredient.
  • a compound according to the invention 0.5 part by weight is ground finely and combined with 95.5% carriers.
  • Common processes are extrusion, spray drying or fluidized bed. This gives granules for direct application.
  • the active ingredients as such in the form of their formulations or the use forms prepared therefrom, e.g. in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, scattering agents, granules by spraying, atomizing, dusting, scattering or pouring.
  • the application forms depend entirely on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (wettable powders, oil dispersions) by adding water.
  • emulsions, pastes or oil dispersions the substances as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • concentrates composed of an active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.
  • the active ingredient concentrations in the ready-to-use preparations can be varied over a wide range. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
  • the active ingredients can also be used with great success in the ultra-low-volume process (ULV), it being possible to apply formulations with more than 95% by weight of active ingredient or even the active ingredient without additives.
  • UUV ultra-low-volume process
  • Oils of various types, wetting agents, adjuvants, herbicides, fungicides, other pesticides, bactericides can be added to the active compounds, if appropriate also only immediately before use (tank mix). These agents can be added to the agents according to the invention in a weight ratio of 1:10 to 10: 1.
  • compositions according to the invention can also be present together with other active compounds which, e.g. with herbicides, insecticides, growth regulators, fungicides or also with fertilizers. Mixing the compounds I or the compositions containing them in the use form as fungicides with other fungicides results in an enlargement of the fungicidal spectrum of action in many cases.
  • Acylalanines such as benalaxyl, metalaxyl, ofurace, oxadixyl,
  • Amine derivatives such as aldimorph, dodine, dodemorph, fenpropimorph, fenpropidine, guazatine, iminoctadine, spiroxamine, tridemorph • anilinopyrimidines such as pyrimethanil, mepanipyrim or cyprodinil,
  • Antibiotics such as cycloheximide, griseofulvin, kasugamycin, natamycin, polyoxin or streptomycin,
  • Azoles such as bitertanol, bromoconazole, cyproconazole, difenoconazole, dinitroconazole, enilconazole, epoxiconazole, fenbuconazole, fluquiconazole, flusilazole, flutriafol, hexaconazole, imazalil, ipconazole, metconazol, penocolazolol, myocazolol, myocazolol, myclazol, myclazol, myclazol, myocazolol, myclazol, myclazol, myclazol, myclazol, myclazol, myclazol, myclazol, myclazol, myclazol, myclazol , Tetraconazole, tri-dimefon, triadimenol, triflumizole, triticonazole,
  • Dicarboximides such as iprodione, myclozolin, procymidone, vinclozolin,
  • Dithiocarbamates such as Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,
  • Heterocyclic compounds such as anilazine, benomyl, boscalid, carbendazim, carboxin, oxycarboxin, cyazofamid, dazomet, dithianon, famoxadone, fenamidon, fenarimol, fuberidazole, flutolanil, furametpyr, isoprothiolan, mepronazolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, proquinolifene, nuquin Pyroquilon, quinoxyfen, silthofam, thiabendazole, thifluzamide, thiophanate-methyl, tiadinil, tricyclazole, triforins, Copper fungicides such as
  • Nitrophenyl derivatives such as binapacryl, dinocap, dinobuton, nitrophthal-isopropyl
  • Phenylpyrroles such as fenpiclonil or fludioxonil, sulfur,
  • fungicides such as acibenzolar-S-methyl, benthiavalicarb, carpropamide, chlorothalonil, cyflufenamide, cymoxanil, diclomezin, diclocymet, diethofencarb, edifenphos, ethaboxam, fenhexamide, fentin acetate, fenoxanil, namimzone, fluazi, fluazi, fluazi Fosetyl aluminum, phosphorous acid, iprovalicarb, hexachlorobenzene, metrafenone, pencycuron, penthiopyrad, propamocarb, phthalide, toloclofos-methyl, quintozene, zoxamide,
  • strobilurins such as azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, cresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin or trifloxystrobin, • sulfenoic acid derivatives such as captafol, captan, dichlofluanfluanid, folpet, tolpet, tolpet
  • Cinnamic acid amides and analogues such as dimethomorph, flumetover or flumorph.
  • Example 1a 5-chloro-6- (2,4,6-trifluorophenyl) -7- (2-methyl-pyrrolidin-1-yl) -1, 2,4-triazolo [1,5a] pyrimidine
  • Example 2a methyl 2- (2,4,6-trifluorophenyI) acetoacetate
  • reaction mixture was mixed with 450 ml of ammonium chloride solution. and conc. Acidified hydrochloric acid. After dilution with methyl t-butyl ether (MtBE), the organic phase was diluted with dil. acid and NaHCO 3 solution. washed, then dried and freed from solvent. The residue was fractionated. 34.5 g of the title compound were obtained as a light yellow liquid.
  • MtBE methyl t-butyl ether
  • Example 2d 5-methyl-6- (2,4,6-trifluorophenyl) -7- (R-1, 2-dimethylprop-1-yl) -1, 2,4-tri-azolo [1, 5a] pyrimidine
  • Phenyl substitution two diastereomers are present, which can differ in the physical data.
  • the active ingredients were prepared as a stock solution with 25 mg active ingredient, which was mixed with a mixture of acetone and / or DMSO and the emulsifier Uniperol® EL (wetting agent with emulsifying and dispersing action based on ethoxylated alkylphenols) in a volume ratio of solvent emulsifier was filled from 99 to 1 ad 10 ml. Then ad 100 ml was made up with water. This stock solution was diluted with the solvent-emulsifier / water mixture described to the active ingredient concentration given below.
  • Pepper seedlings of the "Neusiedler Ideal Elite" variety after 2 to 3 leaves had developed well, were sprayed to runoff point with an aqueous suspension in the active compound concentration given below. The next day the treated plants were inoculated with a spore suspension of Botrytis cinerea containing 1.7 x 10 6 spores / ml in a 2% aqueous biomalt solution. The test plants were then placed in a climatic chamber with 22 to 24 ° C, darkness and high air humidity. After 5 days, the extent of the fungal attack on the leaves could be determined visually in%.
  • the plants treated with 250 ppm of the compounds 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7 or I-8 showed a maximum of 1% infection, while the untreated plants were 90% infected.
  • Leaves of cucumber seedlings grown in pots were sprayed in the cotyledon stage with an aqueous suspension in the active ingredient concentration given below to runoff. 3 days after the application, the plants were inoculated with an aqueous spore suspension of cucumber mehite (Sphaerotheca fuliginea). The plants were then cultivated in a greenhouse at temperatures between 20 and 24 ° C. and 60 to 80% relative atmospheric humidity for 7 days. The extent of mildew development was then determined visually in% of the cotyledon area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Catching Or Destruction (AREA)
EP05716387A 2004-03-30 2005-03-26 6-(2-fluorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel Withdrawn EP1732927A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016082 2004-03-30
PCT/EP2005/003208 WO2005095404A2 (de) 2004-03-30 2005-03-26 6-(2-fluorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel

Publications (1)

Publication Number Publication Date
EP1732927A2 true EP1732927A2 (de) 2006-12-20

Family

ID=34962287

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05716387A Withdrawn EP1732927A2 (de) 2004-03-30 2005-03-26 6-(2-fluorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP05736871A Withdrawn EP1735316A2 (de) 2004-03-30 2005-03-29 6-(2,6-dichlorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05736871A Withdrawn EP1735316A2 (de) 2004-03-30 2005-03-29 6-(2,6-dichlorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel

Country Status (7)

Country Link
US (2) US20070208038A1 (pt)
EP (2) EP1732927A2 (pt)
JP (2) JP2007530618A (pt)
CN (2) CN1938313A (pt)
BR (2) BRPI0508717A (pt)
IL (2) IL177512A0 (pt)
WO (2) WO2005095404A2 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113136A1 (de) * 2006-03-30 2007-10-11 Basf Aktiengesellschaft Verwendung von substituierten riazolopyrimidinen zur bekämpfung von phyto pathogenen schadpilzen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117876A (en) * 1997-04-14 2000-09-12 American Cyanamid Company Fungicidal trifluorophenyl-triazolopyrimidines
FR2765875B1 (fr) * 1997-07-14 1999-11-19 American Cyanamid Co 5-alkyl-triazolopyrimidines fongicides
US5994360A (en) * 1997-07-14 1999-11-30 American Cyanamid Company Fungicidal 5-alkyl-triazolopyrimidines
EA006483B1 (ru) * 2000-06-30 2005-12-29 Уайт Замещенные триазолопиримидины в качестве противораковых средств
US6855718B2 (en) * 2000-11-13 2005-02-15 Basf Aktiengesellschaft 7-(r)-aminotriazolopyrimidines, the production thereof and use of the same for combatting phytopathogenic fungi
DE60201089T2 (de) * 2001-04-11 2004-12-30 Basf Ag 6-(2-chlor-6-fluor-phenyl)-triazolpyrimidine
JP2002308879A (ja) * 2001-04-13 2002-10-23 Nippon Soda Co Ltd 5−ハロアルキル−アゾロピリミジン化合物、製造方法及び有害生物防除剤
WO2003008415A1 (en) * 2001-07-18 2003-01-30 Basf Aktiengesellschaft 6-(2,6-difluorophenyl)-triazolopyrimidines as fungicides
CN1649872A (zh) * 2002-05-03 2005-08-03 巴斯福股份公司 杀真菌的三唑并嘧啶、其制备方法、其在防治有害真菌中的用途以及含有所述杀真菌的三唑并嘧啶的试剂
UA80304C2 (en) * 2002-11-07 2007-09-10 Basf Ag Substituted 6-(2-halogenphenyl)triazolopyrimidines
JP2007523843A (ja) * 2003-03-31 2007-08-23 ビーエーエスエフ アクチェンゲゼルシャフト 7−アルケニルアミノ−トリアゾロピリミジン、その製造方法、有害菌類を防除するためのその使用及びそれらを含む製剤
BRPI0408864A (pt) * 2003-04-02 2006-04-11 Basf Ag compostos, processo para a preparação de um composto, preparação adequada para o controle de fungos danosos e processo para o controle de fungos fitopatogênicos danosos

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005095404A2 *

Also Published As

Publication number Publication date
BRPI0508728A (pt) 2007-08-14
BRPI0508717A (pt) 2007-08-07
EP1735316A2 (de) 2006-12-27
WO2005095404A3 (de) 2006-04-06
US20070208038A1 (en) 2007-09-06
JP2007530618A (ja) 2007-11-01
WO2005095405A3 (de) 2005-12-22
US20070142404A1 (en) 2007-06-21
WO2005095405A2 (de) 2005-10-13
IL177512A0 (en) 2006-12-10
JP2007530634A (ja) 2007-11-01
IL177661A0 (en) 2006-12-31
CN1938312A (zh) 2007-03-28
WO2005095404A2 (de) 2005-10-13
CN1938313A (zh) 2007-03-28

Similar Documents

Publication Publication Date Title
EP1858327A1 (de) Verwendung von 4-aminopyrimidinen zur bekämpfung von schadpilzen, neue 4-aminopyrimidine, verfahren zu ihrer herstellung sowie sie enthaltende mittel
EP1663976A1 (de) 4-pyridinylmethylsulfonamidderivate als fungizidwirksame pflanzenschutzmittel
WO2004106341A1 (de) Substituierte pyrazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
WO2007101871A1 (de) Substituierte imidazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1765824B1 (de) Substituierte 6-phenyl-7-amino-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1585747B1 (de) 5-alkyl-7-aminotriazolopyrimidine,verfahren und zwischenprodukte zu ihrer herstellung ,sie enthaltende mittel sowie ihre verwendung zur bekämpfung von schadpilzen
WO2005120233A1 (de) Triazolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP1761538A1 (de) 6-(2-fluorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
WO2004046149A1 (de) 2-mercapto-substituierte triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1732927A2 (de) 6-(2-fluorphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1697365B1 (de) 6-(2-fluor-4-alkoxyphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung, ihre verwendung zur bekämpfung von schadpilen sowie sie enthaltende mittel
EP1797095A1 (de) 6-phenyl-7-amino-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1725557B1 (de) 6-(2-chlor-5-halogenphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
WO2005058904A1 (de) 6-pentafluorphenyl-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
WO2005058903A1 (de) 6-(2,4,6-trihalogenphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1697366B1 (de) 6-(2-chlor-4-alkoxy-phenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
WO2007099092A1 (de) Substituierte 6-phenyl-7-amino-[1,2,4]-triazolo[1,5-a]pyrimidine und deren verwendung zur bekämpfung von schadpilzen
EP1562950A1 (de) 2-substituierte triazolopyrimidine, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpillen sowie sie enthaltende mittel
EP1751160A1 (de) 6-(2,3,6-trifluorphenyl) -triazolopyrimidine zur bekämpfung von schadpilzen
WO2005061502A1 (de) 6-(aminocarbonyl-phenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1697367A1 (de) 6-(2-halogenphenyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bek mpfung von schadpilzen sowie sie enthaltende mittel
EP1689750A1 (de) 6-(2,4,6-trifluorphenyl)-triazolopyrimidine, verfahren zu ihrer hestellung und ihre verwendung zur bek mpfung von schadpilzen sowie sie enthaltende mittel
WO2005123740A1 (de) Verwendung von 6-(2-tolyl)-triazolopyrimidinen als fungizide, neue 6-(2-tolyl)-triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061030

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070222

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081001